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In this paper, we propose an alternative time-domain approach for the homogenization of multiturn windings with frequency-
dependent parameters in finite-element (FE) models. First, an elementary 2-D FE characterization of the conductors is carried out
over the frequency range of interest to obtain the frequency-dependent parameters and account for the eddy-current effects in
the winding. These complex coefficients are subsequently associated to an equivalent Foster network and translated into the time
domain via the inverse Laplace transform. The resulting time-domain equations are solved with a recursive convolution scheme.
No extra degrees of freedom are required in the homogenized winding. The results of the homogenized model present an excellent
agreement with those obtained by an accurate but expensive FE model in which all turns are explicitly discretized. The proposed
approach is further compared to a previously developed time-domain homogenization technique based on RL Cauer networks.

Index Terms—Eddy currents, finite element method, homogenization, proximity effect, skin effect, time domain, windings.

I. INTRODUCTION

MULTITURN windings in electromagnetic devices may
exhibit considerable skin and proximity effects when

operated at sufficiently high frequencies. Therefore, a correct
prediction of these effects constitutes a major design aspect
for e.g., switched mode power supply (SMPS) transformers.
The finite element (FE) method can directly include these
effects by explicitly discretizing each winding turn. For most
real-life applications, with possibly complex geometries, such
approach leads to extremely fine meshes and a prohibitive
number of unknowns. Even though some modeling techniques
allow for efficient meshing by inserting preprocessed values
in the boundary of the conductors [1], [2], [3], [4], [5]; the FE
mesh still yields a considerable number of elements, especially
in 3-D. Thus, the use of dedicated homogenization techniques
is an excellent and indispensable alternative.

The simplest homogenized model for windings, the stranded
model, considers a uniform current density in the winding
window and ignores eddy-current effects at the FE resolution
stage [6]. In the frequency domain, such effects can be added
by means of complex frequency-dependent parameters: reluc-
tivity and impedance, which may be obtained analytically [7],
semianalytically [8] or by using an elementary FE model [9],
[10], [11], [12]. Thereon, a time-domain extension, proposed
in [13], [14], associates the frequency-dependent coefficients
to RL Cauer networks and translates them to the time domain
as real constants linked to differential equations, thanks to
the inclusion of additional unknowns (flux densities in the
homogenized winding and currents in the supply circuit).

In this paper, an alternative time-domain homogenization
method is proposed. It uses the elementary FE model to
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obtain the complex frequency-dependent parameters and then
associates them to equivalent Foster networks by using the
Vector-Fitting technique [15]. The inverse Laplace transform is
subsequently applied to translate these parameters into the time
domain. The resulting time-domain equations are solved with
a recursive convolution (RC) scheme [16], which is a common
technique in transmission line modeling [17], [18], [19], [20],
[21]. The proposed method delivers highly accurate results
and does not require additional unknowns in the homogenized
winding. By way of validation, a 2-D 256-turn inductor is
considered, for which a fine FE model provides an accurate
reference solution. Furthermore, the proposed approach is
compared to the use of an RL Cauer network as in [13], [14].

II. FREQUENCY-DOMAIN HOMOGENIZATION OF
WINDINGS WITH EDDY-CURRENT EFFECTS

A. Magnetodynamic Formulation

A bounded domain Ω of the 2- or 3-D Euclidean space
is considered. The conducting and nonconducting parts are
denoted Ωc and Ωnc, respectively, with Ω = Ωc ∪ Ωnc.
Moreover, Ωc is divided into a solid-conductor region Ωs and
a winding region Ωw (subscripts s and w, respectively), so
that Ωc = Ωs ∪ Ωw. The classical stranded model [6], used
in Ωw, considers a uniform current density; while the solid
conductor, used in Ωs, considers a nonuniform current density
due to skin and proximity effects [22]. This way, in terms of
the magnetic vector potential (MVP), the first-order ordinary
differential equations (ODEs) arising from a FE discretization,
containing the N (Nw in Ωw) shape and test functions, read:

[M ][A] + [Ds]∂t[A] = R−1
s [Cs]Vs + [Cw]Iw (1)

Vs = [Cs]
ᵀ∂t[A] +RsIs, (2)

Vw = [Cw]ᵀ∂t[A] +RwIw, (3)
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where [M ] ∈ RN×N is the reluctivity-dependent stiffness ma-
trix, [Ds] ∈ RN×N the conductivity-dependent eddy-current
matrix, [Cs] ∈ RN×1 and [Cw] ∈ RN×1 the connectivity
matrices, [A] ∈ RN×1 the MVP unknown vector; Vs, Vw,
Is, Iw, Rs and Rw the respective voltages, currents and
resistances, and the ᵀ denotes a transposition.

