
HAL Id: hal-03020314
https://hal.science/hal-03020314v1

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Global and Local Node Contexts for Text
Generation from Knowledge Graphs

Leonardo F R Ribeiro, Yue Zhang, Claire Gardent, Iryna Gurevych

To cite this version:
Leonardo F R Ribeiro, Yue Zhang, Claire Gardent, Iryna Gurevych. Modeling Global and Local
Node Contexts for Text Generation from Knowledge Graphs. Transactions of the Association for
Computational Linguistics, 2020, 8, �10.1162/tacl_a_00332�. �hal-03020314�

https://hal.science/hal-03020314v1
https://hal.archives-ouvertes.fr

Modeling Global and Local Node Contexts
for Text Generation from Knowledge Graphs

Leonardo F. R. Ribeiro†, Yue Zhang‡, Claire Gardent§ and Iryna Gurevych†

†Research Training Group AIPHES and UKP Lab, Technische Universität Darmstadt
‡School of Engineering, Westlake University, §CNRS/LORIA, Nancy, France
ribeiro@aiphes.tu-darmstadt.de, yue.zhang@wias.org.cn

claire.gardent@loria.fr, gurevych@ukp.informatik.tu-darmstadt.de

Abstract

Recent graph-to-text models generate text
from graph-based data using either global
or local aggregation to learn node represen-
tations. Global node encoding allows ex-
plicit communication between two distant
nodes, thereby neglecting graph topology as
all nodes are directly connected. In con-
trast, local node encoding considers the re-
lations between neighbor nodes capturing
the graph structure, but it can fail to capture
long-range relations. In this work, we gather
both encoding strategies, proposing novel
neural models which encode an input graph
combining both global and local node con-
texts, in order to learn better contextualized
node embeddings. In our experiments, we
demonstrate that our approaches lead to sig-
nificant improvements on two graph-to-text
datasets achieving BLEU scores of 18.01
on AGENDA dataset, and 63.69 on the
WebNLG dataset for seen categories, out-
performing state-of-the-art models by 3.7
and 3.1 points, respectively.1

1 Introduction

Graph-to-text generation refers to the task of gen-
erating natural language text from input graph
structures, which can be semantic representations
(Konstas et al., 2017) or knowledge graphs (KG)
(Gardent et al., 2017; Koncel-Kedziorski et al.,
2019). While most recent work (Song et al., 2018;
Ribeiro et al., 2019; Guo et al., 2019) focuses
on generating sentences, a more challenging and
interesting scenario emerges when the goal is to
generate multi-sentence texts. In this context, in
addition to sentence generation, document plan-
ning needs to be handled: the input needs to be
mapped into several sentences; sentences need to
be ordered and connected using appropriate dis-
course markers; and inter-sentential anaphora and

1Code is available at https://github.com/UKPLab/kg2text

comparison

comparison
GNN

transformer

hyponym-of

node
embeddings

used-for

GAT

evaluate-for

evaluate-for

WebNLG

graph
classification

used-for

CNN

graph
embeddings

used-for

used-for

a)

used-for

link prediction

DistMult

… For the link prediction task, first we learn node
embeddings using DistMult method. … Further, we also
experiment with GAT, a GNN model, in order to generate
node embeddings to predict edges between nodes.

Global Node
Encoder

N x

c) Globally
Contextualised

Embeddings

b)

Node Embeddings

d)

Local Node
Encoder

N x

Locally
Contextualised

Embeddings

Node Embeddings

Figure 1: A graphical representation (a) of a scientific
text (b). (c) A global encoder directly captures longer
dependencies between any pair of nodes (blue and red
arrows), but fails in capturing the graph structure. (d)
A local encoder explicitly accesses information from
the adjacent nodes (blue arrows) and implicitly cap-
tures distant information (dashed red arrows).

ellipsis may need to be generated to avoid repeti-
tion. In this paper, we focus on generating texts
rather than sentences where the output are short
texts (Gardent et al., 2017) or paragraphs (Koncel-
Kedziorski et al., 2019).

A key issue in neural graph-to-text generation
is how to encode the input graphs. The basic
idea is to incrementally compute node represen-
tations by aggregating structural context informa-
tion. To this end, two main approaches have been
proposed: (i) models based on local node aggre-
gation, usually built upon Graph Neural Networks

ar
X

iv
:2

00
1.

11
00

3v
2

 [
cs

.C
L

]
 2

2
Ju

n
20

20

https://github.com/UKPLab/kg2text

(GNN) (Kipf and Welling, 2017; Hamilton et al.,
2017) and (ii) models that leverage global node
aggregation. Systems that adopt global encod-
ing strategies are typically based on Transformers
(Vaswani et al., 2017), using self-attention to com-
pute a node representation based on all nodes in
the graph. This approach enjoys the advantage of
a large node context range, but neglects the graph
topology by effectively treating every node as be-
ing connected to all the others in the graph. In
contrast, models based on local aggregation learn
the representation of each node based on its adja-
cent nodes as defined in the input graph. This ap-
proach effectively exploits the graph topology, and
the graph structure has a strong impact on the node
representation (Xu et al., 2018). However, encod-
ing relations between distant nodes can be chal-
lenging by requiring more graph encoding layers,
which can also propagate noise (Li et al., 2018).

For example, Figure 1a presents a KG, for
which a corresponding text is shown in Figure 1b.
Note that there is a mismatch between how entities
are connected in the graph and how their natural
language descriptions are related in the text. Some
entities syntactically related in the text are not con-
nected in the graph. For instance, in the sentence
"For the link prediction task, first we learn node
embeddings using DistMult method.", while the
entity mentions are dependent of the same verb,
in the graph, the node embeddings node has no
explicit connection with link prediction and Dist-
Mult nodes, which are in a different connected
component. This example illustrates the impor-
tance of encoding distant information in the input
graph. As shown in Figure 1c, a global encoder is
able to learn a node representation for node em-
beddings which captures information from non-
connected entities such as DistMult. By modeling
distant connections between all nodes, we allow
for these missing links to be captured, as KGs are
known to be highly incomplete (Dong et al., 2014;
Schlichtkrull et al., 2018).

In contrast, the local strategy refines the node
representation with richer neighborhood informa-
tion, as nodes that share the same neighborhood
exhibit a strong homophily: two similar entities are
much more likely to be connected than at random.
Consequently, the local context enriches the node
representation with local information from KG
triples. For example, in Figure 1a, GAT reaches
node embeddings through the GNN. This transi-

tive relation can be captured by a local encoder,
as shown in Figure 1d. Capturing this form of re-
lationship also can support text generation at the
sentence level.

In this paper, we investigate novel graph-to-
text architectures that combine both global and lo-
cal node aggregations, gathering the benefits from
both strategies. In particular, we propose a uni-
fied graph-to-text framework based on Graph At-
tention Networks (GAT) (Veličković et al., 2018).
As part of this framework, we empirically com-
pare two main architectures: a cascaded archi-
tecture that performs global node aggregation be-
fore performing local node aggregation, and a par-
allel architecture that performs global and local
aggregations simultaneously. While the cascaded
architecture allows the local encoder to leverage
global encoding features, the parallel architecture
allows more independent features to complement
each other. To further consider fine-grained inte-
gration, we additionally consider layer-wise inte-
gration of the global and local encoders.

