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Abstract 

 

Twenty-seven models participated in the Earth System Model - Snow Model Intercomparison 1 

Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modelling.  Our findings 2 

do not support the hypothesis advanced by previous snow MIPs: evaluating models against 3 

more variables, and providing evaluation datasets extended temporally and spatially does not 4 

facilitate identification of key new processes requiring improvement to model snow mass and 5 

energy budgets, even at point scales.  In fact, the same modelling issues identified by previous 6 

snow MIPs arose: albedo is a major source of uncertainty, surface exchange parametrizations 7 

are problematic and individual model performance is inconsistent. This lack of progress is 8 

attributed partly to the large number of human errors that led to anomalous model behaviour 9 

and to numerous resubmissions. It is unclear how widespread such errors are in our field and 10 

others; dedicated time and resources will be needed to tackle this issue to prevent highly 11 

sophisticated models and their research outputs from being vulnerable because of avoidable 12 

human mistakes. The design of and the data available to successive snow MIPs were also 13 

questioned. Evaluation of models against bulk snow properties was found to be sufficient for 14 

some but inappropriate for more complex snow models whose skills at simulating internal 15 

snow properties remained untested. Discussions between the authors of this paper on the 16 

purpose of MIPs revealed varied, and sometimes contradictory, motivations behind their 17 

participation. These findings started a collaborative effort to adapt future snow MIPs to 18 

respond to the diverse needs of the community. 19 
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Capsule 

The latest snow model intercomparison identified the same modelling issues as previous 

iterations over 23 years. Lack of new insights are attributed partly to human errors and 

intercomparison projects design. 
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1. Introduction 1 

 2 

The Earth System Model-Snow Model Intercomparison Project (ESM-SnowMIP; Krinner et 3 

al., 2018) is the third in a series of MIPs spanning seventeen years investigating the 4 

performance of snow models. It is closely aligned with the Land Surface, Snow and Soil 5 

Moisture Model Intercomparison Project (LS3MIP; van den Hurk et al. 2016), which is a 6 

contribution to the sixth Coupled Model Intercomparison Project (CMIP6). The Tier 1 7 

reference site simulations (Ref-Site in Krinner et al., 2018), the results of which are discussed 8 

in this paper, is the first of ten planned ESM-SnowMIP experiments and the latest iteration of 9 

MIPs using in situ data for snow model evaluation. The Project for Intercomparison of Land 10 

surface Parameterization Schemes Phase 2(d) (PILPS 2(d)) was the first comprehensive 11 

intercomparison focusing on the representation of snow in land surface schemes (Pitman and 12 

Henderson-Sellers, 1998; Slater et al., 2001) and evaluated models at one open site for 18 13 

years. It was followed by the first SnowMIP (hereafter SnowMIP1; Etchevers et al., 2002; 14 

Etchevers et al., 2004),  which evaluated models at four open sites for a total of 19 site-years 15 

and by SnowMIP2 (Rutter et al., 2009; Essery et al., 2009) which investigated simulations at 16 

five open and forested site pairs for 9 site-years.  17 

Twenty-seven models from twenty-two modelling teams participated in the ESM-18 

SnowMIP Ref-Site experiment (ESM-SnowMIP hereafter). A short history of critical findings in 19 

previous MIPs is necessary to contextualise the results. PILPS 2(d) identified sources of model 20 

scatter to be albedo and fractional snow cover parametrizations controlling the energy 21 

available for melt, and longwave radiative feedbacks controlled by exchange coefficients for 22 

sensible and latent heat fluxes in stable conditions (Slater et al., 2001). SnowMIP1 23 
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corroborated the latter finding, adding that the more complex models were better able to 24 

simulate net longwave radiation but both complex models and simple models with 25 

appropriate parametrizations were able to simulate albedo well (Etchevers et al, 2004) ( 26 

Baartman et al., 2020, showed that there is no general consensus about what “model 27 

complexity” is; for clarity, we will define models explicitly incorporating larger numbers of 28 

processes, interactions and feedbacks as more complex). SnowMIP2 found little consistency 29 

in model performance between years or sites and, as a result, there was no subset of better 30 

models (Rutter et al., 2011). The largest errors in mass and energy balances were attributed 31 

to uncertainties in site-specific parameter selection rather than to model structure. All these 32 

projects concluded that more temporal and spatial data would improve our understanding of 33 

snow models and reduce the uncertainty associated with process representations and 34 

feedbacks on the climate.  35 

This paper discusses results from model simulations at five mountain sites (Col de Porte, 36 

France; Reynolds Mountain East, Idaho, USA; Senator Beck and Swamp Angel, Colorado, USA; 37 

Weissfluhjoch, Switzerland), one urban maritime site (Sapporo, Japan) and one Arctic site 38 

(Sodankylä, Finland); results for three forested sites will be discussed in a separate 39 

publication. Details of the sites, forcing and evaluation data are presented in Menard et al. 40 

(2019). Although the 97 site-years of data for these seven reference sites may still be 41 

insufficient, they do respond to the demands of previous MIPs by providing more sites in 42 

different snowy environments over more years.   43 

 44 
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2. The false hypothesis 45 

In fiction, a false protagonist is one who is presented as the main character but turns out 46 

not to be, often by being killed off early (e.g. Marion Crane in Psycho, 1960; Dallas in Alien, 47 

1979; Ned Stark in A Game of Thrones, Martin, 1996). This narrative technique is not used in 48 

scientific literature, even though many scientific hypotheses advanced in project proposals 49 

are killed early at the research stage. Most scientific journals impose strict manuscript 50 

composition guidelines to encourage research studies to be presented in a linear and cohesive 51 

manner. As a consequence, many “killed” hypotheses are never presented, and neither are 52 

the intermediary steps that lead to the final hypothesis. This is an artifice that we all comply 53 

with even though hypothesizing after the results are known (known as HARKing; Kerr, 1998) 54 

is a practice associated with the reproduction crisis (Munafò et al., 2017).  55 

Our working hypothesis was formed at the design stage of ESM-SnowMIP and is explicit 56 

in Krinner et al. (2018): more sites over more years will help us to identify crucial processes 57 

and characteristics that need to be improved as well as previously unrecognized weaknesses 58 

in snow models.  However, months of analysing results led us to conclude the unexpected: 59 

more sites, more years and more variables do not provide more insight into key snow 60 

processes. Instead, this leads to the same conclusions as previous MIPs: albedo is still a major 61 

source of uncertainty, surface exchange parametrizations are still problematic, and individual 62 

model performance is inconsistent. In fact, models are less classifiable with results from more 63 

sites, years and evaluation variables. Our initial, or false, hypothesis had to be killed off.  64 

Developments have been made, particularly in terms of the complexity of snow process 65 

representations, and conclusions from PILPS2(d) and snow MIPs have undoubtedly driven 66 

model development. Table 1 shows that few participating models now have a fixed snow 67 
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density or thermal conductivity, only two models still parametrize snow albedo as a simple 68 

function of temperature, no model uses constant surface exchange coefficients, more models 69 

can now represent liquid water in snow, and only three still have a composite snow/soil layer. 70 

These changes demonstrate progress for individual models, but they do not for snow science: 71 

most of these parametrizations have existed for decades. Differences between models 72 

remain, but the range of model complexity is smaller than it was in previous MIPs.  73 

The pace of advances in snow modelling and other fields in climate research is limited by 74 

the time it takes to collect long-term datasets and to develop methods for measuring complex 75 

processes. Furthermore, the logistical challenges of collecting reliable data in environments 76 

where unattended instruments are prone to failure continue to restrict the spatial coverage 77 

of quality snow datasets.  78 

False protagonists allow narrators to change the focus of the story. Our “false hypothesis” 79 

allows us to re-focus our paper not on what the model results are – doing so would merely 80 

repeat what previous snow MIPs have concluded – but on why, in the twenty four years since 81 

the start of PILPS 2 (d), the same modelling issues have repeatedly limited progress in our 82 

field, when other fields relying on technology and computing have changed beyond 83 

recognition.   84 

 85 

3. The Beauty Contest 86 

 87 

Ranking models (or the “beauty contest”, as insightfully described by Ann Henderson-88 

