Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs - Archive ouverte HAL
Article Dans Une Revue Transactions of the Association for Computational Linguistics Année : 2020

Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs

Résumé

Recent graph-to-text models generate text from graph-based data using either global or local aggregation to learn node representations. Global node encoding allows explicit communication between two distant nodes, thereby neglecting graph topology as all nodes are directly connected. In contrast, local node encoding considers the relations between neighbor nodes capturing the graph structure, but it can fail to capture long-range relations. In this work, we gather both encoding strategies, proposing novel neural models which encode an input graph combining both global and local node contexts, in order to learn better contextualized node embeddings. In our experiments, we demonstrate that our approaches lead to significant improvements on two graph-to-text datasets achieving BLEU scores of 18.01 on AGENDA dataset, and 63.69 on the WebNLG dataset for seen categories, outperforming state-of-the-art models by 3.7 and 3.1 points, respectively.
Fichier principal
Vignette du fichier
TACL2020-ribeiro.pdf (630.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03020314 , version 1 (23-11-2020)

Identifiants

Citer

Leonardo F R Ribeiro, Yue Zhang, Claire Gardent, Iryna Gurevych. Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs. Transactions of the Association for Computational Linguistics, 2020, 8, ⟨10.1162/tacl_a_00332⟩. ⟨hal-03020314⟩
46 Consultations
251 Téléchargements

Altmetric

Partager

More