Extensive experiments show that our ap-
proaches consistently outperform recent models
on two benchmarks for text generation from KGs.
To the best of our knowledge, we are the first to
consider integrating global and local context ag-
gregation in graph-to-text generation, and the first
to propose a unified GAT structure for combining
global and local node contexts.

2 Related Work

Early efforts for graph-to-text generation employ
statistical methods (Flanigan et al., 2016; Pour-
damghani et al., 2016; Song et al., 2017). Re-
cently, several neural graph-to-text models have
exhibited success by leveraging encoder mecha-
nisms based on LSTMs, GNNs and Transformers.

AMR-to-Text Generation. Various neural
models have been proposed to generate sentences
from Abstract Meaning Representation (AMR)
graphs. Konstas et al. (2017) provide the first
neural approach for this task, by linearising the
input graph as a sequence of nodes and edges.
Song et al. (2018) propose the graph recurrent
network (GRN) to directly encode the AMR
nodes, whereas Beck et al. (2018) develop a
model based on gated GNNs. However, both
approaches only employ local node aggregation
strategies. Damonte and Cohen (2019) combine
graph convolutional networks (GCN) and LSTMs

in order to learn complementary node contexts.
However, differently from Transformers and
GNNs, LSTMs generate node representations
that are influenced by the node order. Ribeiro
et al. (2019) develop a model based on differ-
ent GNNs which learns node representations
which simultaneously encode a top-down and a
bottom-up views of the AMR graphs, whereas
Guo et al. (2019) leverage dense connectivity in
GNNs. Recently, Wang et al. (2020) propose a
local graph encoder based on Transformers using
separated attentions for incoming and outgoing
neighbors. Recent methods (Zhu et al., 2019; Cai
and Lam, 2020) also employ Transformers, but
learn globalized node representations, modeling
graph paths in order to capture structural relations.

KG-to-Text Generation. In this work, we fo-
cus on generating text from KGs. In compari-
son to AMRs, which are rooted and connected
graphs, KGs do not have a defined topology, which
may vary widely among different datasets, making
the generation process more demanding. KGs are
sparse structures that potentially contain a large
number of relations. Moreover, we are typically
interested in generating multi-sentence texts from
KGs, which involves solving document planning
issues (Konstas and Lapata, 2013).

Recent neural approaches for KG-to-text gen-
eration simply linearise the KG triples thereby
loosing graph structure information. For in-
stance, Colin and Gardent (2018), Moryossef et al.
(2019) and Adapt (Gardent et al., 2017) employ
LSTM/GRU to encode WebNLG graphs. Cas-
tro Ferreira et al. (2019) systematically compare
pipeline and end-to-end models for text genera-
tion from WebNLG graphs. Trisedya et al. (2018)
develop a graph encoder based on LSTMs that
captures relationships within and between triples.
Previous work has also studied how to explic-
itly encode the graph structure using GNNs or
Transformers. Marcheggiani and Perez Beltra-
chini (2018) propose an encoder based on GCNs,
which consider explicitly local node contexts, and
show superior performance compared to LSTMs.
Recently, Koncel-Kedziorski et al. (2019) propose
a Transformer-based approach which computes
the node representations by attending over node
neighborhoods following a self-attention strategy.
In contrast, our models focus on distinct global
and local message passing mechanisms, capturing
complementary graph contexts.

Integrating Global Information. There has
been recent work that attempts to integrate global
context in order to learn better node representa-
tions in graph-to-text generation. To this end, ex-
isting methods employ an artificial global node
for message exchange with the other nodes. This
strategy can be regarded as extending the graph
structure but using similar message passing mech-
anisms. In particular, Koncel-Kedziorski et al.
(2019) add a global node to the graph and use
its representation to initialize the decoder. Re-
cently, Guo et al. (2019) and Cai and Lam (2020)
also employ an artificial global node with direct
edges to all other nodes to allow global message
exchange for AMR-to-text generation. Similarly,
Zhang et al. (2018) use a global node to a GRN
model for sentence representation. Different from
the above methods, we consider integrating global
and local contexts at the node level, rather than
the graph level, by investigating model alterna-
tives rather than graph structure changes. In ad-
dition, we integrate GAT and Transformer archi-
tectures into a unified global-local model.

3 Graph-to-Text Model

This section first describes (i) the graph transfor-
mation adopted to create a relational graph from
the input (Section 3.1), and (ii) the graph encoders
of our framework based on Graph Attention Net-
works (GAT) (Veličković et al., 2018), for deal-
ing with both global (Section 3.3) and local (Sec-
tion 3.4) node contexts. We adopt GAT because it
is closely related to the Transformer architecture
(Vaswani et al., 2017), which provides a conve-
nient prototype for modeling global node context.
Then, (iii) we proposed strategies to combined the
global and local graph encoders (Section 3.5). Fi-
nally, (iv) we describe the decoding and training
procedures (Section 3.6).

3.1 Graph Preparation

We represent a KG as a multi-relational graph2

Ge = (Ve, Ee,R) with entity nodes e ∈ Ve and la-
beled edges (eh, r, et) ∈ Ee, where r ∈ R denotes
the relation existing from the entity eh to et.3

2In this paper, multi-relational graphs refer to directed
graphs with labelled edges.

3R contains relations both in canonical direction (e.g.
used-for) and in inverse direction (e.g. used-for-inv), so that
the models consider the differences in the incoming and out-
going relations.

Unlike other current approaches (Koncel-
Kedziorski et al., 2019; Moryossef et al., 2019),
we represent an entity as a set of nodes. For in-
stance, the KG node "node embedding" in Figure 1
will be represented by two nodes, one for the to-
ken "node" and the other for the token "embed-
ding". Formally, we transform each Ge into a new
graph G = (V, E ,R), where each token of an en-
tity e ∈ Ve becomes a node v ∈ V . We convert
each edge (eh, r, et) ∈ Ee into a set of edges (with
the same relation r) and connect every token of
eh to every token of et. That is, an edge (u, r, v)
will belong to E if and only if there exists an edge
(eh, r, et) ∈ Ee such that u ∈ eh and v ∈ et, where
eh and et are seen as sets of tokens. We represent
each node v ∈ V with an embedding h0v ∈ Rdv ,
generated from its corresponding token.

The new graph G increases the representational
power of the models because it allows learning
node embeddings at a token level, instead of en-
tity level. This is particularly important for text
generation as it permits the model to be more flex-
ible, capturing richer relationships between entity
tokens. This also allows the model to learn rela-
tions and attention functions between source and
target tokens. However, it has the side effect of re-
moving the natural sequential order of multi-word
entities. To preserve this information, we employ
position embeddings (Vaswani et al., 2017), i.e.,
h0v becomes the sum of the corresponding token
embedding and the positional embedding for v.

3.2 Graph Neural Networks (GNN)

Multi-layer GNNs work by iteratively learning a
representation vector hv of a node v based on
both its context node neighbors and edge fea-
tures, through an information propagation scheme.
More formally, the l-th layer aggregates the repre-
sentations of v’s context nodes:

h
(l)
N (v) = AGGR(l)

({(
h(l−1)u , ruv

)
: u ∈ N (v)

})
,

where AGGR(l)(.) is an aggregation function,
shared by all nodes on the l-th layer. ruv repre-
sents the relation between u and v. N (v) is a set
of context nodes for v. In most GNNs, the context
nodes are those adjacent to v. h

(l)
N (v) is the ag-

gregated context representation ofN (v) at layer l.
h
(l)
N (v) is used to update the representation of v:

h(l)v = COMBINE(l)
(
h(l−1)v , h

(l)
N (v)

)
.