Sellers when presenting results from PILPS) offers little or no insight into their performance, 89 
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but it has become the compulsory starting point for presenting MIP results. Figures 1 and 2 90 

show models ranked according to errors in daily averages of snow water equivalent (SWE), 91 

surface temperature, albedo and soil temperature (note that not all of these variables were 92 

measured at all sites or output by all models). To avoid errors in simulations for snow-free or 93 

partially snow-covered ground, errors in albedo and surface and soil temperatures were only 94 

calculated for periods with measured snow depths greater than 0.1 m and air temperatures 95 

below 0°C.  Measured and modelled snow surface temperatures greater than 0°C and albedos 96 

less than 0.5 were excluded from the error calculations. Bias is shown for SWE, surface 97 

temperature, albedo and soil temperature. Root mean square error normalised by standard 98 

deviation (NRMSE) is presented only for SWE and surface temperature because standard 99 

deviations of albedo and soil temperature are small during periods of continuous snow cover.  100 

Discussion of the results in Sections 3.1 to 3.3. will demonstrate why our initial hypothesis 101 

was rejected: no patterns emerge, no sweeping statements can be made. The preliminary 102 

conclusion presented in Krinner et al. (2018) that “model complexity per se does not explain 103 

the spread in performance” still stands. For example, Table 1 shows that RUC is one of the 104 

simplest models, but Figures 1 and 2 show that it often has smaller errors than more complex 105 

models. This is not to say that model developments are useless: there are large differences 106 

between simulations submitted for older and newer versions of a few models. Errors in SWE 107 

– the most commonly used variable for evaluation of site simulations – are greatly reduced in 108 

HTESSEL-ML, JULES-UKESM/JULES-GL7 and ORCHIDEE-E/ORCHIDEE-MICT compared with 109 

HTESSEL, JULES-I and ORCHIDEE-I, and errors in soil temperature are greatly reduced in 110 

JSBACH-PF which, unlike its predecessor JSBACH, includes a soil freezing parametrization. 111 

There is little or no reduction in errors for other variables between versions.  112 
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Errors in the ESM-SnowMIP driving and evaluation data are not discussed here because 113 

they are discussed in Menard et al. (2019): implicit in the following sections is that a model 114 

can only be as good as the data driving it and against which it is evaluated. 115 

 116 

3.1 Snow water equivalent and surface temperature 117 

 118 

Mean SWE and surface temperature NRMSEs in Figure 1 are generally low: below 0.6 119 

for half of the models and 1 or greater for only four models. Biases are also relatively low: less 120 

than 2°C in surface temperature and less than 0.2 in normalised SWE for four out of five sites 121 

in Figure 2. The sign of the biases in surface temperature are the same for at least four out of 122 

five sites for all except four models (JULES-I, ORCHIDEE-E, ORCHIDEE-MICT and SWAP). The 123 

six models with the largest negative biases in SWE are among the seven models that do not 124 

represent liquid water in snow. The seventh model, RUC, has its largest negative bias at 125 

Sapporo, where rain-on-snow events are common. Wind-induced snow redistribution, which 126 

no model simulates at a point, is partly responsible for Senator Beck being one of the two 127 

sites with largest SWE NRMSE in more than half of the models.   128 

Four of the best models for SWE NRMSE are among the worst for surface temperature 129 

NRMSE (SPONSOR, Crocus, CLASS and HTESSEL-ML). Decoupling of the snow surface from the 130 

atmosphere under stable conditions is a long-standing issue which Slater et al. (2001) 131 

investigated in PILPS 2(d). Underestimating snow surface temperature leads to a colder 132 

snowpack that takes longer to melt and remains on the ground for longer. In 2001, most 133 

models used Richardson numbers to calculate surface exchange; in 2019, most use Monin-134 

Obukhov similarity theory (MOST). However, assumptions of flat and horizontally 135 
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homogeneous surfaces and steady-state conditions in MOST make it inappropriate for 136 

describing conditions not only over snow surfaces, but also over forest clearings and 137 

mountains: in other words, at all sites in this study. Exchange coefficient are commonly used 138 

to tune near-surface temperature in numerical weather prediction models even if to the 139 

detriment of the representation of stable boundary layers (Sandu et al., 2013). Conway et al. 140 

(2018) showed that such tuning in snowpack modelling improved surface temperature 141 

simulations but at the expense of overestimating melt. It is beyond the scope of this paper 142 

(and in view of the discussion on sources of errors in Section 4, possibly beyond individual 143 

modelling teams) to assess how individual models have developed and evaluated their 144 

surface exchange and snowpack evolution schemes. However, differences in model ranking 145 

between SWE and surface temperature suggest that this issue is widespread and warrants 146 

further attention.  147 

 148 

3.2 Albedo 149 

 150 

Errors in modelled winter albedo (Li et al., 2016) and implications for snow albedo 151 

feedback on air temperature (Randall et al., 2007; Flato et al., 2013) have been linked to errors 152 

in snow cover fraction (SCF) (e.g. Roesch et al, 2006) and vegetation characteristics in the 153 

boreal regions, rather than to the choice or complexity of snow albedo schemes (Essery, 2013; 154 

Wang et al, 2016). These should not affect ESM-SnowMIP because vegetation characteristics 155 

were provided to participants (all sites discussed here are in clearings or open landscapes) 156 

and snow cover during accumulation is expected to be complete. However, eleven models 157 

did not impose complete snow cover (Figure 3) such that, again, differences in surface albedo 158 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020



12 
 

are inextricably linked to differences in snow cover fraction; implications are discussed in 159 

Section 4.1.  160 

As in previous studies (e.g. Etchevers et al., 2004; Essery, 2013), the specific albedo 161 

scheme or its complexity does not determine model performance in ESM-SnowMIP. Neither 162 

of the two models with the smallest range of biases, CLASS and EC-Earth, imposed SCF = 1 163 

and both use simple albedo schemes in which snow albedo decreases depending on time and 164 

temperature. Snow albedo parametrizations (Table 1) determine rates at which albedo varies, 165 

but ranges within which the schemes operate are still determined by user-defined minimum 166 

and maximum snow albedos to which models are very sensitive. For most models these 167 

parameters are the same at all sites, but measurements suggest that they differ; it is unclear 168 

whether some of these variations are due to site-specific measurement errors (e.g. 169 

instruments or vegetation in the radiometer field of view). This issue should be investigated 170 

further as this is not the first time that model results have been inconclusive because of such 171 

uncertainties (e.g. Essery et al., 2013). 172 

 173 

3.3 Soil temperature 174 

 175 

Five models systematically underestimate soil temperatures under snow (JSBACH 176 

MATSIRO, ORCHIDEE-I, RUC and SURFEX-ISBA) and four systematically overestimate them 177 

(CLM5, CoLM, JULES-GL7 and ORCHIDEE-MICT), although negative biases are often larger than 178 

positive ones. Soil temperatures are not consistently over- or underestimated by all models 179 

at any particular site. Three of the models (JSBACH, JULES-I and ORCHIDEE-I) still include a 180 

thermally composite snow-soil layer, and the lack of a soil moisture freezing representation 181 
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in JSBACH causes soil temperatures to be underestimated. Although newer versions of these 182 

models (ORCHIDEE-E, ORCHIDEE-MICT, JSBACH-PF, JULES-GL7 and JULES-UKESM) include 183 

more realistic snow-soil process representations, cold biases of the implicit versions have, 184 

with the exception of ORCHIDEE-E, been replaced by warm biases, and of similar magnitude  185 

between JULES-I and JULES-GL7.  186 

 187 

4. Discussion 188 

 189 

4.1 Motivation behind participation 190 

 191 

One of the motivations behind the design of ESM-SnowMIP was to run a stand-alone 192 

