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Abstract

Using Monte Carlo simulations, we investigate the electrical conductivity of networks of hard rods

with aspect ratios 10 and 20 as a function of the volume fraction for two tunneling conductance

models. For a simple, orientationally independent tunneling model, we observe non-monotonic

behaviour of the bulk conductivity as a function of volume fraction at the isotropic-nematic tran-

sition. However, this effect is lost if one allows for anisotropic tunneling. The relative conductivity

enhancement increases exponentially with volume fraction in the nematic phase. Moreover, we

observe that the orientational ordering of the rods in the nematic phase induces an anisotropy

in the conductivity, i.e. enhanced values in the direction of the nematic director field. We also

compute the mesh number of the Kirchhoff network, which turns out to be a simple alternative to

the computationally expensive conductivity of large systems in order to get a qualitative estimate.
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I. INTRODUCTION

At the percolation transition, clusters of connected objects merge to form one system-

spanning network. This transition was first studied in the context of the flow of water

through porous rock. By now, due to the technological relevance of transport processes in

disordered media, in general, as well as the mathematical properties of percolation transition,

percolation has become a topic of interest in a wide range of different research fields [1, 2].

In this article, we focus on the formation of networks of electrically conducting fibres, as

they would be used e.g. in a composite material that is designed to undergo a transition

from an insulating state to a conductive state. These types of composites have been studied

extensively for almost 50 years in experiment, simulation and theory. A complete literature

overview is hence beyond the scope of this paper. Instead, we refer the reader to a selection

of relevant articles in the context of the present work: For reviews on conductive composites

see refs. [3–8], for theoretical approaches to connectivity percolation in rods see refs. [9–24],

for simulation refs. [25–36] and for experiments refs. [37–47].

In suspension, anisotropic particles form liquid crystalline phases. In particular, upon

increasing the concentration of rod-like particles, they undergo a transition from an isotropic

phase to an orientationally ordered, but positionally disordered phase (called the ”nematic”

phase)[48, 49]. In general, the electrical conductivity of a suspension of aligned particles is

different from that of an isotropic system. The effect of alignment on networks of conductive

fillers has been studied in experiment [50–54] and in theory and simulation [55–59]. However,

these studies considered alignment by means of an external field such as e.g. shear and not

alignment due to a phase transition that is intrinsic to the system. To our knowledge, there

is no systematic study of the behaviour of the conductivity across the isotropic-nematic

(I-N) phase transition yet. It is thus the aim of our study to fill this gap.

II. MODELS AND SIMULATIONS

We have modeled only the filler particles and neglected the host environment of the

nanocomposite. We used hard spherocylinders (”rods”) with a cylindrical part of length L

and diameter D, capped on both ends with hemispheres of diameter D. The rods are ’coated’

by a spherocylindrical penetrable contact shell of diameter λ, which serves as a means of
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establishing a geometric connectivity criterion between pairs of rods, where if two rods have

overlapping contact shells they are considered to be a connected pair. By extension, a cluster

can be formed by a contiguous sequence of such pairwise connected rods.

We have generated configurations of hard rods using canonical Monte Carlo simulations

(NVT-MC). The simulations have been carried out for systems of aspect ratio L/D = 20

and 10, using a non-cubic[60] and a cubic simulation box of dimensions Lx,y = 3L,Lz = 4L,

and Lx,y,z = 6L, respectively. The particle numbers ranged from N = 1000 to 5000 for

L/D = 20 and N = 6000 to 8000 for L/D = 10 in order to cover a range of volume fractions

that span configurations in both the isotropic and the nematic phase. The volume fraction

is defined as η = Nvcore/V, with N being the number of rods in suspension, V volume of

the simulation box, and vcore = πD2(L/4 +D/6) denotes the volume of one rod.

We work with two different contact shell diameters for the case of L/D = 20, namely, λ =

1.1D and λ = 1.2D. The former is small enough such that irrespective of the volume fraction

we simulated, the suspensions never exhibited a percolating cluster (i.e., they appear as a

sparse collection of isolated clusters), while conversely, for the latter choice of λ, the rods were

always in a percolating state (i.e., the suspension is mostly comprised of a large connected

cluster spanning the simulation box). Despite the fact that the electrical connections between

the rods will be subsequently modeled by tunneling processes, which decay continuously

with the inter-particle distance and thus without a sharp cut-off, the motivation behind the

aforementioned λ choices and their corresponding geometric percolation states is the fact

that they provide us with two contrasting connectivity states for the same liquid state of the

suspension. Ultimately, they exemplify two cases of short and long tunneling decay lengths,

which we will touch upon in more detail subsequently. However, in the case of aspect ratio

10, we will only consider one contact shell value, λ = 1.1D, which is large enough to ensure

a similar percolating state for all simulated volume fractions.