After L iterations, a node’s representation en-
codes the structural information within its L-
hop neighborhood. The choices of AGGR(l)(.)
and COMBINE(l)(.) differ by the specific GNN
model. An example of AGGR(l)(.) is the sum
of the representations of N (v). An example of
COMBINE(l)(.) is a concatenation after the fea-
ture transformation.

3.3 Global Graph Encoder
A global graph encoder aggregates the global con-
text for updating each node based on all nodes
of the graph (see Figure 1c). We use the atten-
tion mechanism as the message passing scheme,
extending the self-attention network structure of
Transformer to a GAT structure. In particular, we
compute a layer of the global convolution for a
node v ∈ V , which takes the input feature rep-
resentations hv as input, adopting AGGR(l)(.) as:

hN (v) =
∑

u∈V
αvuWg hu , (1)

where Wg ∈ Rdv×dz is a model parameter. The
attention weight αvu is calculated as:

αvu =
exp(evu)∑
k∈V exp(evk)

, (2)

where,

evu =
((
Wqhv

)>(
Wkhu

))
/dz (3)

is the attention function which measures the
global importance of node u’s features to node v.
Wq,Wk ∈ Rdv×dz are model parameters and dz is
a scaling factor. To capture distinct relations be-
tween nodes, K independent global convolutions
are calculated and concatenated:

ĥN (v) =
nK

k=1
h
(k)
N (v) . (4)

Finally, we define COMBINE(l)(.) employing
layer normalization (LayerNorm) and a fully con-
nected feed-forward network (FFN), in a similar
way as the transformer architecture:

ĥv = LayerNorm(ĥN (v) + hv) , (5)

hglobalv = FFN(ĥv) + ĥN (v) + hv . (6)

Note that the global encoder creates an artifi-
cial complete graph with O(n2) edges and does
not consider the edge relations. In particular, if the
labelled edges were considered, the self-attention
space complexity would increase to Θ(|R|n2).

N xN x

Global Node

Encoder Layer

Node Embeddings

Local Node

Encoder Layer

Contextualised Embeddings

M x Local Node Encoder Layer

Node Embeddings

Contextualised Embeddings

Global Node Encoder Layer
N x Global Node

Encoder
Local Node

Encoder N x
Local Node Encoder

Global Node Encoder

a) b) c) d)

Node Embeddings Node Embeddings Node Embeddings

Contextualised Embeddings Contextualised Embeddings

M x

Figure 2: Overview of the proposed encoder architectures. (a) Parallel Graph Encoder (PGE) with separated par-
allel global and local node encoders. (b) Cascaded Graph Encoder (CGE) with separated cascaded encoders. c)
PGE-LW: global and local node representations are concatenated layer-wise. d) CGE-LW: Both node representa-
tions are cascaded layer-wise.

3.4 Local Graph Encoder

The representation hglobalv captures macro relation-
ships from v to all other nodes in the graph. How-
ever, this representation lacks both structural in-
formation regarding the local neighborhood of v
and the graph topology. Also, it does not cap-
ture labelled edges (relations) between nodes (see
Equations 1 and 3). In order to capture these cru-
cial graph properties and impose a strong rela-
tional inductive bias, we build a graph encoder to
aggregate the local context by employing a mod-
ified version of GAT augmented with relational
weights. In particular, we compute a layer of the
local convolution for a node v ∈ V , adopting
AGGR(l)(.) as:

hN (v) =
∑

u∈N (v)
αvuWr hu , (7)

where Wr ∈ Rdv×dz encodes the relation r ∈ R
between u and v. N (v) is a set of nodes adjacent
to v and v itself. The attention coefficient αvu is
computed as:

αvu =
exp(evu)∑

k∈N (v) exp(evk)
, (8)

where,

evu = σ
(
a>[Wvhv ‖Wrhu]

)
(9)

is the attention function which calculates the lo-
cal importance of adjacent nodes, considering the
edge labels. σ is an activation function, ‖ denotes
concatenation andWv ∈ Rdv×dz and a ∈ R2dz are
model parameters.

We employ multi-head attentions to learn lo-
cal relations in different perspectives, as in Equa-
tion 4, generating ĥN (v). Finally, we define
COMBINE(l)(.) as:

hlocalv = RNN(hv, ĥN (v)) , (10)

where we employ as RNN a Gated Recurrent Unit
(GRU) (Cho et al., 2014). GRU facilitates infor-
mation propagation between local layers. This
choice is motivated by recent works (Xu et al.,
2018; Dehmamy et al., 2019) that theoretically
demonstrate that sharing information between lay-
ers helps the structural signals propagate. In a sim-
ilar direction, AMR-to-text generation models em-
ploy LSTMs (Song et al., 2017) and dense connec-
tions (Guo et al., 2019) between GNN layers.

3.5 Combining Global and Local Encodings

Our goal is to implement a graph encoder capable
of encoding global and local aspects of the input
graph. We hypothesize that these two sources of
information are complementary, and a combina-
tion of both enriches node representations for text
generation. In order to test this hypothesis, we in-
vestigate different combined architectures.

Intuitively, there are two general methods for
integrating two types of representation. The first
is to concatenate vectors of global and local con-
texts, which we call a parallel representation. The
second is to form a pipeline, where a global repre-
sentation is first obtained, which is then used as a
input for calculating refined representations based
on the local node context. We call this approach a
cascaded representation.

Parallel and cascaded integration can be per-
formed at the model level, considering the global
and local graph encoders as two representation
learning units disregarding internal structures.
However, because our model takes a multi-layer
architecture, where each layer makes a level of
abstraction in representation, we can alternatively
consider integration on the layer level, so that
more interaction between global and local con-
texts may be captured. As a result, we present four
architectures for integration, as shown in Figure 2.
All models serve the same purpose, and their rela-
tive strengths should be evaluated empirically.

#train #dev #test #relations avg #entities avg #nodes avg #edges avg #CC avg length
AGENDA 38,720 1,000 1,000 7 12.4 44.3 68.6 19.1 140.3
WebNLG 18,102 872 971 373 4.0 34.9 101.0 1.5 24.2

Table 1: Data statistics. Nodes, edges and CC values are calculated after the graph transformation. The average
values are calculated for all splits (training, dev and test sets). CC refers to the number of connected components.

Parallel Graph Encoding (PGE). In this setup,
we compose global and local graph encoders in
a fully parallel structure (Figure 2a). Note that
each graph encoder can have different numbers of
layers and attention heads. The final node rep-
resentation is the concatenation of the local and
global node representations of the last layers of
both graph encoders:

hglobalv = GE(h0v, {h0u : u ∈ V})
hlocalv = LE(h0v, {h0u : u ∈ N (v)})
hv = [hglobalv ‖hlocalv] , (11)

where GE and LE denote the global and local
graph encoders, respectively. h0v is the initial node
embedding used in the first layer of both encoders.