MIP dedicated to snow processes parallel to other MIPs, most notably CMIP6 and LS3MIP: 193 

“Combining the evaluation of these global-scale simulations with the detailed process-based 194 

assessment at the site scale provides an opportunity for substantial progress in the 195 

representation of snow, particularly in Earth system models that have not been evaluated in 196 

detail with respect to their snow parameterizations” (Krinner et al., 2018). Identifying errors 197 

in ESM-SnowMIP site simulations could be linked to model processes that also operate in 198 

LS3MIP global simulations, separately from meteorological and ancillary data errors. 199 

However, LS3MIP and ESM-SnowMIP results are not directly comparable because land 200 

surface schemes (LSSs) include parametrizations that describe sub-grid heterogeneity and 201 

some LSSs allow them to be switched off or modified for point simulations. Tables 1 and 2 202 

show whether models participated in both MIPs and whether they used point simulation-203 

specific snow cover parametrizations, which is critical for albedo and the most common 204 
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parametrization to simulate sub-grid heterogeneity. Of the eleven models that did not adjust 205 

their sub-grid parametrizations or impose complete snow cover (Figure 3), only one (CLASS) 206 

is not participating in LS3MIP. Of those that are participating, three switched off their sub-207 

grid parametrizations (MATSIRO, RUC, and SURFEX-ISBA). Had it been anticipated at the 208 

design stage that some models would have considered ESM-SnowMIP to be a means to 209 

evaluate their LS3MIP set-up against in situ data, ESM-SnowMIP instructions would have 210 

advised to switch off all sub-grid processes; treating a point simulation like a spatial simulation 211 

makes evaluating some variables against point measurements futile. This is best illustrated 212 

with ORCHIDEE, the three versions of which have the highest negative albedo biases; not only 213 

was complete snow cover not imposed, but also the maximum albedo for deep snow on grass 214 

(i.e. 0.65 at all sites except Weissfluhjoch) accounts implicitly for sub-grid heterogeneity in 215 

large-scale simulations.  216 

Although called ESM-SnowMIP, the site simulations were always intended to include 217 

physically based snow models that are not part of an ESM but have other applications (Krinner 218 

et al., 2018). Table 3 lists what motivated different groups to participate in ESM-SnowMIP 219 

Although not explicit in Table 3 because of the anonymity of the comments, for developers of 220 

snow physics models, the motivation to participate in a MIP dedicated to scrutinizing the 221 

processes they investigate is self-evident. On the other hand, most land surface schemes were 222 

first developed to provide the lower boundary conditions to atmospheric models. Because of 223 

the dramatic differences in the energy budget of snow-free and snow-covered land, the main 224 

requirement for snow models in some LSSs is still just to inform atmospheric models of 225 

whether there is snow on the ground or not.  The size of the modelling group also matters; 226 

more models supported by a single individual or small teams listed exposure as one of their 227 

motivations. This discussion revealed that many participants suffered from the “false 228 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020



15 
 

consensus effect” (Lee et al., 1977), also observed among geoscientists but not explicitly 229 

named by Baartman et al . (2020), i.e. they assumed their motivations were universal, or at 230 

the very least, widespread. Ultimately, the prestige of MIPs means that, regardless of 231 

workload, personal motivation or model performance, they have become compulsory 232 

promotional exercises that we cannot afford not to participate in, for better or worse. 233 

 234 

4.2 Errare humanum est 235 

 236 

The increasing physical complexity of models makes them harder for users to 237 

understand. Many LSSs are “community” models (e.g. CLM, CoLM, JULES, SURFEX-ISBA), 238 

meaning that they are being developed and used by a broad range of scientists whose 239 

research interests, other than all being related to some aspect of the land surface, do not 240 

necessarily overlap. In many cases, new parametrizations are added faster than old ones are 241 

deprecated, causing ever-growing user interfaces or configuration files to become 242 

incomprehensible. Benchmarking should help scientists verify that newer versions of a model 243 

can reproduce the same results as older versions, but the lag between scientific 244 

improvements (hard code) and those at the user interface (soft code) can cause model errors 245 

to be introduced by simple avoidable mistakes. The JULES configuration files, for example, 246 

contain approximately 800 switches and parameters. Although GL7 and UKESM are the 247 

official JULES configurations implemented in the CMIP6 Physical Model and Earth System 248 

setups respectively, the ESM-SnowMIP results had to be re-submitted multiple times because 249 

large errors were eventually traced to a poorly documented but highly sensitive parameter. 250 
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It should be noted that JULES and many other models were not intended for point 251 

simulations, increasing the possibility of errors in reconfiguring them for ESM-SnowMIP.  252 

A different philosophy from some other MIPs has been followed here such that 253 

resubmission of simulations was encouraged if initial results did not appear to be 254 

representative of the intended model behaviour. Table 4 provides details of the hard- and 255 

soft-coded errors identified as a result of discussions that led to sixteen of the twenty-six 256 

models re-submitting their results, some more than once. One model was excluded at a late 257 

stage because the modelling team did not identify the source of some very large errors that 258 

caused the model to be an outlier in all analyses and, therefore, would not have added any 259 

scientific value to this paper.  260 

Model errors can be statistically quantified; quantifying human errors is somewhat 261 

more challenging. A methodology widespread in high-risk disciplines (e.g. medicine, aviation 262 

and nuclear power), the Human Reliability Assessment, may be the closest analogue, but it is 263 

a preventative measure. Concerns about reproducibility and traceability have motivated a 264 

push for analogous methodologies in the Geosciences (Gil et al., 2016), but most remain 265 

retrospective steps to retrace at the paper writing stage. 266 

 Figure 4 quantifies the differences in the performance of the two variables (SWE and 267 

soil temperature) and models most affected by human errors before and after resubmission. 268 

For some models (JULES-GL7, JSBACH-PF, HTESSEL-ML), SWE NRMSE before resubmission are 269 

up to five times higher than after and soil temperature bias double that of corrected 270 

simulations (ORCHIDEE-I). Human errors in models and, as discussed in Menard et al. (2019) 271 

for the first ten reference sites in ESM-SnowMIP, in data are inevitable, and this snow MIP 272 

shows that they are widespread. The language we use to describe numerical models has 273 
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distanced them from the fact that they are not, in fact, pure descriptions of physics but rather 274 

equations and configuration files written by humans. Errare humanum est, perseverare 275 

diabolicum. Menard et al. (2015) showed that papers already published had used versions of 276 

JULES that included bugs affecting turbulent fluxes and causing early snowmelt. There is no 277 

requirement for authors to update papers after publication if retrospective enquiries identify 278 

some of the published results as erroneous. In view of the many errors identified here, further 279 

investigations are required to start understanding how widespread errors in publications are. 280 

Whether present in initialisation files or in the source code, these errors impair or slow 281 

progress in our understanding of snow modelling because they misrepresent the ability of 282 

models to simulate snow mass and energy balances.  283 

 284 

4.3 Model documentation 285 

 286 

As with many other areas of science, calls for reproducibility of model results to 287 

become a requirement for publication are gaining ground (Gil et al., 2016). Table 1 was initially 288 

intended to list the parametrizations considered most important in snow modelling (Essery 289 

et al., 2013; Essery, 2015), with, as is conventional (e.g. Rutter et al., 2009; Krinner et al., 290 

2018), a single reference per model. Referencing the parametrizations in the twenty-seven 291 

models requires, in fact, seventy-nine papers and technical reports; a more detailed version 292 

of the table and associated references are included in the supplementary material. The lead-293 

author first identified fifty-one references, and the modelling teams then provided references 294 

to fill the remaining gaps. However, some suggested the wrong references, others revised 295 

their initial answers and a few even discovered that some parametrizations are not described 296 
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at all. Not only is it extremely rare to find complete documentation of a model in a single 297 

publication, it is also difficult to find all parametrizations described at all in the literature. 298 

