Time-Domain Finite-Element Eddy-Current Homogenization of Windings Using Foster Networks and Recursive Convolution - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Magnetics Année : 2020

Time-Domain Finite-Element Eddy-Current Homogenization of Windings Using Foster Networks and Recursive Convolution

Carlos Valdivieso
Brahim Ramdane
Johan Gyselinck
Christophe Guerin
  • Fonction : Auteur
Ruth Sabariego

Résumé

In this paper, we propose an alternative time-domain approach for the homogenization of multiturn windings with frequency-dependent parameters in finite-element (FE) models. First, an elementary 2-D FE characterization of the conductors is carried out over the frequency range of interest to obtain the frequency-dependent parameters and account for the eddy-current effects in the winding. These complex coefficients are subsequently associated to an equivalent Foster network and translated into the time domain via the inverse Laplace transform. The resulting time-domain equations are solved with a recursive convolution scheme. No extra degrees of freedom are required in the homogenized winding. The results of the homogenized model present an excellent agreement with those obtained by an accurate but expensive FE model in which all turns are explicitly discretized. The proposed approach is further compared to a previously developed time-domain homogenization technique based on RL Cauer networks.
Fichier principal
Vignette du fichier
Final_Version.pdf (1.14 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03015692 , version 1 (20-11-2020)

Identifiants

Citer

Carlos Valdivieso, Gérard Meunier, Brahim Ramdane, Johan Gyselinck, Christophe Guerin, et al.. Time-Domain Finite-Element Eddy-Current Homogenization of Windings Using Foster Networks and Recursive Convolution. IEEE Transactions on Magnetics, 2020, 56 (12), pp.1-8. ⟨10.1109/TMAG.2020.3032884⟩. ⟨hal-03015692⟩
39 Consultations
95 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More