Cascaded Graph Encoding (CGE). We cas-
cade local and global graph encoders as shown in
Figure 2b. We first compute a globally contextu-
alized node embedding, and then refining it with
the local node context. h0v is the initial input for
the global encoder and hglobalv is the initial input
for the local encoder. In particular, the final node
representation is calculated as follows:

hglobalv = GE(h0v, {h0u : u ∈ V})
hv = LE(hglobalv ,{hglobalu : u ∈ N (v)}). (12)

Layer-wise Parallel Graph Encoding. To al-
low fine-grained interaction between the two types
of graph contextual information, we also combine
the encoders in a layer-wise (LW) fashion. As
shown in Figure 2c, for each graph layer, we em-
ploy both global and local encoders in a parallel
structure (PGE-LW). More precisely, each encoder
layer is calculates as follows:

hglobalv = GEl(h
l−1
v , {hl−1u : u ∈ V})

hlocalv = LEl(h
l−1
v , {hl−1u : u ∈ N (v)})

hlv = [hglobalv ‖hlocalv] , (13)

where GEl and LEl refer to the l-th layers of the
global and local graph encoders, respectively.

Layer-wise Cascaded Graph Encoding. We
also propose cascading the graph encoders layer-
wise (CGE-LW, Figure 2d). In particular, we com-
pute each encoder layer as follows:

hglobalv = GEl(h
l−1
v , {hl−1u : u ∈ V})

hlv = LEl(h
global
v ,{hglobalu : u ∈ N (v)}). (14)

3.6 Decoder and Training
Our decoder follows the core architecture of a
Transformer decoder (Vaswani et al., 2017). Each
time step t is updated by performing multi-head
attentions over the output of the encoder (node
embeddings hv) and over previously-generated to-
kens (token embeddings). An additional challenge
in our setup is to generate multi-sentence outputs.
In order to encourage the model to generate longer
texts, we employ a length penalty (Wu et al., 2016)
to refine the pure max-probability beam search.

The model is trained to optimize the negative
log-likelihood of each gold-standard output text.
We employ label smoothing regularization to pre-
vent the model from predicting the tokens too con-
fidently during training and generalizing poorly.

4 Data and Preprocessing

We attest the effectiveness of our models on two
datasets: AGENDA (Koncel-Kedziorski et al.,
2019) and WebNLG (Gardent et al., 2017). Table
1 shows the statistics for both datasets.

AGENDA. In this dataset, KGs are paired with
scientific abstracts extracted from proceedings of
12 top AI conferences. Each instance consists of
the paper title, a KG and the paper abstract. Enti-
ties correspond to scientific terms which are often
multi-word expressions (co-referential entities are
merged). We treat each token in the title as a node,
creating a unique graph with title and KG tokens
as nodes. As shown in Table 1, the average output
length is considerably large, as the target outputs
are multi-sentence abstracts.

WebNLG. In this dataset, each instance con-
tains a KG extracted from DBPedia. The target
text consists of sentences that verbalise the graph.

Model #L #H BLEU METEOR CHRF++ #P
Koncel-Kedziorski et al. (2019) 6 8 14.30 ±1.01 18.80 ±0.28 - -
Global Encoder 6 8 15.44 ±0.25 20.76 ±0.19 43.95 ±0.40 54.4
Local Encoder 3 8 16.03 ±0.19 21.12 ±0.32 44.70 ±0.29 54.0
PGE 6, 3 8, 8 17.55 ±0.15 22.02 ±0.07 46.41 ±0.07 56.1
CGE 6, 3 8, 8 17.82 ±0.13 22.23 ±0.09 46.47 ±0.10 61.5
PGE-LW 6 8, 8 17.42 ±0.25 21.78 ±0.20 45.79 ±0.32 69.0
CGE-LW 6 8, 8 18.01 ±0.14 22.34 ±0.07 46.69 ±0.17 69.8

Table 2: Results on AGENDA test set. #L and #H are the numbers of layers and the attention heads in each layer,
respectively. When more than one, the values are for the global and local encoders, respectively. #P stands for the
number of parameters in millions (node embeddings included).

We evaluate the models on the test set with seen
categories. Note that this dataset has a consider-
able number of edge relations (see Table 1). In or-
der to avoid parameter explosion, we use regular-
ization based on the basis function decomposition
to define the model relation weights (Schlichtkrull
et al., 2018). Also, as an alternative, we employ
the Levi Transformation to create nodes from re-
lational edges between entities (Beck et al., 2018).
That is, we create a new relation node for each
edge relation between two nodes. The new rela-
tion node is connected to the subject and object
token entities by two binary relations, respectively.

5 Experiments

We implemented all our models using PyTorch
Geometric (PyG) (Fey and Lenssen, 2019) and
OpenNMT-py (Klein et al., 2017). We employ the
Adam optimizer with β1 = 0.9 and β2 = 0.98.
Our learning rate schedule follows Vaswani et al.
(2017) with 8000 and 16000 warming-up steps for
WebNLG and AGENDA, respectively. The vo-
cabulary is shared between the node and target to-
kens. In order to mitigate the effects of random
seeds, for the test sets, we report the averages over
4 training runs along with their standard devia-
tion. We employ byte pair encoding (BPE, Sen-
nrich et al., 2016) to split entity words into smaller
more frequent pieces. So some nodes in the graph
can be sub-words. We also obtain sub-words on
the target side. Following previous works, we
evaluate the results with BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014)
and CHRF++ (Popović, 2015) automatic met-
rics and also perform a human evaluation (Sec-
tion 5.6). For layer-wise models, the number of
encoder layers are chosen from {2, 4, 6}, and for
PGE and CGE, the global and local layers are cho-
sen from and {2, 4, 6} and {1, 2, 3}, respectively.

The hidden encoder dimensions are chosen from
{256, 384, 448} (see Figure 3). Hyperparameters
are tuned on the development set of both datasets.
We report the test results when the BLEU score on
dev set is optimal.

5.1 Results on AGENDA

Table 2 shows the results, where we report the
number of layers and attention heads employed.
We train models with only global or local en-
coders as baselines. Each model has the respec-
tive parameter size that gives the best results on
the dev set. First, the local encoder, which re-
quires fewer encoder layers and parameters, has
a better performance compared to the global en-
coder. This shows that explicitly encoding the
graph structure is important to improve the node
representations. Second, our approaches substan-
tially outperform both baselines. CGE-LW out-
performs Koncel-Kedziorski et al. (2019), a trans-
former model that focuses on the relations be-
tween adjacent nodes, by a large margin, achiev-
ing the new state-of-the-art BLEU score of 18.01,
25.9% higher. We also note that KGs are highly
incomplete in this dataset, with an average num-
ber of connected components of 19.1 (see Table 1).
For this reason, the global encoder plays an im-
portant role in our models as it enables learning
node representations based on all connected com-
ponents. The results indicate that combining the
local node context, leveraging the graph topology,
and the global node context, capturing macro-level
node relations, leads to better performance. We
find that, even though CGE has a small number
of parameters compared to CGE-LW, it achieves
comparable performance. PGE-LW has the worse
performance among the proposed models. Finally
note that cascaded architectures are more effective
according to different metrics.

2 4 6
Encoder Layers

14.0

15.0

16.0

17.0

18.0
BL

EU
a)

Global
Local

PGE
CGE

PGE-LW
CGE-LW

256 384 448
Hidden Dimensions

15.0

15.5

16.0

16.5

17.0

17.5

BL
EU

b)

44 54 61 69
Parameters (in million)

15.0

15.5

16.0

16.5

17.0

17.5

BL
EU

c)

Figure 3: BLEU scores for AGENDA dev set, with respect to (a) the encoder layers, (b) the encoder hidden
dimensions and (c) the number of parameters.