When this happens, some parametrizations are described in publications for other models. 299 

Often, the most recent publication refers to previous ones, which may or may not be the first 300 

to have described the model, comprehensively or not. Incomplete documentation would be 301 

an annoying but unimportant issue if this exercise had not led to the identification of some of 302 

the errors discussed in Section 4.2.   303 

Less than a decade ago, it was at best difficult and at worst impossible to publish scientific 304 

model descriptions. The open access culture, issues of reproducibility and online platforms 305 

dedicated to publication of source code and data have reversed this trend such that it is now 306 

difficult to imagine research relying on a new model with proprietary code being published. 307 

Yet, it is a truth universally acknowledged that openly budgeting in a project proposal for the 308 

added time it takes to publish comprehensive data and model descriptions is unadvisable, 309 

despite many funding bodies enforcing open-access policies. The problem remains for models 310 

developed before the tide changed. Two examples illustrate this best. The first concerns the 311 

number of papers which refer to Anderson (1976) for snow density, liquid water retention or 312 

thermal conductivity. Equations for these parametrizations do appear in the report, but often 313 

not in the form presented in subsequent papers (Essery et al., 2012 pointed out that most 314 

actually use the forms in Jordan, 1991), or they are themselves reproductions of equations 315 

from earlier studies (especially for snow thermal conductivity). The second example is a quote 316 

taken from the paper describing VEG3D (Braun and Schädler, 2005): “The snow model is 317 

based on the Canadian Land Surface Scheme (CLASS) (Verseghy 1991) and ISBA (Douville et 318 

al. 1995) models, and accounts for changes of albedo and emissivity as well as processes like 319 

compaction, destructive metamorphosis, the melting of snow, and the freezing of liquid 320 
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water.” This sentence is the only description in English of the snow model in VEG3D; a more 321 

comprehensive description, not referenced in Braun and Shädler (2005), is available in 322 

German in a PhD thesis (Grabe, 2002). The study in which the quote appears did not focus on 323 

snow processes, so a full description of the snow model may not have been necessary, but it 324 

is nonetheless a cause for concern that referees, at the very least, did not require clarifications 325 

as to which processes were based on CLASS and which on ISBA. Changes in emissivity certainly 326 

were not based on either model as both did – and still do – have fixed emissivity. This is the 327 

most succinct description of a snow model, but not the only one to offer little or no 328 

information about process representations. At the other end of the spectrum, the CLM5 329 

documentation is the most comprehensive and makes all the information available in a single 330 

technical report (Lawrence et al., 2020). A few models follow closely with most information 331 

being available in a single document that clearly references where to obtain additional 332 

information (e.g. CLASS, SURFEX-ISBA, HTESSEL, JULES, SNOWPACK). The “Publish or perish” 333 

culture is estimated to foster a nine percent yearly growth rate in scientific publications 334 

(Bornmann and Mutz, 2015) which will be matched by a comparable rate of solicitations for 335 

peer reviewing. Whether it is because we do not take or have time to fact-check references, 336 

the current peer-review process is failing when poorly described models are published. The 337 

aim of LS3MIP and ESM-SnowMIP is to investigate systematic errors in models; errors can be 338 

quantified against evaluation data for any model, but poor documentation accentuates our 339 

poor understanding of model behaviour and reduces MIPs to statistical exercises rather than 340 

to insightful studies.  341 

 342 
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5. What the future holds 343 

 344 

Historically, PILPS (Henderson-Sellers et al., 1995) and other intercomparison projects 345 

have provided platforms to motivate model developments; they are now inextricably linked 346 

to successive IPCC reports. In view of heavily mediatised errors such as the claim that 347 

Himalayan glaciers would melt by 2035 – interestingly described as “human error” by the then 348 

IPCC chairman Rajendra Pachauri (archive.ipcc.ch, 2010; Times of India, 2010) – we must 349 

reflect on how damaging potential errors are to the climate science community. Not only are 350 

the IPCC reports the most authoritative in international climate change policy-making, but 351 

they have become – for better or worse – proxies for the credibility of climate scientists to 352 

the general public. It is therefore time that we reflect on our community and openly 353 

acknowledge that some model uncertainties cannot be quantified at present because they 354 

are due to human errors.  355 

Other factors are also responsible for the modelling of snow processes not having 356 

progressed as fast as other areas relying on technology. Discussions on the future of snow 357 

MIPs involving organisers and participants of ESM-SnowMIP issued from this study. As in the 358 

discussion about motivation of participants, suggestions for the design of future MIPs were 359 

varied, and at times contradictory, but responses from participants reflected the purpose 360 

their models serve (Table 4). The IPCC Expert Meeting on Multi Model Evaluation Good 361 

Practice Guidance states that “there should be no minimum performance criteria for entry 362 

into the CMIP multi-model database. Researchers may select a subset of models for a 363 

particular analysis but should document the reasons why” (Knutti et al., 2010). Nevertheless, 364 

many participants argued that the “one size fits all” approach should be reconsidered. ESM-365 
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SnowMIP evaluated models against the same bulk snowpack properties as previous snow 366 

MIPs. This suited LSSs that represent snow as a composite snow/soil layer or as a single layer, 367 

but there is a demand for more complex models that simulate profiles of internal snowpack 368 

properties to be evaluated against data that match the scale of the processes they represent 369 

(e.g. snow layer temperatures, liquid water content and microstructure). Models used at very 370 

high resolution for avalanche risk forecasting (such as Crocus and SNOWPACK; Morin et al., 371 

2020) and by the tourism industry are constantly being tested during the snow season and 372 

errors can cost lives and money. However, obtaining reliable data and designing appropriate 373 

evaluation methodologies to drive progress in complex snow models is challenging (Menard 374 

et al., 2019).  For example, solving the trade-off between SWE and surface temperature errors 375 

requires more measurements of surface mass and energy balance components: simple in 376 

theory but expensive and logistically difficult in practice. The scale at which even the more 377 

complex models operate is also impeding progress. Until every process can be described 378 

explicitly, the reliance of models on parametrizations to describe very small scale processes 379 

(such as the surface exchanges upon which the above trade-off depends) are inevitable 380 

sources of uncertainty. 381 

Despite expressing a need for change in the design of snow MIPs, many participants 382 

described ESM-SnowMIP as a success because it allowed them to identify bugs or areas of 383 

their models in need of further improvements; some improvements were implemented in the 384 

course of this study, others are in development. Ultimately, ESM-SnowMIP’s main flaw is of 385 

not being greater than the sum of its parts. Its working hypothesis was not supported and, 386 

per se, has failed to advance our understanding of snow processes. However, the 387 

collaborative effort allowed us to report a false, but plausible hypothesis, to expose our 388 

misplaced assumptions and to reveal a disparity of opinions on the purpose, design and future 389 
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of snow MIPs. In view of our findings, of the time investment required of participating 390 

modellers and of novel ways to utilise already available global-scale simulations (e.g. Mudryk 391 

et al., 2020), most planned ESM-SnowMIP experiments may not go ahead, but site simulations 392 

with evaluation data covering bulk and internal snowpack properties will be expanded. 393 

Learning from our mistakes to implement future MIPs may yet make it an unqualified success 394 

in the long term.  395 

 396 

Acknowledgments 397 

 398 

CM and RE were supported by NERC grant NE/P011926/1. Simulations by participating 399 

models were supported by the following programs and grants: Capability Development Fund 400 

of CSIRO Oceans and Atmosphere, Australia (CABLE); Canada Research Chairs and Global 401 

Water Futures (CRHM); H2020 APPLICATE grant 727862 (HTESSEL); Met Office Hadley Centre 402 

Climate Programme by BEIS and Defra (JULES-UKESM and GL7); TOUGOU Program from 403 

