Scientific and human errors in a snow model intercomparison - Archive ouverte HAL
Article Dans Une Revue Bulletin of the American Meteorological Society Année : 2021

Scientific and human errors in a snow model intercomparison

Cecile Menard
  • Fonction : Auteur
Richard Essery
  • Fonction : Auteur
Gabriele Arduini
  • Fonction : Auteur
Paul Bartlett
Aaron Boone
Claire Brutel-Vuilmet
  • Fonction : Auteur
Eleanor Burke
Matthias Cuntz
Yongjiu Dai
  • Fonction : Auteur
Emanuel Dutra
Xing Fang
  • Fonction : Auteur
Charles Fierz
Yeugeniy Gusev
  • Fonction : Auteur
Stefan Hagemann
  • Fonction : Auteur
Vanessa Haverd
Hyungjun Kim
Thomas Marke
  • Fonction : Auteur
Olga Nasonova
  • Fonction : Auteur
Tomoko Nitta
  • Fonction : Auteur
Masashi Niwano
John Pomeroy
  • Fonction : Auteur
Gerd Schädler
  • Fonction : Auteur
Vladimir Semenov
  • Fonction : Auteur
Tatiana Smirnova
  • Fonction : Auteur
Ulrich Strasser
  • Fonction : Auteur
Sean Swenson
  • Fonction : Auteur
Dmitry Turkov
  • Fonction : Auteur
Nander Wever
Hua Yuan
  • Fonction : Auteur

Résumé

Twenty-seven models participated in the Earth System Model - Snow Model Intercomparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modelling. Our findings do not support the hypothesis advanced by previous snow MIPs: evaluating models against more variables, and providing evaluation datasets extended temporally and spatially does not facilitate identification of key new processes requiring improvement to model snow mass and energy budgets, even at point scales. In fact, the same modelling issues identified by previous snow MIPs arose: albedo is a major source of uncertainty, surface exchange parametrizations are problematic and individual model performance is inconsistent. This lack of progress is attributed partly to the large number of human errors that led to anomalous model behaviour and to numerous resubmissions. It is unclear how widespread such errors are in our field and others; dedicated time and resources will be needed to tackle this issue to prevent highly sophisticated models and their research outputs from being vulnerable because of avoidable human mistakes. The design of and the data available to successive snow MIPs were also questioned. Evaluation of models against bulk snow properties was found to be sufficient for 15 some but inappropriate for more complex snow models whose skills at simulating internal snow properties remained untested. Discussions between the authors of this paper on the purpose of MIPs revealed varied, and sometimes contradictory, motivations behind their participation. These findings started a collaborative effort to adapt future snow MIPs to respond to the diverse needs of the community
Fichier principal
Vignette du fichier
bamsd190329.pdf (2.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03013971 , version 1 (19-11-2020)

Identifiants

Citer

Cecile Menard, Richard Essery, Gerhard Krinner, Gabriele Arduini, Paul Bartlett, et al.. Scientific and human errors in a snow model intercomparison. Bulletin of the American Meteorological Society, 2021, 102 (1), pp.E61-E79. ⟨10.1175/BAMS-D-19-0329.1⟩. ⟨hal-03013971v1⟩
250 Consultations
69 Téléchargements

Altmetric

Partager

More