Model BLEU METEOR CHRF++ #P
UPF-FORGe (Gardent et al., 2017) 40.88 40.00 - -
Melbourne (Gardent et al., 2017) 54.52 41.00 70.72 -
Adapt (Gardent et al., 2017) 60.59 44.00 76.01 -
Marcheggiani and Perez Beltrachini (2018) 55.90 39.00 - 4.9
Trisedya et al. (2018) 58.60 40.60 - -
Castro Ferreira et al. (2019) 57.20 41.00 - -
CGE 62.30 ±0.27 43.51 ±0.18 75.49 ±0.34 13.9
CGE (Levi Graph) 63.10 ±0.13 44.11 ±0.09 76.33 ±0.10 12.8
CGE-LW 62.85 ±0.07 43.75 ±0.21 75.73 ±0.31 11.2
CGE-LW (Levi Graph) 63.69 ±0.10 44.47 ±0.12 76.66 ±0.10 10.4

Table 3: Results on WebNLG test set with seen categories.

5.2 Results on WebNLG

We compare the performance of our more effec-
tive models (CGE, CGE-LW) with six state-of-the-
art results reported on this dataset. Three systems
are the best competitors in the WebNLG challenge
for seen categories: UPF-FORGe, Melbourne and
Adapt. UPF-FORGe follows a rule-based ap-
proach, whereas the others use neural encoder-
decoder models with linearized triple sets as input.

Table 3 presents the results. CGE achieves a
BLEU score of 62.30, 8.9% better than the best
model of Castro Ferreira et al. (2019), who em-
ploy an end-to-end architecture based on GRUs.
CGE using Levi graphs outperforms Trisedya et al.
(2018), an approach that encodes both intra-
triple and inter-triple relationships, by 4.5 BLEU
points. Interestingly, their intra-triple and inter-
triple mechanisms are closely related with the lo-
cal and global encodings. However, they rely on
encoding entities based on sequences generated by
traversal graph algorithms, whereas we explicitly
exploit the graph structure, throughout the local
neighborhood aggregation.

CGE-LW with Levi graphs as inputs has the best
performance, achieving 63.69 BLEU points, even
thought it uses fewer parameters. Note that this ap-
proach allows the model to handle new relations,
as they are treated as nodes. Moreover, the rela-

tions become part of the shared vocabulary, mak-
ing this information directly usable during the de-
coding phase. We outperform an approach based
on GNNs (Marcheggiani and Perez Beltrachini,
2018) by a large margin of 7.7 BLEU points,
showing that our combined graph encoding strate-
gies lead to better text generation. We also out-
perform Adapt, a strong competitor that employs
subword encodings, by 3.1 BLEU points.

5.3 Development Experiments

We report several development experiments in
Figure 3. Figure 3a shows the effect of the num-
ber of encoder layers in the four encoding meth-
ods.4 In general, the performance increases when
we gradually enlarge the number of layers, achiev-
ing the best performance with 6 encoder layers.
Figure 3b shows the choices of hidden sizes for the
encoders. The best performances for global and
PGE are achieved with 384 dimensions, whereas
the other models have the better performance with
448 dimensions. In Figure 3c, we evaluate the
performance employing different number of pa-
rameters.5 When the models are smaller, paral-

4For CGE and PGE the values refer to the global layers
and the number of local layers is fixed to 3.

5It was not possible to execute the local model with larger
number of parameters due to memory limitations.

0-10 11-20 21-30 31-40 >40
Number of Nodes

41

45

49

53
CH

RF
++

a)

Global
Local
PGE-LW
CGE-LW

1-2 3-4 5
Graph Diameter

43

47

51

CH
RF

++

b)
Global
Local
PGE
CGE

40 60 80 100 120 140 160
Output Length (d)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P[
D

 d
]

c)

Global
Global-no-lp
CGE
CGE-no-lp
Reference

Figure 4: CHRF++ scores for AGENDA test set, with respect to (a) the number of nodes, and (b) the graph
diameter. (c) Distribution of length of the gold references and models’ outputs for the AGENDA test set.

lel encoders obtain better results than the cascaded
ones. When the models are larger, cascaded mod-
els perform better. We speculate that for some
models, the performance can be further improved
with more parameters and layers. However, we do
not attempt this owing to hardware limitations.

5.4 Ablation Study

In Table 4, we report an ablation study on the im-
pact of each module used in CGE model on the dev
set of AGENDA. We also report the number of pa-
rameters used in each configuration.

Global Graph Encoder. We start by an abla-
tion on the global encoder. After removing the
global attention coefficients, the performance of
the model drops by 1.79 BLEU and 1.97 CHRF++
scores. Results also show that using FFN in the
global COMBINE(.) function is important to the
model but less effective than the global attention.
However, when we remove FNN, the number of
parameters drops considerably (around 18%) from
61.5 to 50.4 million. Finally, without the entire
global encoder, the result drops substantially by
2.21 BLEU points. This indicates that enrich-
ing node embeddings with a global context allows
learning more expressive graph representations.

Local Graph Encoder. We first remove the lo-
cal graph attention and the BLEU score drops to
16.92, showing that the neighborhood attention
improves the performance. After removing the re-
lation types, encoded as model weights, the per-
formance drops by 0.5 BLEU points. However,
the number of parameters is reduced by around 7.9
million. This indicates that we can have a more
efficient model, in terms of the number of parame-
ters, with a slight drop in performance. Removing
the GRU used on the COMBINE(.) function de-
creases the performance considerably. The worse
performance occurs if we remove the entire local

Model BLEU CHRF++ #P
CGE 17.38 45.68 61.5
Global Encoder
-Global Attention 15.59 43.71 59.0
-FFN 16.33 44.86 50.4
-Global Encoder 15.17 43.30 45.6
Local Encoder
-Local Attention 16.92 45.97 61.5
-Weight Relations 16.88 45.61 53.6
-GRU 16.38 44.71 60.2
-Local Encoder 14.68 42.98 51.8
-Shared Vocab. 16.92 46.16 81.8
Decoder
– Length Penalty 16.68 44.68 61.5

Table 4: Ablation study for modules used in the en-
coder and decoder of the CGE model.

encoder, with a BLEU score of 14.68, essentially
making the encoder similar to the global baseline.

Finally, we find that vocabulary sharing im-
proves the performance, and the length penalty is
beneficial as we generate multi-sentence outputs.

5.5 Impact of the Graph Structure and
Output Length

The overall performance on both datasets suggests
the strength of combining global and local node
representations. However, we are also interested
in estimating the models’ performance concerning
different data properties.

Graph Size. Figure 4a shows the effect of the
graph size, measured in number of nodes, on the
performance, measured using CHRF++ scores,6

for the AGENDA. We evaluate global and local
graph encoders, PGE-LW and CGE-LW. We find
that the score increases as the graph size increases.
Interesting, the gap between the local and global
encoders increases when the graph size increases.
This suggests that, because larger graphs may have
very different topologies, modeling the relations

6CHRF++ score is used as it is a sentence-level metric.

