Quantum Transport in Nanostructures of 3D Topological Insulators
Transport quantique dans des nanostructures d'isolants topologiques 3D
Résumé
Quantum transport measurement is an efficient tool to unveil properties of topological surface states in 3D topological insulators. Herein, experimental and theoretical results are reviewed, presenting first some methods for the growth of nanostructures. The effect of the disorder and the band bending is discussed in details both experimentally and theoretically. Then, the focus is put on disorder and quantum confinement effect in topological surface states of 3D topological insulators narrow nanostructures. Such effect can be revealed by investigating quantum interferences at very low temperature such as Aharonov–Bohm oscillations or universal conductance fluctuations.
Origine | Publication financée par une institution |
---|