As a scalar order parameter to distinguish between the isotropic and nematic phase, we

use S2, the maximum eigenvalue of the orientation tensor Q as given by:

Qij =
1

2N

N∑
α=1

(3vαi v
α
j − δij) (1)

where vαi and vαj are the ith and jth components of the normalized orientation vector of rod

α, respectively, and δij is the Kronecker delta.
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For the conductance gij between a given pair of rods, we use the commonly adopted

model of single-electron tunneling as the dominant process for electron transfer in composite

systems dispersed with nano-sized conductive filler particles[32]. The general form of the

model is given by a simple exponential decay function g :

g(dij) = g0 exp (−2dij/ξ) (2)

where dij denotes the shortest distance between the surfaces of rods i and j, and ξ is the

tunneling decay length (which is usually taken to be in the order of magnitude of a few

nanometers and in our simulations it is simply taken as difference between the penetrable

shell diameter λ and the impenetrable rod diameter D). Conventionally, we set the con-

ductance between two rods whose surfaces are touching to be equal to unity which resolves

the pre-factor in (2) into being unity as well: g(0) = 1. It is important to discuss the range

of validity of Eq. (2), which is sometimes also referred to as normal tunneling. Briefly,

the limit of validity of normal tunneling as the dominant process of electron transport be-

tween nano-sized conductive filler particles, is directly related to the cross-section area of the

tunneling junction between them, namely, the narrower the junction, the higher the proba-

bility for events of single uncorrelated electrons tunneling through the junction barrier. The

cross-section area depends primarily on the shape of the electrodes, which in our case are

spherocylindrical. Furthermore, for the general working temperature of nanocomposites,

namely T < 500K, normal tunneling is expected to remain valid. However, given that hard

systems are athermal, together with the fact that the area of the junction is then dependent

only on particle geometry and relative orientation with a neighbouring particle, the former

validity criterion can be translated into one on the aspect ratio, L/D � 200. Thus, for our

purposes the choices of L/D = 10, 20 remain reasonable if we are to adopt Eq. (2) in order

to describe pairwise conductances. For an in-depth discussion on the validity of normal

tunneling in systems of elongated particles, we refer the reader to the work of Sherman et

al. [61].

Next to Eq. (2), we also applied a second conductance model, which deviates from Eq. (2)

by its explicit incorporation of the relative orientation between two given rods in order to

account for the cross section of the tunneling junction between the pair. More precisely,

G. Nigro and C. Grimaldi [62] have recalculated the matrix element for electron tunneling

between rod-like particles and have shown that in general the tunneling between two parallel
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rods (e.g., in the nematic phase) is more probable by a factor of L/
√
ξD compared to two

rods perpendicular to one another. Moreover, they show that for disordered phases (e.g., in

the isotropic phase) the orientationally dependent contributions to the conductance become

negligible once an averaging over all solid angles is performed. However, for strongly oriented

phases of suspension of rod-like particles, the enhanced tunneling between parallel rods is

expected to have a significant influence on the conductivity of the network of rods. In

order to draw a comparison with the results that are obtained according to Eq. 2, we will

adopt a simplified form of the anisotropic tunneling conductance, which is obtained with

the underlying assumption that the centres of mass of two connected rods are close to their

line of shortest distance[63]:

g(dij, γij)/g0 =
exp (−2dij/ξ)
2πDξ
L2 + sin2(γij)

(3)

where the newly introduced variable γij denotes the angle between the long axes of the rods.

We note that, our comparison merely aims at probing the effects on the bulk conductivity

resulting from a simple deviation from the common model Eq. 2, one that would account in

an explicit manner for the relative orientation when estimating the tunneling conductance

between two rods. Therefore, we take one of the simplest forms of the corrections derived

by G. Nigro and C. Grimaldi [62], which offers the added advantage of maintaining the

numerical computations rather simple. Moreover considering that on the one hand, we

have only chosen to work with short aspect ratio rods, namely of 20 and 10, contained in

simulation boxes of dimensions 4 and 6 times larger than L respectively, and that on the

other hand, only small tunneling decay lengths (10− 20% of rod diameter) are considered,

the assumptions behind Eq. 3 remain reasonable for our purposes.