#T #DP Melbourne Adapt CGE-LW
1-2 396 78.74 83.10 84.35
3-4 386 66.84 72.02 72.27
5-7 189 61.85 69.28 70.25
#D #DP Melbourne Adapt CGE-LW
1 222 82.27 87.54 88.04
2 469 69.94 74.54 75.90
≥ 3 280 62.87 69.30 69.41
#S #DP Melbourne Adapt CGE-LW
1 388 77.19 81.66 82.03
2 306 67.29 73.29 73.78
3 151 66.30 72.46 73.21
4 66 66.73 71.26 75.16
≥ 5 60 61.93 67.57 69.20

Table 5: CHRF++ scores with respect to the number
of triples (#T), graph diameters (#D) and number of
sentences (#S) on the WebNLG test set. #DP refers to
the number of datapoints.

between nodes based on the graph structure is
more beneficial than allowing direct communica-
tion between nodes, overlooking the graph struc-
ture. Also note that the the cascaded model (CGE-
LW) is consistently better than the parallel model
(PGE-LW) over all graph sizes.

Table 5 shows the effect of the graph size,
measured in number of triples, on the perfor-
mance for the WebNLG. Our model obtains bet-
ter scores over all partitions. In contrast to
AGENDA, the performance decreases as the graph
size increases. This behavior highlights a cru-
cial difference between AGENDA and AMR and
WebNLG datasets, in which the models’ general
performance decreases as the graph size increases
(Gardent et al., 2017; Cai and Lam, 2020). In
WebNLG, the graph and sentence sizes are cor-
related, and longer sentences are more challeng-
ing to generate than the smaller ones. Differently,
AGENDA contains similar text lengths7 and when
the input is a larger graph, the model has more in-
formation to be leveraged during the generation.

Graph Diameter. Figure 4b shows the impact
of the graph diameter8 on the performance for the
AGENDA. Similarly to the graph size, the score
increases as the diameter increases. As the global
encoder is not aware of the graph structure, this
module has the worst scores, even though it en-

7As shown on Figure 4c, 82% of the reference abstracts
have more than 100 words.

8The diameter of a graph is defined as the length of the
longest shortest path between two nodes. We convert the
graphs into undirected graphs to calculate the diameters.

75 76-100 101-140 >140
Output Length

30

35

40

45

50

CH
RF

++

Number of Nodes
35 35-40 41-55 >55

Global
CGE

Figure 5: Relation between the number of nodes and
the length of the generated text, in number of words.

ables direct node communication over long dis-
tance. In contrast, the local encoder can propagate
precise node information throughout the graph
structure for k-hop distances, making the relative
performance better. Table 5 shows the models’
performances with respect to the graph diameter
for WebNLG. Similarly to the graph size, the score
decreases as the diameter increases.

Output Length. One interesting phenomenon
to analyze is the length distribution (in number
of words) of the generated outputs. We expect
that our models generate texts with similar output
lengths as the reference texts. As shown in Fig-
ure 4c, the references usually are bigger than the
texts generated by all models for AGENDA. The
texts generated by CGE-no-pl, a CGE model
without length penalty, are consistently shorter
than the texts from the global and CGE models.
We increase the length of the texts when we em-
ploy the length penalty (see Section 3.6). How-
ever, there is still a gap between the reference and
the generated text lengths. We leave further inves-
tigation of this aspect for future work.

Table 5 shows the models’ performances with
respect to the number of sentences for WebNLG.
In general, increasing the number of sentences
reduces the performance of all models. Note
that when the number of sentences increases, the
gap between CGE-LW and the baselines becomes
larger. This suggests that our approach is able
to better handle complex graph inputs in order to
generate multi-sentence texts.

Effect of the Number of Nodes on the Output
Length. Figure 5 shows the effect of the size of
a graph, defined as the number of nodes, on the

AGENDA
Model BLEU CHRF++
CGE-LW 18.17 46.80
-Shared Vocab 17.88 47.12
-Length Penalty 17.46 45.76
-Both 17.24 46.14

WebNLG
Model BLEU CHRF++
CGE-LW 63.86 76.80
-Shared Vocab 63.07 76.17
-Length Penalty 63.28 76.51
-Both 62.60 75.80

Table 6: Effects of the vocabulary sharing and length
penalty on the test sets of AGENDA and WebNLG.

quality (measured in CHRF++ scores) and length
of the generated text (in number of words) in the
AGENDA dev set. We bin both the graph size and
the output length in 4 classes. CGE consistently
outperforms the global model, in some cases by a
large margin. When handling smaller graphs (with
≤ 35 nodes), both models have difficulties gener-
ating good summaries. However, for these smaller
graphs, our model achieves a score 12.2% better
when generating texts with length ≤ 75. Interest-
ingly, when generating longer texts (>140) from
smaller graphs, our model outperforms the global
encoder by an impressive 21.7%, indicating that
our model is more effective in capturing semantic
signals from graphs with scarce information. Our
approach also performs better when the graph size
is large (> 55) but the generation output is small
(≤ 75), beating the global encoder by 9 points.

5.6 Human Evaluation

To further assess the quality of the generated text,
we conduct a human evaluation on the WebNLG
dataset.9 Following previous works (Gardent
et al., 2017; Castro Ferreira et al., 2019), we as-
sess two quality criteria: (i) Fluency (i.e., does
the text flow in a natural, easy to read manner?)
and (ii) Adequacy (i.e., does the text clearly ex-
press the data?). We divide the datapoints into
seven different sets by the number of triples. For
each set, we randomly select 20 texts generated
by Adapt, CGE with Levi graphs and their cor-
responding human reference (420 texts in total).
Since the number of datapoints for each set is not
balanced (see Table 5), this sampling strategy as-
sures us to have the same amount of samples for

9Because AGENDA is scientific in nature, we choose to
crowd source human evaluations only for WebNLG.

#T Adapt CGE Reference
F A F A F A

All 3.96C 4.44C 4.12B 4.54B 4.24A 4.63A

1-2 3.94C 4.59B 4.18B 4.72A 4.30A 4.69A

3-4 3.79C 4.45B 3.96B 4.50AB 4.14A 4.66A

5-7 4.08B 4.35B 4.18B 4.45B 4.28A 4.59A

#D Adapt CGE Reference
F A F A F A

1-2 3.98C 4.50B 4.16B 4.61A 4.28A 4.66A

≥ 3 3.91C 4.33B 4.03B 4.43B 4.17A 4.60A

Table 7: Fluency (F) and Adequacy (A) obtained in the
human evaluation. #T refers to the number of input
triples and #D to graph diameters. The ranking was
determined by pair-wise Mann-Whitney tests with p <
0.05, and the difference between systems which have a
letter in common is not statistically significant.

the different triple sets. Moreover, having human
references may serve as an indicator of the sanity
of the human evaluation experiment. We recruited
human workers from Amazon Mechanical Turk to
rate the text outputs on a 1-5 Likert scale. For each
text, we collect scores from 4 workers and average
them. Table 7 shows the results. We first note a
similar trend as in the automatic evaluation, with
CGE outperforming Adapt on both fluency and ad-
equacy. In sets with the number of triples smaller
than 5, CGE was the highest rated system in flu-
ency. Similarly to the automatic evaluation, both
systems are better in generating text from graphs
with smaller diameters. Note that bigger diame-
ters pose difficulties to the models, which achieve
their worst performance for diameters ≥ 3.

5.7 Additional Experiments
Impact of the Vocabulary Sharing and Length
Penalty. During the ablation studies, we note
that the vocabulary sharing and length penalty are
beneficial for the performance. To better estimate
their impact, we evaluate CGE-LW model with its
variations without employing vocabulary sharing,
length penalty and without both mechanisms, on
the test set of both datasets. Table 6 shows the re-
sults. We observe that sharing vocabulary is more
important to WebNLG than AGENDA. This sug-
gests that sharing vocabulary is beneficial when
the training data is small, as in WebNLG. On the
other hand, length penalty is more effective for
AGENDA, as it has longer texts than WebNLG10,
improving the BLEU score by 0.71 points.