Thereupon, in the frequency domain, the winding eddy-
current effects can be included by replacing the reluctivity
ν (in Ωw) and Rw by an equivalent complex frequency-
dependent reluctivity νe and an equivalent impedance Ze,
respectively [7], [10], [11]. In the following, the obtention of
these complex frequency-dependent parameters is explained.

B. Characterization of Multiturn Windings

1) Considerations
A winding of Nc periodically spaced turns carrying the

same net current Iw is considered, since parasitic capacitive
effects are disregarded. The turns have conductivity σ (or,
resistivity, ρ = 1/σ) and a reluctivity ν = ν0 (or, permeability,
µ = µ0 = 1/ν0). The skin depth at frequency f , or pulsation
ω = 2πf , is given by δs =

√
ν/πfσ. The insulation between

the conductors is nonmagnetic (ν = ν0) and the fill factor
is denoted by λ. Underlined symbols indicate vectors and, for
frequency-domain calculations, the complex notation (symbols
in bold, ı the imaginary unit and the ∗ indicates a conjugate
value) is adopted.

On a macroscopic scale, periodic structures can be homoge-
nized in terms of equivalent constitutive parameters. Windings
are by nature periodic structures (bundles of wires) and their
eddy-current effects may be accurately represented by means
of an equivalent impedance Ze, accounting for the skin effect,
and an equivalent reluctivity νe, accounting for the proximity
effect [10], [11].

2) Elementary 2-D FE model
The complete eddy-current characterization of a winding

can be carried out by means of an elementary 2-D FE model
(in Cartesian coordiantes: x, y, z), which consists of a cell
comprising the conductor (modeled as a solid conductor) and
the insulation around it. In Fig. 1 such a FE model is shown
for one of the conductors to be used in the application: a
round conductor with square packing (radius r = 1.15 mm,
σ = 59 MS/m and λ = 0.43). The horizontal and vertical
lengths of the elementary cell are denoted lx and ly , respec-
tively, and its section Ac is given by lxly . The complex power
S (in VA) absorbed by the elemantary cell is calculated from
the local flux density b and the local current density j as

S = P + ıQ =
lz
2

∫
Ωcell

(
jj∗

σ
+ ıων0bb

∗
)
dΩcell, (4)

where P is the active power, Q the reactive power and lz the
length along the third dimension.

If a winding is described by the spatial reproduction of the
elementary cell, periodic conditions are perfectly guaranteed
and the eddy-current effects can be included by imposing
either the net circulating current Is or the average flux
density bav on the cell. Hence, the skin- and proximity-effect

(a) (b)

(c) (d)

Fig. 1. Flux lines in the elementary cell at 20 kHz: proximity effect (a)
real and (b) imaginary parts and skin effect (c) real and (d) imaginary parts.
Images obtained with Altair FluxTM [23].

characterization detailed hereafter is based on the redefinition
of (4) in terms of Is and bav as

S =
1

2

(
ZeIsI

∗
s + ıωlzAcν∗ebavb

∗
av

)
. (5)

The equivalent impedance and the equivalent reluctivity can
be decomposed into their real and imaginary parts: Ze = Re+
ıXe and νe = νre +ıνie, where Re is the equivalent resistance,
Xe the equivalent reactance, νre and νie the real and imaginary
parts of the equivalent reluctivity.

3) Proximity Effect
Following the approach in [10] or [12], a pure proximity-

effect excitation is obtained by imposing e.g. a vertical flux
and a zero net circulating current (Is = 0). This is achieved
with az = −1 and az = 1 on the left and right boundaries,
respectively, and Neumann conditions (∂az/∂n = 0) on the
upper and lower boundaries. The flux lines are shown in Figs.
1a and 1b. Via the complex power S (5), the frequency-
dependent equivalent reluctivity νe is defined:

νe(ω) = 2
Q+ ıP

ωlzAcbavb∗av
. (6)

Since the treated cell is composed of a round conductor with
square packing, νe is a scalar quantity; however, for cells of
arbitrary cross-section, νe may become a tensor. Fig. 2 shows
the frequency dependence up to 100 kHz for the equivalent
reluctivity (νre and νie FE) obtained with the elementary FE
model depicted in Fig. 1.

