On the decay rate for degenerate gradient flows subject to persistent excitation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

On the decay rate for degenerate gradient flows subject to persistent excitation

Yacine Chitour
Paolo Mason
Dario Prandi

Résumé

In this paper, we study the worst rate of exponential decay for degenerate gradient flows in R n of the formẋ(t) = −c(t)c(t) x(t), issued from adaptative control theory, under a persistent excitation (PE) condition. That is, there exists a, b, T > 0 such that, for every t ≥ 0 it holds a Id n ≤ ∫ t+T t c(s)c(s) ds ≤ b Id n. Our main result is an upper bound of the form a (1+b) 2 T , to be compared with the well-known lower bounds of the form a (1+nb 2)T. As a byproduct, we also provide necessary conditions for the exponential convergence of these systems under a more general (PE) condition. Our techniques relate the worst rate of exponential decay to an optimal control problem that we study in detail.
Fichier principal
Vignette du fichier
ifacconf-p.pdf (268.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03020089 , version 1 (23-11-2020)

Identifiants

Citer

Yacine Chitour, Paolo Mason, Dario Prandi. On the decay rate for degenerate gradient flows subject to persistent excitation. IFAC 2020 - 21st IFAC World Congress, Jul 2020, Berlin (virtual), Germany. pp.1709-1714, ⟨10.1016/j.ifacol.2020.12.2246⟩. ⟨hal-03020089⟩
96 Consultations
86 Téléchargements

Altmetric

Partager

More