MEXT, Japan (MATSIRO); RUC by NOAA grant NOAA/NA17OAR4320101 (RUC); Russian 404 

Foundation for Basic Research grant 18-05-60216 (SPONSOR); Russian Science Foundation 405 

Grant 16-17-10039 (SWAP). ESM-SnowMIP was supported by the World Climate Research 406 

Programme’s Climate and Cryosphere (CliC) core project. 407 

 408 

 409 

 410 

 411 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020



23 
 

References 412 

 413 

Abramowitz, G. and Bishop, C. H., 2015: Climate model dependence and the ensemble 414 

dependence transformation of CMIP projections, Journal of Climate, 28, 2332–2348. 415 

Alien, 1979. [film]. Directed by R. Scott. 416 

Anderson, E., 1976: A point energy and mass balance model of a snow cover.  NOAA Tech 417 

Rep. NWS 19, 150 pp.  418 

Archive.ipcc.ch, IPCC statement on the melting of Himalayan glaciers 419 

https://archive.ipcc.ch/pdf/presentations/himalaya-statement-20january2010.pdf, Accessed 420 

on 29 October 2019. 421 

Baartman, J.E.M, Melsen, L.A., Moore, D. and  van der Ploeg, M.J., 2020: On the complexity 422 

of model complexity: Viewpoints across the geosciences, Catena, 186, 423 

10.1016/j.catena.2019.104261, https://doi.org/10.1016/j.catena.2019.104261 424 

Bornmann, L. and Mutz, R, 2015: Growth rates of modern science: A bibliometric analysis 425 

based on the number of publications and cited references, Journal of the Association for 426 

Information Science and Technology, 66, 2215-2222, https://doi.org/10.1002/asi.23329 427 

Braun, F. J. and Schädler, G., 2005: Comparison of Soil Hydraulic Parameterizations for 428 

Mesoscale Meteorological Models, J. Appl. Meteorol., 44, 1116–1132, 429 

https://doi.org/10.1175/JAM2259.1. 430 

Clark, M. P. and Coauthors, 2015: A unified approach for process‐based hydrologic modeling: 431 

1. Modeling concept, Water Resour. Res., 51, 2498– 2514, doi:10.1002/2015WR017198. 432 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020

https://archive.ipcc.ch/pdf/presentations/himalaya-statement-20january2010.pdf
https://doi.org/10.1002/asi.23329
https://doi.org/10.1175/JAM2259.1


24 
 

Conway J.P., Pomeroy J.W., Helgason W.D. and Kinar, N.J., 2018: Challenges in modelling 433 

turbulent heat fluxes to snowpacks in forest clearings, Journal of Hydrometeorology, 19, 434 

1599–1616, https://doi.org/10.1175/JHM-D-18-0050.1.  435 

Douville, H. and Mahfouf, J.F., 1995: A new snow parameterization for the Météo-France 436 

Climate Model. 1. Validation in stand-alone experiments. Climate Dynamics, 12, 21–35. 437 

Essery, R., 2013: Large‐scale simulations of snow albedo masking by forests, Geophys. Res. 438 

Lett., 40, 5521– 5525, doi:10.1002/grl.51008. 439 

Essery, R., 2015: A Factorial snowpack model (FSM 1.0) Geoscientific Model Devlopemnt, 8, 440 

3867-3876, https://doi.org/10.5194/gmd-8-3867-2015 441 

Essery, R. and Etchevers, P., 2004: Parameter sensitivity in simulations of snowmelt, Journal 442 

of Geophysical Research, 109, 1-15, https://doi.org/10.1029/2004JD005036. 443 

Essery, R., Morin, S., Lejeune, Y. and Menard, C., 2013: A comparison of 1701 snow models 444 

using observations from an alpine site. In: Advances in Water Resources, 55, 131-148.  445 

Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stähli, M., Gustafsson, D., Barr, A., Bartlett, P., 446 

and Elder, K., 2009: SNOWMIP2: An Evaluation of Forest Snow Process Simulations, B. Am. 447 

Meteorol. Soc., 90, 1120–1135, https://doi.org/10.1175/2009BAMS2629.1. 448 

Etchevers, P. and Coauthors, 2002: SnowMiP, an intercomparison of snow models: first 449 

results. In: Proceedings of the International snow science workshop, Penticton, Canada, 29 450 

Sep.-4 Oct. 2002. 451 

Etchevers, P. and Coauthors, 2004: Validation of the surface energy budget simulated by 452 

several snow models (SnowMIP project), Annals of Glaciology, 38, 150-158. 453 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020

https://doi.org/10.1029/2004JD005036


25 
 

Flato, G and Coauthors, 2013: Evaluation of Climate Models. In: Climate Change 2013: The 454 

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 455 

Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, 456 

S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University 457 

Press, Cambridge, United Kingdom and New York, NY, USA. 458 

Gil, Y. and Coauthors, 2016: Toward the Geoscience Paper of the Future: Best practices for 459 

documenting and sharing research from data to software to provenance, Earth and Space 460 

Science, 3, 388-415, https://doi.org/10.1002/2015EA000136. 461 

Grabe, F., 2002: Simulation der Wechselwirkung zwischen Atmosphäre, Vegetation und 462 

Erdoberfläche bei Verwendung unterschiedlicher Parametrisierungsansätze (PhD thesis, 463 

Karlsruhe University, Karlsruhe). Retrieved from KIT-Bibliothek (KITopen-ID: 122002). 464 

Henderson-Sellers, A., Pitman, A.J., Love, P.K., Irannejad, P. and Chen, T., 1995: The project 465 

for Intercomparison of land surface parameterisaton schemes (PILPS) Phases 2 and 3. Bull. 466 

Amer. Meteor. Soc., 76, 489-503.  467 

Jordan, R., 1991: A One-Dimensional Temperature Model for a Snow Cover, Technical 468 

Documentation for SNTHERM.89, Special Report 91-16, U.S. Army Corps of Engineers, 62 pp. 469 

Kerr, N. L., 1998: HARKing: hypothesizing after the results are known. Personality and Social 470 

Psychology Review, 2, 196–217. 471 

Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P.J., Hewitson, B. and Mearns L., 472 

2010: Good Practice Guidance Paper on Assessing and Combining Multi Model Climate 473 

Projections.  In: Meeting Report of the Intergovernmental Panel on Climate Change Expert 474 

Meeting on Assessing and Combining Multi Model Climate Projections [Stocker, T.F., D. Qin, 475 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020

https://doi.org/10.1002/2015EA000136


26 
 

G.-K. Plattner, M. Tignor, and P.M. Midgley (eds.)]. IPCC Working Group I Technical Support 476 

Unit, University of Bern, Bern, Switzerland. 477 

Knutti, R., Sedláček, J, Sanderson, B.M., Lorenz, R., Fischer, E.M. and Eyring, V, 2017: A climate 478 

model projection weighting scheme accounting for performance and interdependence. 479 

Geophysical Research Letters, 44, 1909–1918. 480 

Krinner, G. and Coauthors, 2018: ESM-SnowMIP: Assessing models and quantifying snow-481 

related climate feedbacks, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-482 

153. 483 

Lafaysse, M., Cluzet, B., Dumont, M., Lejeune, Y., Vionnet, V., and Morin, S., 2017: A 484 

multiphysical ensemble system of numerical snow modelling, The Cryosphere, 11, 1173-1198, 485 

https://doi.org/10.5194/tc-11-1173-2017. 486 

Lawrence, D. and Coauthors, 2020: Technical Description of version 5.0 of the Community 487 

Land Model (CLM), NCAR, 329pp,  488 

http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf 489 

Lee, R., Greene, D. and House, P., 1977: The 'false consensus effect': An egocentric bias in 490 

social perception and attribution processes, Journal of Experimental Social Psychology, 13, 491 

279–301. https://doi.org/10.1016/0022-1031(77)90049-X. 492 

Li, Y., Wang, T., Zeng, Z., Peng, S., Lian, X and Piao S., 2016:  Evaluating biases in simulated 493 

land surface albedo from CMIP5 global climate models, Journal of Geophysical Research: 494 