4) Skin Effect
A pure skin-effect is obtained by imposing a sinusoidal

current with a zero average flux density (bav = 0). This is
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Fig. 2. Equivalent relative reluctivity (real and imaginary parts) versus
frequency obtained with the elementary FE model and approximated with
Vector Fitting VF.
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Fig. 3. Equivalent relative impedance (real and imaginary parts) versus
frequency obtained with the elementary FE model and approximated with
Vector Fitting VF.

achieved e.g. with Is = 1 and az = 0 on the complete
boundary of the elementary cell. The flux lines are shown
in Fig. 1c and 1d. Analogously, via the complex power S (5),
the equivalent winding impedance Ze is defined:

Ze(ω) = 2Nc
P + ıQ

IsI
∗
s

. (7)

Fig. 2 shows the frequency dependence up to 100 kHz for
the equivalent impedance (Re and Xe FE) obtained with the
elementary FE model depicted in Fig. 1b. Note that RDC
stands for the winding DC resistance.

III. TIME-DOMAIN EXTENSION

A. Foster Network Approach

The frequency-dependent equivalent reluctivity νe and
impedance Ze can be represented over the frequency range
of interest by rational functions with a classical Debye model
[20]. Therefore, the m-order approximation of (6) and (7) are:

νe(s) ' ν0 + s

(
`+

m∑
i=1

ki
1 + sgi

)
, (8)

Ze(s) ' RDC + s

(
L+

m∑
i=1

Ki

1 + sGi

)
, (9)

where s = ıω. By restricting the Laplace variable s to be
purely imaginary, the frequency-domain response is obtained
[16], [20]. The parameters `, L, ki, Ki, gi and Gi can be

b

�0 sℓ

�1/�1

s�1

br
1

bl
1

�m/�m

s�m

br
m

bℓ
m

(a)

Iw

RDC sL

K1/G1

sK1

IR
1

IL
1

Km/Gm

sKm

IR
m

IL
m

(b)

Fig. 4. Equivalent Foster networks: (a) magnetic and (b) electric.

obtained using the well-known Vector-Fitting technique [15].
The choice of m depends on the treated elementary cell and
the frequency band of operation. In this case, m = 2 provides
accurate results as shown in Figs. 2 and 3, where the fitted
curves for νe (νre and νie VF) and Ze (Re and Xe VF) are
depicted.

Equations (8) and (9) can be straightforwardly associated
to an equivalent Foster network with passive elements. The
equivalent magnetic network in Fig. 4a accounts for the
proximity effect, whereas the equivalent electric network in
Fig. 4b accounts for the skin effect. It is worth mentioning
that the Debye model satisfies the Kramers-Kronig relation in
the frequency domain; thus, causality is guaranteed in the time
domain [20].

B. Time-Domain Formulation

In the winding subdomain Ωw, the time-domain weak
formulation is obtained from (1) and (3), including (8) and
(9), via the inverse Laplace transform, i.e.

νe ∗ [Mw][Aw]− [C ′w]Iw = 0, (10)
[C ′w]ᵀ∂t[Aw] + Ze ∗ Iw = Vw, (11)

where

νe = ν0δ + `∂tδ +

m∑
i=1

ki
gi

(
δ − e−t/gi

gi

)
, (12)

Ze = RDCδ + L∂tδ +

m∑
i=1

Ki

Gi

(
δ − e−t/Gi

Gi

)
, (13)

δ is the Dirac delta function, [Mw] ∈ RNw×Nw the winding
reluctivity-independent stiffness matrix (with νe ∗ [Mw] ⊂
[M ]), [Aw] ∈ RNw×1 the winding MVP unknown vector (with
[Aw] ⊂ [A]), [C ′w] ∈ RNw×1 the nonzero part of [Cw] and
the ∗ denotes a convolution. By performing the convolution
product, the i-th terms of (12) and (13) can be expressed as(
ν0 +

ki
gi

)
[Mw][Aw] + `[Mw]∂t[Aw]− [Jri ]− [C ′w]Iw = 0,

(14)

