Hitting topological minor models in planar graphs is fixed parameter tractable - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Hitting topological minor models in planar graphs is fixed parameter tractable

Résumé

For a finite collection of graphs ${\cal F}$, the \textsc{${\cal F}$-TM-Deletion} problem has as input an $n$-vertex graph $G$ and an integer $k$ and asks whether there exists a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G \setminus S$ does not contain any of the graphs in ${\cal F}$ as a topological minor. We prove that for every such ${\cal F}$, \textsc{${\cal F}$-TM-Deletion} is fixed parameter tractable on planar graphs. In particular, we provide an $f(h,k)\cdot n^{2}$ algorithm where $h$ is an upper bound to the vertices of the graphs in ${\cal F}$.
Fichier principal
Vignette du fichier
1907.02919.pdf (1.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03003167 , version 1 (20-11-2020)

Identifiants

Citer

Petr A. Golovach, Giannos Stamoulis, Dimitrios M. Thilikos. Hitting topological minor models in planar graphs is fixed parameter tractable. SODA 2020 - 31st ACM/SIAM Symposium on Discrete Algorithms, Jan 2020, Salt Lake City, UT, United States. pp.931-950, ⟨10.1137/1.9781611975994.56⟩. ⟨hal-03003167⟩
115 Consultations
101 Téléchargements

Altmetric

Partager

More