Lastly, we briefly discuss our methodology for estimating the network conductivity σ,

a calculation which is only performed on the largest cluster of a given simulated suspen-

sion. That is, at a given volume fraction and irrespective of whether the chosen contact

shell diameter is below or above the percolation threshold, we first reduce the corresponding

configuration (equilibrium suspension of hard rods) to its largest cluster, where clusters are

defined according to our geometric connectivity criterion of overlapping penetrable shells of

diameter λ. In other words, the reduction to clusters ensures that we perform the conduc-

tivity calculations on subsets of rods where for any given rod, there is at least one neighbour
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such that the shortest distance between their long axes is ≤ ξ +D = λ. Then, having iden-

tified the largest cluster, we proceed to the construction of the tunneling resistor network.

In Fig. 1 examples of percolating largest clusters in the isotropic and nematic phase are

visualized. The resistor (conductance) network is built by assigning a node to each rod and

a resistor between all pairs of nodes in the system (comprised of the largest cluster) whose

value is given by the inverse of their corresponding conductance either given by Eq. (2) or

(3). For measuring the conductivity, two electrodes are placed on the most distant nodes

except in the study of the conductivity anisotropy in the nematic phase where we addition-

ally restrict their connecting axis to be once parallel and once orthogonal to the common

director field of the rods.

In order to solve the Kirchhoff equations (i.e., to obtain the equivalent resistance or

equivalently the overall conductivity) of the corresponding tunneling-based resistor network,

we measure the equivalent resistance between the two electrode-nodes by performing a DC

simulation on the network in Qucs [64]. More precisely, in order to obtain the equivalent

resistance between the electrode-nodes, a constant current source of 1A is placed between

them and the voltage across the two nodes is measured during the simulation. As a second

method for comparison, in a handful of cases we also apply an exact numerical decimation

using the Star-Mesh transform, which entails applying Rosen’s formula [65] until all nodes

except the electrode-nodes are eliminated. In order to reduce the computational efforts due

to the large number of tunneling bonds in the network (∝ N(N − 1), with N here denoting

the number of rods in the largest cluster), we remove the tunneling bonds between rods that

are sufficiently apart, meaning their tunneling conductance is negligibly small to be relevant

in the estimation of the bulk conductivity. Thus, their removal would not be in conflict with

any of our previous considerations, and as long as the introduced cut-off is at least equal or

greater than λ, the resulting simplified network shares the same connectivity properties, such

as the nearest neighbour distances, and in particular, the same percolation state. Therefore,

given the rapid exponential decay of the conductances and the known decay length scales, we

introduced an artificial cut-off distance of λ2/D which considerably simplified the tunneling

network and in turn reduced the computational times needed for the decimation routine.

The final conductivity value for each volume fraction is averaged over an ensemble of 200

independent largest clusters. It is important to point out that by reducing the configuration

of the rods to their largest cluster in addition to the aforementioned cut-off serving to lower
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FIG. 1. Snapshots of percolating clusters at different volume fractions.

computational costs, the resulting conductivity estimate will consequently represent a lower

bound for the corresponding equilibrium suspension at a given volume fraction.

In an independent calculation, we also counted the number of meshes of the simplified

Kirchhoff network: We recorded the edge-vertex-incidence matrix of the network correspond-

ing to the largest cluster considered as an undirected graph, and then computed the mesh

number from the dimension of its kernel, i.e., by subtracting its rank from the number of

resistors (size of the graph). In order to be consistent with the conductivity calculations, we

have again used the same cut-off when setting the edges of the graph, i.e., it is interpreted

as a graph where a bond is placed between any two nodes separated by a distance < λ2/D.

It is important to note that the mesh calculations and results are completely independent

of the choice of conductance model, and instead, depend only on the geometric connectivity

properties of the network formed by the rods.

III. RESULTS

We start by discussing the bulk conductivity (σ) as a function of volume fraction (η)

for values in the isotropic and the nematic phase and for two contact shell diameters, λ =

1.1D, 1.2D and L/D = 20. In Figure 2 we show results for normal tunneling (eqn. 2). The

conductivity increases with volume fraction for the percolating case (for λ = 1.2D), while

below the percolation threshold (λ = 1.1D) we observe a constant and negligibly small value

for σ. In the latter case, the conductivity of the nano-composite would correspond to that
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of the polymeric host material alone.