[C ′w]ᵀ∂t[Aw] +

(
RDC +

Ki

Gi

)
Iw + L∂tIw − Vri = Vw,

(15)
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where

[Jri(t)] = [Mw]

∫ t

0

ki
g2
i

e−τ/gi [Aw(t− τ)] dτ, (16)

Vri(t) =

∫ t

0

Ki

G2
i

e−τ/GiIw(t− τ) dτ. (17)

The term [Jr] ∈ RNw×1 can be considered as a reaction
current density that includes the dynamic response of the
parallel branches in Fig. 4a. Likewise, Vr is the reaction
voltage that accounts for the dynamic response of the parallel
branches in Fig. 4b.

In (16) and (17), the exponential functions allow a simple
recursive evaluation of the convolutions [16], [21]. To that end,
let ∆t be a time step defining: tn = tn−1 + ∆t, so that, for
instance, the recursive form of (16), relying on the properties
of the exponential, is given by

[Jri(tn)] = [Mw]

∫ ∆t

0

ki
g2
i

e−τ/gi [Aw(tn − τ)] dτ

+ e−∆t/gi [Jri(tn−1)].

(18)

In that way, [Jri(tn)] can be exactly expressed as a function of
the previous value [Jri(tn−1)]. A complete discrete representa-
tion is then obtained through a piece-wise linear approximation
of the integral in the right-hand side of (18), i.e.

[Jri(tn)] = θi[Jri(tn−1)] + υi[Mw][Aw(tn)]

+ψi[Mw][Aw(tn−1)],
(19)

where

θi = e−∆t/gi , (20)

υi =
ki
gi

(
1− 1− θi

1/gi∆t

)
, (21)

ψi =
ki
gi

(
1− θi
1/gi∆t

− θi
)
. (22)

Analogously, the recursive form of the convolution in (17) is
given by

Vri(tn) = ΘiVri(tn−1) + ΥiIc(tn) + ΨiIw(tn−1), (23)

where Θi, Υi and Ψi are obtained as in (20-22) with the
respective parameters Ki and Gi.

C. Loss and Magnetic Energy

In the time domain, the equivalent networks in Fig. 4 are
preserved, which allows the computation of the losses and the
magnetic energy in the post-processing stage. The advantage
consists in the possibility to separate the contributions due to
the skin and proximity effects. The proximity- and skin-effect
losses, Ppe and Pse, are computed from the flux densities bli
and the currents IRi

as

Ppe =

∫
Ωw

(
∂tb

2`+

m∑
i=1

∂tb
2
`i
ki

)
dΩw, (24)

Pse = I2
wRDC +

m∑
i=1

I2
Ri

Ki

Gi
. (25)

Analogously, the proximity- and skin-effect contributions to
the magnetic energy, Wpe and Wse, are computed from the
flux densities bri and the currents ILi , i.e.

Wpe =
1

2

∫
Ωw

(
b2ν0 +

m∑
i=1

b2ri
ki
gi

)
dΩw, (26)

Wse =
1

2

(
I2
wL+

m∑
i=1

I2
Li
Ki

)
. (27)

It is worth mentioning that no additional unknowns are re-
quired in the FE resolution stage, since IRi

, ILi
, b`i and bri

are obtained directly from Iw, b and the circuit parameters.

D. Computational Cost

The convolutions (19) and (23) must be calculated at each
time step: whereas Vr is mesh independent, [Jr] varies with
Nw. The computational cost of [Jr] depends therefore on
the mesh size. Moreover, the formulation in (12) and (13)
is defined for a scalar reluctivity. An extra convolution in the
form of (19) is required, if a tensorial reluctivity is considered.
However, it should be noted that the approximation order m
has little effect on the computational cost since it does not add
degrees of freedom to the resolution stage. Thus, on account
of the convolutions, the proposed approach requires a small
extra computational cost compared to the traditional stranded
model (see Section IV).

