Simulation study of the electrical tunneling network conductivity of suspensions of hard spherocylinders
Abstract
Using Monte Carlo simulations, we investigate the electrical conductivity of networks of hard rods with aspect ratios 10 and 20 as a function of the volume fraction for two tunneling conductance models. For a simple, orientationally independent tunneling model, we observe non-monotonic behaviour of the bulk conductivity as a function of volume fraction at the isotropic-nematic transition. However, this effect is lost if one allows for anisotropic tunneling. The relative conductivity enhancement increases exponentially with volume fraction in the nematic phase. Moreover, we observe that the orientational ordering of the rods in the nematic phase induces an anisotropy in the conductivity, i.e. enhanced values in the direction of the nematic director field. We also compute the mesh number of the Kirchhoff network, which turns out to be a simple alternative to the computationally expensive conductivity of large systems in order to get a qualitative estimate.
Domains
K-Theory and Homology [math.KT]Origin | Files produced by the author(s) |
---|