10As shown in Table 1, AGENDA has texts 5.8 times
longer than WebNLG on average.

ina
ug

ur
at

io
nD

at
e leaderTitle

Turkey

President of Turkey

location

Ataturk Monument (Izmir)

leader
Ahmet

Davutoglu

a) b) Adapt: Ahmet Davutoglu is the president of Turkey. The
capital city is Ankara, but it is in Izmir that the bronze Ataturk
monument designed by Pietro Canonica and inaugurated on
27 july 1932 is located. The monument was designed in
bronze by Pietro Canonica and inaugurated on 27 July 1932.

1932-07-27

Bronze

material

Pietro Canonica

designer

capital

Ankara

c) CGE: President Ahmet Davutoglu is the leader of Turkey
where the capital city is Ankara. The country is the location of
the bronze Ataturk monument designed by Pietro Canonica and
inaugurated on 27 July 1932 in Izmir.

d) Reference: President Ahmet Davutoglu is the Turkish leader
where the capital city is Ankara. The bronze Ataturk Monument
which was designed by Pietro Canonica is located in Izmir and
was inaugurated on 27 July 1932.

Figure 6: (a) A WebNLG input graph and the outputs for (b) Adapt and (c) CGE. The color face indicates repetition.

1 2 3 4 5 6 7 8
Heads

1

2

3

4

5

6

G
lo

ba
l L

ay
er

0
1
2
3
4
5
6
7

A
tte

nt
io

n
D

is
ta

nc
e

Figure 7: The average distance between nodes for the
maximum attention for each head. ∞ indicates no path
between two nodes, that is, they belong to distinct con-
nected components.

How Far Does the Global Attention Look At.
Following previous works (Voita et al., 2019; Cai
and Lam, 2020), we investigate the attention distri-
bution of each graph encoder global layer of CGE-
LW on the AGENDA dev set. In particular, for
each node, we verify its global neighbor that re-
ceives the maximum attention weight and record
the distance between them.11 Figure 7 shows the
averaged distances for each global layer. We ob-
serve that the global encoder mainly focuses on
distant nodes, instead of the neighbours and clos-
est nodes. This is very interesting and agrees with
our intuition: whereas the local encoder is con-
cerned about the local neighborhood, the global
encoder is focusing on the information from long-
distance nodes.
Case Study. Figure 6 shows examples of gen-
erated texts when the WebNLG graph is complex
(7 triples). While CGE generates a factually cor-
rect text (it correctly verbalises all triples), the
Adapt’s output is repetitive. The example also il-
lustrates how the text generated by CGE closely
follows the graph structure whereby the first sen-
tence verbalises the right-most subgraph, the sec-

11The distance between two nodes is defined as the number
of edges in a shortest path connecting them.

ond the left-most one and the linking node Turkey
makes the transition (using hyperonymy and a def-
inite description, i.e., The country). The text cre-
ated by CGE is also more coherent than the ref-
erence. As noted above, the input graph includes
two subgraphs linked by Turkey. In natural lan-
guage, such a meaning representation corresponds
to a topic shift with the first part of the text describ-
ing an entity from one subgraph, the second part
an entity from the other subgraph, and the linking
entity (Turkey) marking the topic shift. Typically,
in English, a topic shift is marked by a definite
noun phrase in the subject position. While this is
precisely the discourse structure generated by CGE
(Turkey is realised in the second sentence by the
definite description The country in subject posi-
tion), the reference fails to mark the topic shift, re-
sulting in a text with weaker discourse coherence.

6 Conclusion

In this work, we introduced a unified graph atten-
tion network structure for investigating graph-to-
text models that combine global and local graph
encoders in order to improve text generation. An
extensive evaluation of our models demonstrated
that the global and local contexts are empirically
complementary, and a combination can achieve
state-of-the-art results on two datasets. In ad-
dition, cascaded architectures give better results
compared to parallel ones.

We point out some directions for future work.
First, it is interesting to study different fusion
strategies to assemble the global and local encod-
ings; Second, a promising direction is incorporat-
ing pre-trained contextualized word embeddings
in graphs; Third, as discussed in Section 5.5, it is
worth studying ways to diminish the gap between
the reference and the generated text lengths.

Acknowledgments

We would like to thank Pedro Savarese, Markus
Zopf, Mohsen Mesgar, Prasetya Ajie Utama, Ji-
Ung Lee and Kevin Stowe for their feedback on
this work, as well as the anonymous reviewers for
detailed comments that improved this paper. This
work has been supported by the German Research
Foundation as part of the Research Training Group
Adaptive Preparation of Information from Hetero-
geneous Sources (AIPHES) under grant No. GRK
1994/1.

References

Daniel Beck, Gholamreza Haffari, and Trevor
Cohn. 2018. Graph-to-sequence learning using
gated graph neural networks. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 273–283, Melbourne, Australia.
Association for Computational Linguistics.

Deng Cai and Wai Lam. 2020. Graph transformer
for graph-to-sequence learning. In Proceedings
of The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence (AAAI).

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019.
Neural data-to-text generation: A comparison
between pipeline and end-to-end architectures.
In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Process-
ing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-
IJCNLP), pages 552–562, Hong Kong, China.
Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using RNN
encoder–decoder for statistical machine trans-
lation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha,
Qatar. Association for Computational Linguis-
tics.

Emilie Colin and Claire Gardent. 2018. Gener-
ating syntactic paraphrases. In Proceedings of
the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 937–943,
Brussels, Belgium. Association for Computa-
tional Linguistics.

Marco Damonte and Shay B. Cohen. 2019. Struc-
tural neural encoders for AMR-to-text genera-
tion. In Proceedings of the 2019 Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 3649–3658, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Nima Dehmamy, Albert-Laszlo Barabasi, and
Rose Yu. 2019. Understanding the representa-
tion power of graph neural networks in learning
graph topology. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32, pages 15387–
15397. Curran Associates, Inc.

Michael Denkowski and Alon Lavie. 2014. Me-
teor universal: Language specific translation
evaluation for any target language. In Proceed-
ings of the Ninth Workshop on Statistical Ma-
chine Translation, pages 376–380, Baltimore,
Maryland, USA. Association for Computational
Linguistics.

Xin Luna Dong, Evgeniy Gabrilovich, Geremy
Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei
Zhang. 2014. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In
The 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Min-
ing, KDD ’14, New York, NY, USA - August 24 -
27, 2014, pages 601–610. Evgeniy Gabrilovich
Wilko Horn Ni Lao Kevin Murphy Thomas
Strohmann Shaohua Sun Wei Zhang Geremy
Heitz.