In Fig. 2 we also show the nematic order parameter S2 (red dotted line, second y-axis) of

the entire system. At the onset of the nematic phase (vertical solid line) and for λ = 1.2D,

despite the increase in volume fraction, we observe a clear drop in σ relative to the last

value observed in the isotropic phase. After the drop at the onset, σ increases again with η,

but less strongly than in the isotropic phase [66]. This non-monotonic behaviour is due to

the increase in orientational order at the phase transition, which has the effect of reducing

the excluded volume between neighbouring rods. Consequently, the latter translates into a

weakened connectivity of the resulting network (here interpreted as a graph where the edges

are assigned geometrically based on our cut-off distance criterion). The said weakening has

been successfully captured in the plots of Fig. 3, in terms of the behaviour of the average

degree and the nearest neighbour distance of a rod as a function of volume fraction. More

precisely, in plot (a) of Fig. 3, the average degree, simply taken as twice the number of

edges divided by the number of nodes (rods), exhibits the same non-monotonic behaviour

as σ, where at the I-N transition the number of connected neighbouring rods can be clearly

seen to become smaller before increasing again. Furthermore, in plot (b) of Fig. 3, the

mean nearest neighbour distance of a rod in a cluster is shown to decrease with increasing

volume fraction, but the observed increase at the I-N transition suggests a reduction in the

largest conductance contribution per rod in the network. Therefore, we observe a consistent

correlation between the weakened-geometrically-interpreted connectivity properties of the

network of rods and its corresponding tunneling conductivity.

Next we compare the dependence of σ on η for the two different tunneling conductance

models given in Eqs. 2 and 3. In Fig. 4, both below and above the percolation threshold,

we observe that the anisotropic tunneling model enhances the conductivity, in particular in

the nematic phase. The non-monotonic behaviour of the conductivity across the transition

is lost for the more realistic, anisotropic model. That is, the conductance enhancement

between aligned rods inherent to the model dominates the previously characterized effect

of the weakened connectivity that the network undergoes at the I-N transition. In Fig. 5,

the latter behaviour is also observed for L/D = 10, based on the model Eq. 3 and using

λ = 1.1D, which is above the percolation threshold.

The enhancement of the conductivity in nano-composites across the I-N transition of the

filler particles has been previously theoretically predicted [57] in the context of polymeric
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fillers of very high aspect ratio (L/D = 100 and above) under shear flow. Zheng et al showed

that the relative conductivity enhancement [67], which is the relative conductivity change

in the polymeric bulk after and before the dispersion of conductive filler particles, grows

linearly with volume fraction both in the isotropic and nematic stable regions.

In order to draw a closer comparison in addition to the general qualitative agreement,

we set the conductivity in the host insulating material as σins = 〈σ〉λ=1.1 and similarly the

conductivity in the conductive state to σco = σλ=1.2, i.e., σ in the presence of percolating

clusters. With the latter choices, we define the relative conductivity enhancement as the

ratio ε = σco/σins. In Fig. 6, the relative enhancement based on the anisotropic conductance

model is plotted as a function of η. We clearly observe that the relative enhancement is well

described in the nematic phase by an exponential function, ε(η) ≈ exp(αη), with α > 0.,

i.e. we observe exponential rather than linear scaling. In the inset plot of Fig. 6, a linear

fit applied to ln (ε) restricted to the volume fraction range in the nematic phase yields

α = 19.9± 0.9.

We note that due to the fact that in this comparison, neither the aspect ratios, nor the

considered conductivities in the host insulating environment (more precisely the ratios of

σ after and before dispersion) are the same, a direct quantitative comparison with ref. [57]

remains difficult to perform.

In particular, for the aligned phase of the rods in the bulk, having already studied the

enhancement of σ compared to the disordered phase, next, we briefly discuss our observations

on the induced anisotropy of σ. Using the model Eq. 3 and λ = 1.2D, we compare σ

as measured in parallel and orthogonal directions to the common director field ~n of the

rods in the nematic phase. The comparison is shown in Fig. 7, where near the nematic

coexistence volume fraction we observe on average the same behaviour for σ along the two

directions with respect to ~n. On the other hand, for volume fractions past this region, i.e.,

with increasing orientational ordering of the rods, we notice a clear separation in trends

where σ values measured along the director field become increasingly larger with S2. This

reflects the fact that the increased orientational ordering in the stable region of the nematic

phase does introduce anisotropy (favoured direction) in the bulk conductivity, which has

been a consistent observation in various experimental works [50–54].