IV. APPLICATION

A. Model Performance

The proposed homogenized approach is first applied to a
planar 2-D FE model of the 256-turn inductor shown in Fig.
5 with the conductor characterized in Section II. Only 1/4th
of the domain is considered in Fig. 5 by taking advantage
of symmetry. Thus, tangential magnetic field is imposed on
the left boundary and normal magnetic field on the bottom
boundary. Moreover, a magnetic shielding box covers the
core and winding (normal magnetic flux boundary condition
on its inner surface). The core is considered nonconductive
and has relative reluctivity νr = 1/1000. The winding is
fed by the 2 kHz PWM signal, of unit amplitude and 50%
duty cycle, shown in Fig 6. Time-stepping simulations are
carried out for one period (T = 0.5 ms) with time step
∆t = T/500. The results are compared to those obtained
with: a reference FE model (in which all turns explicitly
defined as solid conductors) and the traditional stranded model.
The computations of the reference and stranded models are
carried out with the software Altair FluxTM [23], whereas the
proposed homogenized approach is developed in the MATLAB
environment.

The mesh of the reference case is presented in Fig. 7a,
where its fine discretization inside the conductors accurately
accounts for the eddy-current effects. This fine mesh leads
to a total of 77 965 unknowns, comprising the whole domain
of Fig. 5. As for the homogenized and stranded cases, the
discretization of the winding region results in the much coarser
mesh shown in Fig. 7b, which contains 1 466 unknowns,
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Fig. 5. 2-D inductor (1/4th upper-half, depth: 0.5 m, dimensions: mm).
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Fig. 6. PWM signal of the imposed voltage.
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Fig. 7. Model mesh (upper right zoom of the outer turns): (a) reference case
and (b) homogenized and stranded cases.

comprising the whole domain of Fig. 5. At the resolution stage,
the computational times per step are: 4 650 ms, 11.4 ms and
10.4 ms for the reference, homogenized and stranded models,
respectively. The proposed approach delivers a speed-up factor
of 400 compared to the reference time. The computational cost
of the RC produces a 10% time increase (1 ms per time step)
compared to the stranded model. If the approximation order is
doubled to m = 4, the computational time per step is 11.7 ms
(2.6% increase), which confirms the little contribution of m
to the computational cost.

The flux lines in the winding are shown in Fig. 8 at
t = T/2. It can be observed that the global pattern of
the flux lines is preserved in the homogenized case. Fig. 9

(a) (b)

Fig. 8. Flux lines in the winding at t = T/2 (a) reference case (b)
homogenized case.
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Fig. 9. Current Iw versus time obtained with the reference, homogenized
and stranded models.

compares the reference, homogenized and stranded winding
current variation in time, where both the homogenized and
stranded models produce an excellent agreement. The current
Iw is only influenced by the skin effect, which in this case
is negligible; hence no difference can be appreciated between
the homogenized and stranded models.

The main objective of the proposed homogenized approach
is to accurately account for the Joule losses in the time domain.
Fig. 10 shows the Joule losses in time for the reference,
homogenized and stranded model. The homogenized model
produces an excellent agreement compared to the reference.
The stranded model loses accuracy as it only accounts for the
DC losses. Following (24) and (25), it is possible to separate
the skin and proximity effect contribution to the total losses.
The variation in time of the skin and proximity effect losses
is also presented in Fig. 10. It should also be noted that the
skin-effect losses match the losses of the stranded model since
the equivalent impedance Ze is basically describing its DC
value. The magnetic energy as a function of time for the
reference, homogenized and stranded model, between 0.15 ms
and 0.3 ms, is shown in Fig. 11: the proposed homogenization
delivers more accurate results compared to the stranded model.

In order to measure the influence of the homogenized mesh,
two additional discretizations are tested: one with a mesh of
approximately one third of the mesh elements in Fig. 7b and
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Fig. 10. Joule losses versus time obtained with the reference, homogenized
and stranded models.
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Fig. 11. Magnetic energy versus time obtained with the reference, homoge-
nized and stranded models.

the other with three times the number of elements in Fig. 7b.
The respective computational times per step are 3.39 ms and
38.3 ms. The results for the Joule losses between 0.1 ms and
0.2 ms are presented in Fig. 12. It can be appreciated that
the size of the homogenized mesh has little influence on the
results.

In terms of accuracy, the proposed homogenization relies
on the quality of the Vector-Fitting process [15]. However,
an excellent agreement might be achieved with a rather low
order of approximation, since the frequency-dependent curves
describing the equivalent properties (reluctivity and impen-
dace) are always smooth as in Figs. 2 and 3 [7], [13], [14].
Regarding the adopted RC scheme, it has been proved that
the scheme is convergent independently of the time-step size;
even if the accuracy of the solution depends on the selection
of the time step, a matching solution by RC has always been
obtained [21]. Moreover, the RC scheme avoids truncation in
the integration due to the mathematical redefinition in (18)
[21].