Atmospheres, 121, 6178-6190, https://doi.org/10.1002/2016JD024774 495 

Martin, G.R.R., 1996: A Game of Thrones, Bantam Spectra, USA. 496 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020

https://doi.org/10.5194/tc-11-1173-2017
http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf
https://doi.org/10.1002/2016JD024774


27 
 

Menard, C.B., Ikonen, J., Rautiainen, K., Aurela, M., Arslan, A.N., and Pulliainen, J., 2015: 497 

Effects of Meteorological and Ancillary Data, Temporal Averaging, and Evaluation Methods 498 

on Model Performance and Uncertainty in a Land Surface Model. J. Hydrometeor., 16, 2559–499 

2576, https://doi.org/10.1175/JHM-D-15-0013.1. 500 

Menard, C. B. and Coauthors, 2019: Meteorological and evaluation datasets for snow 501 

modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data, Earth 502 

Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019. 503 

Morin S. and Coauthors, 2020: Application of physical snowpack models in support of 504 

operational avalanche hazard forecasting: A status report on current implementations and 505 

prospects for the future, Cold Regions Science and Technology, 170, 102910, 506 

https://doi.org/10.1016/j.coldregions.2019.102910 507 

Mudryk, L., Santolaria-Otín, M., Krinner, G., Ménégoz, M., Derksen, C., Brutel-Vuilmet, C., 508 

Brady, M., and Essery, R., 2020: Historical Northern Hemisphere snow cover trends and 509 

projected changes in the CMIP-6 multi-model ensemble, The Cryosphere Discuss., 510 

https://doi.org/10.5194/tc-2019-320. 511 

Munafò, M. and Coauthors, 2017: A manifesto for reproducible science, Nature Human 512 

Behaviour, 1, 0021, https://doi.org/10.1038/s41562-016-0021. 513 

Niu, G.-Y. and Coauthors, 2011: The community Noah land surface model with 514 

multiparameterization options (Noah-MP): 1. Model description and evaluation with local-515 

scale measurements. J. Geophys. Res., 116, D12109, doi: 10.1029/2010JD015139. 516 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020

https://doi.org/10.5194/essd-11-865-2019
https://doi.org/10.1016/j.coldregions.2019.102910
https://doi.org/10.5194/tc-2019-320


28 
 

Pitman, A.J. and Henderson-Sellers, A., 1998: Recent progress and results from the project for 517 

the intercomparison of land surface parameterization schemes. Journal of Hydrology, 212-518 

213, 128-135, https://doi.org/10.1016/S0022-1694(98)00206-6 519 

Psycho, 1960: [film] Directed by A. Hitchcock.  520 

Randall, D.A. and Coauthors, 2007: Climate Models and Their Evaluation. In: Climate Change 521 

2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment 522 

Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., 523 

Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (eds.)]. Cambridge University 524 

Press, Cambridge, United Kingdom and New York, NY, USA. 525 

Roesch, A., 2006: Evaluation of surface albedo and snow cover in AR4 coupled climate models, 526 

J. Geophys. Res., 111, D15111, doi:10.1029/2005JD006473. 527 

Rutter, N. and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2), J. 528 

Geophys. Res., 114, D06111, https://doi.org/10.1029/2008JD011063. 529 

Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T., and Balsamo, G., 2013: Why is it so difficult 530 

to represent stably stratified conditions in numerical weather prediction (NWP) models?, J. 531 

Adv. Model. Earth Syst., 5, 117– 133, doi:10.1002/jame.20013. 532 

Slater, A.G. and Coauthors, 2001: The representation of snow in land surface schemes: results 533 

from PILPS 2(d). Journal of Hydrometeorology, 2, 7–25. 534 

https://timesofindia.indiatimes.com/videos/news/Pachauri-admits-mistake-in-IPCC-535 

report/videoshow/5492814.cms, 2010, Pachauri admits mistake in IPCC report, accessed on 536 

4 October 2019. 537 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020

https://doi.org/10.1029/2008JD011063
https://timesofindia.indiatimes.com/videos/news/Pachauri-admits-mistake-in-IPCC-report/videoshow/5492814.cms
https://timesofindia.indiatimes.com/videos/news/Pachauri-admits-mistake-in-IPCC-report/videoshow/5492814.cms


29 
 

van den Hurk, B. and Coauthors, 2016: LS3MIP (v1.0) contribution to CMIP6: the Land Surface, 538 

Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome, 539 

Geosci. Model Dev., 9, 2809-2832, https://doi.org/10.5194/gmd-9-2809-2016. 540 

Verseghy, D. L., 1991: Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. 541 

Climatol., 11, 111-133, https://doi.org/10.1002/joc.3370110202. 542 

Wang, L., Cole, J.N.S.,  Bartlett, P., Verseghy, D., Derksen, C., Brown, R., and von Salzen, K., 543 

2016: Investigating the spread in surface albedo for snow‐covered forests in CMIP5 models, 544 

Journal of  Geophysical Research: Atmospheres, 121, 1104– 1119, 545 

doi:10.1002/2015JD023824. 546 

 547 

 548 

 549 

 550 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0329.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0329.1/4998199/bam

sd190329.pdf by guest on 19 N
ovem

ber 2020

https://doi.org/10.1002/joc.3370110202


30 
 

Table 1: Key characteristics of snow model parametrizations and variables on which they 

depend, and number of papers per model over which descriptions of the seven 

parametrizations are spread. Abbreviations and symbols:  LWC = Liquid water content, SCF = 

snow cover fraction (“point” means models used point-specific parametrizations, “grid” 

means they did not), MC = Mechanical compaction, OL = Obukhov length, PC = Personal 

communication, Rib = bulk Richardson number, * = references provided by personal 

communication and cannot be traced in the existing literature about this specific model. A 

more detailed version of this table including full references for parametrizations is available in 

the supplementary material. 
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 Albedo Conductivit
y 

Density Turbul
ent 
fluxes 

LWC SCF Snow 
layering 

n 
Papers 

CABLE-SLI Spectral Power 
function  

MC 
 

OL  Yes  Point Single 3 

CLASS Spectral Quadratic 
equation  

Time  RiB  Yes Grid  Single 2 

CLM5 Spectral  Density  MC  OL Yes Grid Multi 
 

1 

CoLM Spectral Quadratic 
equation  

MC  OL Yes  Grid Multi 
 

7*  

CRHM Spectral Density and 
humidity  

MC OL  Yes  Point  Multi 
 

4* + 
PC 

Crocus Spectral Power 
function  

MC  RiB. Yes  Point Multi 
 

3 

EC-EARTH Time and 
temperatur
e  

Power 
function  

MC  OL Yes  Grid Single 3* 

ESCIMO Temperatur
e 

None Time Empiri
cal 

Yes  Point Single 3* 

HTESSEL Time and 
temperatur
e 

Power 
function 

MC OL Yes Grid 
Single 3 

HTESSEL 
(ML) 

Multi 
 

3 

SURFEX-ISBA Spectral 
 

Power 
function  

MC  RiB.  Yes  Point Multi 
 

2 

JSBACH 

Spectral 

Fixed  Fixed  

OL  
No 
 

Point 

Composit
e 

3* 

JSBACH3-PF Power 
function 

Time  Multi 
 

4* 

JULES-GL7 
JULES-
UKESM 

Spectral Power 
function  

MC  OL  Yes Point Multi 2 

JULES-I Temperatur
e  

Fixed  Fixed  OL  No. Point Composit
e 

1 

MATSIRO Spectral Fixed Fixed OL  No. Point Multi 
 

3 

ORCHIDEE-E 
ORCHIDEE-
MICT 

Time  Quadratic 
equation 

MC  OL  Yes Grid Multi 
 

1 + PC 

ORCHIDEE-I Fixed Fixed  No Grid Composit
e  

3 + PC 

RUC Time  Fixed  MC  OL  No Grid Multi 
 

3 + PC 

SMAP Spectral  Quadratic 
equation  

MC  OL   Yes  Point Multi 
 

3 

SNOWPACK Statistical  Conductivit
y model 

Empirica
l  

OL  Yes  Point Multi 
 

5 

SPONSOR Time  Density  MC  OL  Yes Grid Multi 
 

2 + PC 
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SWAP Density  Density SWE 
and 
snow  

OL  Yes  Point Single 3 

VEG3D Time  Density  Time  OL  No Point Single 4* 
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Table 2: Participating models and modelling teams. ESM-SnowMIP provided vegetation height, soil type and snow-free albedo to the 

participants; where relevant, these may differ from LS3MIP configurations.  

