Hitting topological minor models in planar graphs is fixed parameter tractable
Résumé
For a finite collection of graphs ${\cal F}$, the \textsc{${\cal F}$-TM-Deletion} problem has as input an $n$-vertex graph $G$ and an integer $k$ and asks whether there exists a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G \setminus S$ does not contain any of the graphs in ${\cal F}$ as a topological minor. We prove that for every such ${\cal F}$, \textsc{${\cal F}$-TM-Deletion}
is fixed parameter tractable on planar graphs. In particular, we provide an $f(h,k)\cdot n^{2}$ algorithm where $h$ is an upper bound to the vertices of the graphs in ${\cal F}$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|