A secondary winding can be considered, in the case of
transformer modeling, as long as it belongs to a separate
region with and independent circuit relation following the
considerations in Section II [24]. It is worth noting that the
elementary cell may vary from winding to winding. Conduc-
tive nonlinear materials, proper to ferromagnetic cores, can
be straightforwardly considered in the winding surroundings.
Furthermore, a post-processing could be performed to estimate
the local current density and eddy-current losses that would
serve as boundary conditions in a thermal problem. This way,
the temperature distribution could be estimated [25].

0.1 0.12 0.14 0.16 0.18 0.2

0.1

0.2

0.3

0.4

0.5

Fig. 12. Homogenized Joule losses versus time obtained with 1/3 and 3 times
the mesh elements in Fig. 7b.
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(a)
X

Y
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(b)

Fig. 13. Geometry and meshes of the axisymmetric inductor (a) reference
case and (b) homogenized case.

B. Comparison with an RL Cauer Approach

A second test case is considered to compare the proposed
approach to the one in [13], [14], where the frequency-
dependent parameters are approximated with RL Cauer net-
works instead (see Appendix A). To that end, we consider
the 120-turn axisymmetric inductor shown in Fig. 13 with the
conductor characterized in [14] (a round conductor with square
packing (radius r = 0.56 mm, σ = 59 MS/m and λ = 0.65).
The core is considered nonconductive and has relative mag-
netic reluctivity νr = 1/1000. Tangential magnetic field is
imposed on the outer boundary of the core. The winding is
fed by a 50 kHz sinusoidal voltage of peak amplitude 25 V.
Time-stepping simulations are carried out for one period with
time step ∆t = T/120. The homogenized approaches are
additionally compared to a reference FE model (with all
turns explicitly defined as solid conductors) whose results
can be obtained with the software Altair FluxTM [23]. In this
subsection, we refer to the proposed homogenized approach
and the one in [13], [14] as Foster and Cauer, respectively.
A detail of the meshes for the reference and homogenized
cases are presented in Fig. 13a and 13b, respectively. The fine
mesh in Fig. 13a leads to a total of 12 534 unknowns with a
computational time per step of 375 ms.

We focus our comparison on the Joule losses, since they
are highly sensitive to the eddy-current effects. It is of interest
to estimate the accuracy of the approaches as the degree of
approximation m increases. Thus, we vary the approximation
order m from 1 to 4 and compute the Joule losses for
each order. In Fig. 14 such computations are presented and
compared to the reference case, where the “C.” and the “F.”



VALDIVIESO et al.:TIME-DOMAIN FINITE-ELEMENT EDDY-CURRENT HOMOGENIZATION OF WINDINGS 7

0 5 10 15 20

0

50

100

150

200

250

300

350

Fig. 14. Joule losses versus time obtained with the reference and homogenized
approaches.
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Fig. 15. Absolute error ε versus time for the Joule losses obtained with the
homogenized approaches.

TABLE I
PERFORMANCE OF THE HOMOGENIZED MODELS

m
RL Cauer RL Foster

Ñw t∆t (ms) εL2 (%) Nw t∆t (ms) εL2 (%)
1 500 38 75 500 5 2.1
2 1000 91 2.8 500 5 2.1
3 1500 129 1.8 500 5 1.8
4 2000 165 1.6 500 5 1.8

stand for the Cauer and Foster approaches, respectively. The
biggest difference concerns the first-order approximation: the
Cauer approach is incapable of following the behavior of
the reference, whereas the Foster approach has very good
accuracy. As from m = 2, both approaches deliver excellent
results. For a better insight, Fig. 15 shows the absolute error ε
in terms of the Joule losses for both methods. On one hand, a
considerable improvement is observed for the Cauer approach
from m = 1 to m = 2. If the approximation increases further,
slight improvements in the accuracy are also obtained. On the
other hand, the Foster approach produces an excellent stable
accuracy at all orders of approximation, but again with a small
gain at higher orders.