Model  ESM-
SnowMIP 
contact  

Model type Model version  Model configuration Differences between 
LS3MIP and ESM-
SnowMIP 
configurations 

CABLE-
SLI 

Matthias 
Cuntz, 
Vanessa 
Haverd 

LSS in Access CABLE revision 4252 CABLE including SLI as described in 
Haverd and Cuntz (2016). Snow and ice 
extensions as in Cuntz and  Haverd 
(2018). 
12 soil layers. 

 Did not participate in 
LS3MIP 

CLASS Paul 
Bartlett 

LSS in CanESM CLASS 3.6.2 CLASS-CTEM off-line code with CTEM 
turned off, and using the 2-band snow 
albedo and associated snow-ageing 
scheme. Initialization files are available 
on demand. Other than adjustments to 
match the site properties (e.g. soil type, 
vegetation, snow-free albedo) all 
parameters are the model default 
values. 

 Did not participate in 
LS3MIP 

CLM5 Sean 
Swenson 

LSS in CESM CLM5.0 Standard No difference. 

CoLM Yongjiu 
Dai, Hua 
Yuan 

LSS in BNU-ESM 
and CAS-ESM 

CoLM Version 2014 Default CoLM Version 2005  
Many differences 
including pedotransfer 
functions of soil 
hydraulic and thermal 
parameters, numerical 
solution of Richards 
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equation of soil water 
content. 

CRHM Xing Fang, 
John 
Pomeroy 

Hydrological 
model 

CRHM 01/17/18 Adapted from CRHM plot-scale 
simulation project for coniferous forest 
and forest clearing sites in Canadian 
Rocky Mountains detailed in Pomeroy 
et al. (2012) with modified 
configuration for soil module allowing 
simulations for permafrost and seasonal 
frost.  

 Did not participate in 
LS3MIP  

Crocus Matthieu 
Lafaysse 

Snow physics 
model 

Git tag ESM-
SnowMIP-Crocus-
ESCROC (= commit 
b57f02d6 
4/12/2017) 

Crocus : default configuration as 
defined in Lafaysse et al. (2017), Figure 
2.   
Drift module allowing change of 
physical properties of near surface 
snow activated for SNB and WFJ. 

  Did not participate in 
LS3MIP 

EC-
EARTH 

Emanuel 
Dutra 

LSS in EC-EARTH EC-EARTH v3.2.2  
revision r4381 

Offline “OSM” configuration with 
prescribed surface albedo and 
vegetation. 

LS3MIP simulation will 
be done with the latest 
“frozen” model version 
for CMIP6, including 
interactive vegetation 
and variable surface 
albedo. 

ESCIMO Thomas 
Marke, 
Ulrich 
Strasser 

Snow surface 
energy balance 
model 

ESCIMO v5 based on 
ESCIMO v4 with 
additional 
functionality 
described in Marke 
et al. (2016). 

Albedo parameterization as in Cox et al. 
(1999) 
Sensible heat equation as in Weber 
(2008) 
Empirical density function as in Essery 
et al. (2013) 

  Did not participate in 
LS3MIP 

HTESSEL 
HTESSEL-
ML 

Gabriele 
Arduini 

LSS of ECMWF 
operational 
forecasting 
system 

HTESSEL cycle 43r3 Operational HTESSEL configuration uses 
the single layer snow scheme from 
Dutra et al. (2010). The experimental 
HTESSEL configuration (HTESSELML) 

  Did not participate in 
LS3MIP 
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uses a multi-layer snow scheme 
documented in Arduini et al. 2019 
(under review in JAMES).  Note that the 
configuration of the multi-layer snow 
scheme and model cycle used for ESM-
SnowMIP runs differ from Arduini et al. 
(2019). 

SURFEX-
ISBA 

Bertrand 
Decharme, 
Aaron 
Boone 

LSS in CNRM-CM SURFEX version 8.0 
(ISBA and all related 
schemes including 
snow are embedded 
in the SURFEX 
numerical platform) 

As in Decharme et al. (2016) denoted as 
the “NEW” experiment. 

Snow grid-cell fraction 
doesn’t account for 
vegetation in the 1-
dimensional ESM-
SnowMIP runs. 

JSBACH3 
JSBACH3
-PF 

Stefan 
Hagemann 

LSS in MPI-ESM JSBACH3 (Revision 
9168, state of 
31.07.2017) and 
JSBACH3-PF (same 
revision but with 
improved snow 
parametrizations 
inherited from 
JSBACH4) 

Time step: 450s, With YASSO soil model, 
no dynamic vegetation, no nitrogen, no 
disturbances and no land use 
transitions. Orography and LAI do not 
affect surface roughness. Soil states 
were initialized from previous global 
offline simulation using GWSP3 forcing. 
JSBACH3-PF uses the "permafrost" 
configuration with enabled soil freezing 
and thawing, and with related 
processes based on Ekici et al. (2014). 

  JSBACH-PF did not 
participate in LS3MIP 
 
JSBACH3: No difference 

JULES-I Cecile 
Menard, 
Richard 
Essery 

LSS in HadCM3 JULES 4.8 (Revision 
7629) 

Zero-layer snow model as described in 
Best et al. (2011). 

  Did not participate in 
LS3MIP 

JULES-
GL7 
JULES-
UKESM 

Eleanor 
Burke 

LSS in HadGEM3-
GC3 and UKESM 

JULES 5.3 GL7 and UKESM configurations with 
site-specific characteristics.  

Different fractional 
snow cover 
parametrization for 
plot-scale and 
distributed simulations. 
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MATSIR
O 

Tomoko 
Nitta, 
Hyungjun 
Kim 

LSS in MIROC MATSIRO 6 MATSIRO for offline land simulations. 
The configuration is the same as the 
GSWP3 simulations except for subgrid-
scale parameterizations (tile scheme, 
SSNOWD snow cover parameterization 
and arctic wetland scheme), which are 
turned off for plot-scale simulations. 
 
 

All subgrid-scale 
parameterizations are 
tuned off for plot-scale 
simulations. 

ORCHIDE
E-E 
ORCHIDE
E-I 
ORCHIDE
E-MICT 

Claire 
Brutel-
Vuilmet, 
Gerhard 
Krinner 

LSS in IPSL-CM ORCHIDEE E and I 
TRUNK revision 
4695; ORCHIDEE 
MICT 8.7.1 revision 
5308   

TRUNK is the version of ORCHIDEE that 
is used in the first CMIP6 runs. We have 
the implicit snow version (TRUNK-I) 
which is the older snow that was used 
in CMIP5 and the explicit snow version 
(TRUNK-E) that is used in CMIP6 (based 
on Wang et al., 2013). MICT is the high-
latitude version of ORCHIDEE 
(Guimberteau et al., 2018). 

 No difference. 

RUC Tatiana 
Smirnova 

LSS in 
NOAA/NCEP 
operational 
forecasting 
systems 

RUC model – WRF 
4.0 official release 

Standard RUC configuration for offline 
simulations: 9 levels in soil, 2-layer 
snow model with separate treatment of 
snow-covered and snow-free areas for 
patchy snow.  