Matthias Fey and Jan E. Lenssen. 2019. Fast
graph representation learning with PyTorch Ge-
ometric. In ICLR Workshop on Representation
Learning on Graphs and Manifolds.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016. Generation from ab-
stract meaning representation using tree trans-
ducers. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the As-

https://www.aclweb.org/anthology/P18-1026
https://www.aclweb.org/anthology/P18-1026
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/D18-1113
https://doi.org/10.18653/v1/D18-1113
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1366
http://papers.nips.cc/paper/9675-understanding-the-representation-power-of-graph-neural-networks-in-learning-graph-topology.pdf
http://papers.nips.cc/paper/9675-understanding-the-representation-power-of-graph-neural-networks-in-learning-graph-topology.pdf
http://papers.nips.cc/paper/9675-understanding-the-representation-power-of-graph-neural-networks-in-learning-graph-topology.pdf
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
http://www.cs.cmu.edu/~nlao/publication/2014.kdd.pdf
http://www.cs.cmu.edu/~nlao/publication/2014.kdd.pdf
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/N16-1087

sociation for Computational Linguistics: Hu-
man Language Technologies, pages 731–739,
San Diego, California. Association for Compu-
tational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi
Narayan, and Laura Perez-Beltrachini. 2017.
The WebNLG challenge: Generating text from
RDF data. In Proceedings of the 10th Interna-
tional Conference on Natural Language Gener-
ation, pages 124–133, Santiago de Compostela,
Spain. Association for Computational Linguis-
tics.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei
Lu. 2019. Densely connected graph convolu-
tional networks for graph-to-sequence learning.
Transactions of the Association for Computa-
tional Linguistics, 7:297–312.

Will Hamilton, Zhitao Ying, and Jure Leskovec.
2017. Inductive representation learning on
large graphs. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30,
pages 1024–1034. Curran Associates, Inc.

Thomas N. Kipf and Max Welling. 2017. Semi-
Supervised Classification with Graph Convolu-
tional Networks. In Proceedings of the 5th In-
ternational Conference on Learning Represen-
tations, ICLR ’17.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Open-
NMT: Open-source toolkit for neural machine
translation. In Proceedings of ACL 2017, Sys-
tem Demonstrations, pages 67–72, Vancouver,
Canada. Association for Computational Lin-
guistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text Generation from Knowledge Graphs with
Graph Transformers. In Proceedings of the
2019 Conference of the North American Chap-
ter of the Association for Computational Lin-
guistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2284–
2293, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar,
Yejin Choi, and Luke Zettlemoyer. 2017. Neu-
ral amr: Sequence-to-sequence models for pars-
ing and generation. In Proceedings of the 55th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 146–157, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Ioannis Konstas and Mirella Lapata. 2013. Induc-
ing document plans for concept-to-text genera-
tion. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 1503–1514, Seattle, Washington,
USA. Association for Computational Linguis-
tics.

Q. Li, Z. Han, and X.-M. Wu. 2018. Deeper
Insights into Graph Convolutional Networks
for Semi-Supervised Learning. In The Thirty-
Second AAAI Conference on Artificial Intelli-
gence. AAAI.

Diego Marcheggiani and Laura Perez Beltrachini.
2018. Deep graph convolutional encoders for
structured data to text generation. In Pro-
ceedings of the 11th International Conference
on Natural Language Generation, pages 1–9,
Tilburg University, The Netherlands. Associa-
tion for Computational Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Da-
gan. 2019. Step-by-step: Separating planning
from realization in neural data-to-text genera-
tion. In Proceedings of the 2019 Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 2267–2277, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: A method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting on Associ-
ation for Computational Linguistics, ACL ’02,
pages 311–318, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Maja Popović. 2015. chrF: character n-gram f-
score for automatic MT evaluation. In Proceed-
ings of the Tenth Workshop on Statistical Ma-
chine Translation, pages 392–395, Lisbon, Por-

https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.1162/tacl_a_00269
https://doi.org/10.1162/tacl_a_00269
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://www.aclweb.org/anthology/D13-1157
https://www.aclweb.org/anthology/D13-1157
https://www.aclweb.org/anthology/D13-1157
https://www.aclweb.org/anthology/W18-6501
https://www.aclweb.org/anthology/W18-6501
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049

tugal. Association for Computational Linguis-
tics.

Nima Pourdamghani, Kevin Knight, and Ulf Her-
mjakob. 2016. Generating English from ab-
stract meaning representations. In Proceedings
of the 9th International Natural Language Gen-
eration conference, pages 21–25, Edinburgh,
UK. Association for Computational Linguistics.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text gen-
eration with dual graph representations. In Pro-
ceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and
the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP),
pages 3181–3192, Hong Kong, China. Associa-
tion for Computational Linguistics.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Pe-
ter Bloem, Rianne van den Berg, Ivan Titov,
and Max Welling. 2018. Modeling relational
data with graph convolutional networks. In The
Semantic Web - 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June 3-
7, 2018, Proceedings, pages 593–607.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural machine translation of rare
words with subword units. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 1715–1725, Berlin, Germany. As-
sociation for Computational Linguistics.

Linfeng Song, Xiaochang Peng, Yue Zhang,
Zhiguo Wang, and Daniel Gildea. 2017. AMR-
to-text generation with synchronous node re-
placement grammar. In Proceedings of the 55th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers),
pages 7–13, Vancouver, Canada. Association
for Computational Linguistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and
Daniel Gildea. 2018. A graph-to-sequence
model for AMR-to-text generation. In Proceed-
ings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume
1: Long Papers), pages 1616–1626, Melbourne,
Australia. Association for Computational Lin-
guistics.

Bayu Distiawan Trisedya, Jianzhong Qi, Rui
Zhang, and Wei Wang. 2018. GTR-LSTM:
A triple encoder for sentence generation from
RDF data. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
1627–1637, Melbourne, Australia. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Sys-
tems 30, pages 5998–6008. Curran Associates,
Inc.

Petar Veličković, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. 2018. Graph Attention Net-
works. In International Conference on Learn-
ing Representations, Vancouver, Canada.

Elena Voita, David Talbot, Fedor Moiseev, Rico
Sennrich, and Ivan Titov. 2019. Analyzing
multi-head self-attention: Specialized heads do
the heavy lifting, the rest can be pruned. In
Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 5797–5808, Florence, Italy. Association
for Computational Linguistics.

Tianming Wang, Xiaojun Wan, and Hanqi Jin.
2020. Amr-to-text generation with graph trans-
former. Transactions of the Association for
Computational Linguistics, 8:19–33.

Yonghui Wu, Mike Schuster, Zhifeng Chen,
Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah,
Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Ja-
son Smith, Jason Riesa, Alex Rudnick, Oriol
Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. 2016. Google’s neural ma-
chine translation system: Bridging the gap be-
tween human and machine translation. CoRR,
abs/1609.08144.

https://doi.org/10.18653/v1/W16-6603
https://doi.org/10.18653/v1/W16-6603
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P17-2002
https://doi.org/10.18653/v1/P17-2002
https://doi.org/10.18653/v1/P17-2002
https://www.aclweb.org/anthology/P18-1150
https://www.aclweb.org/anthology/P18-1150
https://doi.org/10.18653/v1/P18-1151
https://doi.org/10.18653/v1/P18-1151
https://doi.org/10.18653/v1/P18-1151
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.1162/tacl_a_00297
https://doi.org/10.1162/tacl_a_00297
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomo-
hiro Sonobe, Ken ichi Kawarabayashi, and Ste-
fanie Jegelka. 2018. Representation learning on
graphs with jumping knowledge networks. In
ICML.

Yue Zhang, Qi Liu, and Linfeng Song. 2018.
Sentence-state LSTM for text representation. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 317–327, Mel-
bourne, Australia. Association for Computa-
tional Linguistics.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian,
Min Zhang, and Guodong Zhou. 2019. Mod-
eling graph structure in transformer for bet-
ter AMR-to-text generation. In Proceedings
of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the
9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP),
pages 5458–5467, Hong Kong, China. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/P18-1030
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548