Table I summarizes the performance of both models com-
paring the unknowns in the winding region Nw, the compu-
tational time per step t∆t and the L2-error: εL2 = ||Pr −
Ph||2/||Pr||2, with Pr the vector of reference values and
Ph the vector of homogenized values. The Cauer approach
delivers the lowest error at the expense of a high computational
cost resulting from the additional unknowns in Ωw. The
Foster approach on the contrary performs with the same

computational cost regardless the value of m, since it is not
linked to the unknowns of the FE problem. At the highest
order, a difference of only 0.2% in εL2 is found between the
approaches.

V. CONCLUSIONS

An alternative approach has been proposed for the time-
domain homogenization of multiturn windings. It allows to
solve the FE model, including the eddy-current effects, with
excellent accuracy and reasonable computational cost. To
this end, the winding type is first characterized by a 2-D
elementary model, leading to frequency-dependent equivalent
parameters. These parameters are associated to an equivalent
Foster network and translated into the time domain via the
inverse Laplace transform. The time-dependent formulation
is then solved with a RC scheme. No additional unknowns
need to be introduced in the model, which reduces the com-
putational cost. In comparison with an homogenization in
which the parameters are associated to an equivalent Cauer
network, the proposed Foster approach: performs better at the
lowest order of approximation and has a computational cost
independent of the approximation order.

APPENDIX A
RL CAUER NETWORK APPROACH

The complex frequency-dependent parameters Ze and νe
can be represented, over the frequency range of interest, by
rational functions with a ladder form, i.e.

Ze(s) ' R1 +
1

1

sL1
+

1

R2 +
1

1

sL2
+

. . .

, (28)

νe(s) ' R1 +
1

1

sL1
+

1

R2 +
1

1

sL2
+

. . .

, (29)

where the fractions can be expanded up to an m-order.
The parameters R1, L1, R1, L1, ... are obtained through the
fitting of the admittance Y e(s) = 1/Ze(s) and permeability
µe(s) = 1/νe(s) that match rational, causal and stable
transfer functions [14].

The behavior of (28) and (29) can be represented by RL
Cauer networks in the frequency-domain. In the time domain,
the RL network constitutes a linear and time invariant (LTI)
system of order m [13]. For the skin effect, an approximate
dynamic relation between the instantaneous terminal voltage
Vw and the current Iw considers m−1 auxiliary currents and a
system of m first-order differential equations in terms of the m
currents [Iw]ᵀ = [Iw I2 I3...]

ᵀ. Likewise, a dynamic relation
between the instantaneous magnetic field h and the magnetic
flux density b can be obtained by considering m− 1 auxiliary
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flux densities and a system of m first-order differential equa-
tions in terms of the m flux densities [B]ᵀ = [b b2 b3...]

ᵀ. The
relations read:

[Vw] = [R][Iw] + [L]∂t[Iw], (30)
[H] = [R][B] + [L]∂t[B], (31)

where [Vw]ᵀ = [Vw 0 0... 0]ᵀ, [H]ᵀ = [h 0 0... 0]ᵀ and
[R, L, R, L] ∈ Rm×m are the constant symmetric matrices
associated to the RL networks [14].

In the winding domain Ωw, the auxiliary flux densities are
considered through auxiliary components of the MVP with the
same basis functions, where their nodal values constitute ad-
ditional degrees of freedom. Thus, [Aw]ᵀ = [a1 a2 a3... aNw

]ᵀ

is redefined as [Ãw]ᵀ = [a1,1 a2,1 a3,1 ... am,Nw ]ᵀ, so that
[Ãw] ∈ RÑw×1 with Ñw = Nwm [13]. Therefore, the time-
domain weak formulation, obtained from (1) and (3) and
including (30) and (31), in Ωw reads:

[M̃w][R][Ãw] + [M̃w][L]∂t[Ãw]− [C̃ ′w][Iw] = 0, (32)

[C̃ ′w]ᵀ∂t[Ãw] + [R][Iw] + [L]∂t[Iw] = [Vw], (33)

where [M̃w] ∈ RÑw×Ñw and [C̃ ′w] ∈ RÑw×1. The formulation
in (32) and (33) is defined for a scalar reluctivity. An extra
equivalent parameter in the form of (29) is needed if a tensorial
reluctivity is considered e.g., elementary cells with lx 6= ly .
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