Subgrid-scale 
parameterizations for 
fractional snow cover 
and surface parameters 
are turned off for ESM-
SnowMIP. 

SMAP Masashi 
Niwano 

Snow physics 
model 

SMAP v4.23rc1 SMAP v4.23rc1   Did not participate in 
LS3MIP 

SNOWPA
CK 

Nander 
Wever, 
Charles 
Fierz 

Snow physics 
model 

MeteoIO 
preprocessing 
library: revision 
2011 from 
https://models.slf.ch
/svn/meteoio/trunk 
SNOWPACK model: 

The standard version of SNOWPACK was 
used, in default configuration. 

  Did not participate in 
LS3MIP 
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revision 1480 from 
https://models.slf.ch
/svn/snowpack/bran
ches/dev 

SPONSO
R 

Dmitry 
Turkov, 
Vladimir 
Semenov 

Hydrological 
model 

SPONSOR, ver.2.0 The model was adapted for calculations 
of spatially distributed landscape 
characteristics with observed 
meteorological forcing. The latest 
version of the snow model is described 
in Turkov and  Sokratov (2016). 

No difference 

SWAP Olga 
Nasonova, 
Yeugeny 
Gusev 

LSS As described in 
Gusev and Nasonova 
(2003) 

As described in Gusev and Nasonova 
(2003) 

  Did not participate in 
LS3MIP 

VEG3D Gerd 
Schädler 

Soil and 
vegetation model 

As described in 
Braun and Schädler 
(2005) 

Standard configuration: 8 soil layers,  
time step 300 s. 

  Did not participate in 
LS3MIP 
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Motivation behind participation Future of snow MIPS 

• To identify key missing processes. 
• To cut out the noise from ensemble 

simulations in order to extract the 
signal. 

• To compare how models implement 
snow processes and, if possible, what 
are the implications. 

• To have a detailed analysis of one’s own 
model; doing the model simulations is 
easier than analysing the results. 

• To provide new insights into modelling. 
• To document the current state of the 

models. 
• To help modellers understand their and 

other models better. 
• To determine the skill of an operational 

model in offline simulations before 
starting coupled simulations for 
weather predictions. 

• To motivate model improvements. 
• To participate in the beauty contest 

(the statistical performance of my not-
so-sophisticated model is similar to 
complex process-based models). 

• To identify a range of “good enough” -
models reflecting the range of process 
uncertainty. 

• Allow re-submission of simulations if errors 
are identified. 

• Provide model code and initialisation files 
as well as model results for transparency.  

• Move towards a more process-based 
diagnostic in order to improve 
parametrizations and not just to tune 
parameters. 

• Need new evaluation metrics. 
• Evaluate against internal snowpack 

properties (e.g. snow layer thermal 
conductivity, temperature, density).  

• Move towards fewer models with multiple 
hypotheses (e.g. FSM, Essery, 2015;  
SUMMA, Clark et al., 2015; or Noah-MP, 
Niu et al., 2011) 

• Cluster models depending on their 
complexity. 

• Not all models should be accepted. There 
could be minimum requirements in terms 
of parametrizations (e.g. stability 
dependent exchange coefficients); outliers 
from the previous experiment would not 
be allowed to participate in the next 
stages; new models should present a proof 
of energy and moisture conservation in 
their models. 
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• To make one’s model visible to the 
snow modelling community. 

• To be part of the snow modelling 
community. 

• To evaluate one’s model at reference 
sites across different elevation 
gradients and climatic settings. 

• To avoid equifinality problems by 
evaluating models performance with 
multiple variables that contribute to 
and are relevant to snow processes. 

• To provide benchmarks against which 
to evaluate models. 

• All models should be accepted, but 
different levels of involvement should be 
allowed so modelling groups can choose  
the experiments they want to participate 
in.  

• Constrain model sensitivity with 
observations (e.g. SWE, snow albedo) or 
fixed variables. 

• Provide evaluation data at the same time 
as the forcing data. 

• Provide fewer sites as initialisation of many 
sites can be a source of human errors. 

• Provide more challenging sites (e.g. tundra, 
wind-blown). 

 

Table 3: Summary of discussions with ESM-SnowMIP participants about (1) what motivated them to participate and (2) their suggestions about 

the design of the next snow MIP.  
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Table 4: Hard and soft coded errors identified by the results analysis team (AT) or modelling team (MT) in the course of this study.  

 Unusual model behaviour Model 

Soft-coded errors    

Did not change start time between SNB and SWA (start at 00:00) and other 
sites (start at 01:00) 

Mismatched timestamps (AT) 
 

All models 
 

Initial conditions taken from wrong date  Mismatched timestamps (AT) CLM5 

Specified site-specific parameters not taken from site descriptions 
 
 
 

Unrealistically low albedo with 
consequences on snow mass and 
melt (AT) 

JSBACH, JSBACH-PF, JULES-I 
 
 
 

Wrong forcing file used for one site Models results were identical at 
two sites (AT) 

RUC 

Simulations used UTC times instead of local times Unrealistically high albedo (AT) Crocus 

Many variations in output file formats; wrong variable name; variations in 
the interpretation of the ESM-SnowMIP definition of output variables; 
different sign conventions. 

N/A One or more in adjacent list for 
most, if not all, models. 
 

Errors in converting to ESM-SnowMIP format because of the above. N/A Some models. Results analysis team. 

Hard-coded errors   

Bug in model use of site longitude 
 

Unrealistically low albedo with 
consequences on snow mass and 
melt (AT) 

JULES-GL7, JULES-UKESM 
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Bug in transmission of SW radiation through canopy Investigated slow melting 
behaviour of model after 
evaluation data became available 
(MT) 

SURFEX-ISBA 

Model SWE limited to a maximum of 1000 mm  SWE limited to 1000 mm (AT)  MATSIRO 

Unintentional decoupling of snow surface and atmosphere Snow did not melt at 
Weissfluhjoch in some summers 
(AT) 

HTESSEL-ML 

Bug in partitioning of SW radiation into direct and diffuse Unrealistically high albedo values 
(AT) 

Crocus 

Bug in the output of liquid water content Found unrealistically small liquid 
water content values when 
compared ESM-SnowMIP results 
with other simulations (MT) 

HTESSEL, EC-EARTH 

Inconsistent use of snow area fraction when calculating snow depth and 
SWE 

Snow density varied instead of 
being fixed (AT) 

MATSIRO 
 

Many variations in output file formats; wrong variable name; variations in 
the interpretation of the ESM-SnowMIP definition of output variables; 
different sign conventions. 

N/A One or more in adjacent list for 
most, if not all, models. 
 

Errors in converting to ESM-SnowMIP format because of the above. N/A Some models. Results analysis team. 
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Figures 

 

Figure 1: Model ranking by normalised root mean square errors of snow water equivalent and 

surface temperature. The site names are shortened as follows: CDP = Col de Porte, SAP = 

Sapporo, RME = Reynolds Mountain East, SNB = Senator Beck, SOD = Sodankylä, SWA = 

Swamp Angel and WFJ = Weissfluhjoch. 
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Figure 2: Model ranking by biases from negative to positive. Following the prevalent 
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convention, negative biases denote model underestimates.  SWE biases are normalised by 

measured mean yearly maxima. JSBACH soil temperature cold biases (ranging from -6°C to -

12°C and averaging -9°C) are outside the range of the plot. The site names are shortened as 

in Figure 1. 
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Figure 3: Fractional snow cover (SCF) as a function of SWE at Col de Porte for models that did 

not switch off their sub-grid parametrizations or impose complete snow cover. HTESSEL is not 

shown as it is the same as HTESSEL-ML. ORCHIDEE-MICT did not force SCF = 1, but values were 

missing from the file provided for evaluation.  
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Figure 4:  SWE NRMSE and soil temperature (Tsoil) absolute bias before and after resubmission 

for selected models. The site names are shortened as in Figure 1. 
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