Finally, we compare the trend in σ with the mean number of meshes corresponding to the

largest clusters of rods (interpreted as graphs with edges assigned according to our introduced
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FIG. 2. Conductivity (in log base 10) for the normal tunneling model Eq. 2 as a function of

volume fraction for two different contact shell diameters, λ = 1.1D (blue symbols, mean value as a

dashed line), and λ = 1.2D (green symbols, solid line). In addition, on the second Y-axis the mean

nematic order parameter (S2, red, dotted line) values of the entire system (not just the connected

clusters) is plotted, and the vertical solid (brown) line indicates the coexistence volume fraction in

the nematic phase for L/D = 20. (colour online)

cut-off distance) as a function of η. This comparison is shown in Fig. 8. Restricted to either

phases of the rods, we observe that the mean mesh number follows the same increasing

trend with η as we have observed for σ. However, there are clear qualitative differences in

their functional form. More importantly, given that the mesh count abstracts away from

the actual conductance model and depends solely on the geometric connectivity state of the

rods, it exhibits the same non-monotonic behaviour in η at the I-N transition that we have

previously observed for the different graph properties (mean degree and nearest neighbour
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FIG. 3. (a): The average degree of a rod as a function of volume fraction for L/D = 20 and

λ = 1.2D. The average degree is simply calculated as twice the size of the edge set divided by

the number of nodes in a given network. (b): The mean distance to a rod’s nearest neighbour in

the largest cluster as a function of volume fraction. In both plots, the error bars are obtained by

averaging over all independent realisations of largest clusters per volume fraction.

11



0.10 0.15 0.20 0.25

11.5

11.0

10.5

10.0

9.5

lo
g(

D
/

0L
)

(a)
Iso.
Aniso.

0.0

0.2

0.4

0.6

0.8

1.0

S 2

0.10 0.15 0.20 0.25

7.0

6.5

6.0

5.5

5.0

4.5

lo
g(

D
/

0L
)

(b)

Iso.
Aniso.

0.0

0.2

0.4

0.6

0.8

1.0

S 2

FIG. 4. Comparison of the dependence of σ on η for the two tunneling conductance models as

given in Eq. 2 (labelled Iso.) and Eq. 3 (labelled Aniso.), and for L/D = 20. (a): λ = 1.1D, (b):

λ = 1.2D. The nematic order parameter S2 is shown on the second Y-axis in each case.

12



0.20 0.22 0.24 0.26 0.28 0.30

10.8

10.6

10.4

10.2

10.0

9.8

9.6

9.4
lo

g1
0(

D
/

0L
)

Aniso., L/D = 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S 2

FIG. 5. Conductivity for the anisotropic tunnel model Eq. 3 as a function of volume fraction, for

L/D = 10 and λ = 1.1D, which is above the percolation threshold for the entire of range of chosen

volume fractions here. The mean nematic order parameter (S2) is plotted on the second Y-axis

(red dashed).

distance) and also for σ in the normal tunneling case. This offers the potential for a simpler

and computationally less expensive route to extracting the trend of σ restricted to a given

phase of the rods, without explicitly solving the Kirchhoff equations of the tunneling network.

IV. CONCLUSIONS

We have studied the conductivity of networks of hard spherocylinders in the isotropic

and the nematic phase. For the widely-used normal tunneling model we observe non-

monotonic behaviour of the conductivity at the phase transition. However, for a more

realistic anisotropic tunneling model, this effect is lost. Furthermore, we observe that the
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FIG. 6. The relative conductivity enhancement in percentages for the anisotropic tunneling model

as a function of volume fraction, which is calculated based on the data shown in Fig. 4. σco denotes

σ in the conductive state, i.e., in the presence of percolating clusters (λ = 1.2D), and σins denotes

the mean conductivity value in the absence of percolating clusters (λ = 1.1D). The inset plot

shows lnσco/σins as a function of η restricted to the nematic phase, with the linear fit shown in

dashed.

conductivity in the nematic phase is isotropic close to the phase transition, but becomes

anisotropic at higher volume fractions. We also analyzed the number of meshes in the geo-

metrically interpreted network of rods and found it to be a very rough, but fast to compute,

estimator for the conductivity.
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