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Hitting Topological Minor Models in Planar Graphs is Fixed
Parameter Tractable1

Petr A. Golovach2,3,4 Giannos Stamoulis 5,6 Dimitrios M. Thilikos 4,7,8

Abstract

For a finite collection of graphs F , the F-TM-Deletion problem has as input an n-vertex
graph G and an integer k and asks whether there exists a set S ⊆ V (G) with |S| ≤ k

such that G \ S does not contain any of the graphs in F as a topological minor. We prove
that for every such F , F-TM-Deletion is fixed parameter tractable on planar graphs. In
particular, we provide an f(h, k) · n2 algorithm where h is an upper bound to the vertices
of the graphs in F .
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1 Introduction

1.1 The P-deletion problem and its variants

In general, a P-deletion problem is determined by some graph class P and asks, given an
n-vertex graph G and an integer k, whether G can be transformed to a graph in P after the
deletion of k vertices. In other words, the class P represents some desired property that we
want to impose to the input graph after deleting k vertices. This is a general graph modification
problem with great expressive power as it encompasses many problems, depending on the choice
of the property P. Unfortunately for most instantiations of P, this problem is not expected to
admit a polynomial time algorithm. Lewis and Yannakakis showed in [21] that for any non-
trivial and hereditary graph class P, the P-vertex deletion problem is NP-complete. Given this
hardness result, an attractive alternative is to consider the standard parameterized version of
the problem, called p -P-deletion where the parameter is the number k of vertex deletions.
In this case the challenge is to investigate for which instantiations of P, p -P-deletion is fixed
parameter tractable (or, in short, is FPT), i.e., it can be solved by an Ok(nc)-time algorithm1 (or
FPT-algorithm), for some constant c. There is a long line of research on this general question. In
many case, this concernins particular properties and possible optimizations of the contribution
of k in the function hidden in the “Ok” notation (see e.g. [3]). However, it is interesting to
notice that FPT-algorithms exist for general families of properties. In this direction the more
general (and compact) results concern properties P that can be characterized by the exclusion
of some finite set F of graphs (i.e., of size bounded by some constant h) with respect to some
partial ordering relation ≤. We define

PF ,≤ = {G | ∀H ∈ F H 6≤ G}

and ask whether p -PF ,≤-deletion is FPT. Let us now consider the general status of this
problem for the main known instantiations of the partial ordering relation ≤.
(1) ≤ is the contraction2 relation: then there are graphs H such that P{H},≤-deletion is NP-
complete even for the case where k = 0. For instance one may take H to be the path on 4
vertices, as indicated in [5]. Using the terminology of fixed parameter complexity, this implies
that there are choices of F such that p -PF ,≤-deletion is para-NP-complete.
(2) ≤ is the induced minor3 relation: as on the previous case there are choices of F such that
p -PF ,≤-deletion is para-NP-complete. For instance, one may consider F to contain the graph
in [10, Theorem 4.3].
(3) ≤ is the subgraph or the induced subgraph relation: because of the result of Cai in [6], p -
PF ,≤-deletion is FPT, for every F . In particular, the result in [6] implies an O(hknh+1)-time
algorithm for both these problems. However, if instead we parameterize PF ,≤-deletion by h,

1 Let (x1, . . . , xl) ∈ Nl and χ, ψ : N → N. We use the notation χ(n) = Ox1,...,xl (ψ(n)) to denote that there
exists a computable function φ : Nl → N such that χ(n) = O(φ(x1, . . . , xl) · ψ(n)).

2A graph G is a contraction of a graph G′ if G can be obtained from G by applying edge contractions.
3A graph G is an induced minor of a graph G′ if G can be obtained from some contraction of G′ after removing

vertices.
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then there are instantiations of F for which the problem is W[1]-hard even for k = 0: just take
F = {Kh} to generate the p-Clique problem.
(4) ≤ is the minor4 relation: again p -PF ,≤-deletion is FPT, for every F . To see this, observe
that, for every k, the set of YES-instances of this problem is closed under taking of minors. On
the other hand, Robertson and Seymour [25] proved that graphs are well-quasi-ordered with
respect to the minor relation. These two facts together imply that there is a finite set Bk (whose
size depends on k and h) such that (G, k) is a YES-instance if and only if G contains a graph
in Bk. As minor checking for a graph on c vertices can be done in Oc(n3)-steps [24], we derive
the existence of an Ok,h(n3)-step algorithm.

1.2 Our contribution.

Interestingly, we are not aware of other partial ordering relations where p -PF ,≤-deletion is
FPT, for every F . Among the possible candidates, the most relevant one is the topological
minor relation, denoted by �: a graph H is a topological minor of a graph G if G contains as a
subgraph some subdivision5 of H.

In this paper we make a first step on the study of the p -PF ,�-deletion problem, also
called F-TM-Deletion, and we conjecture that it is FPT. Unfortunately, there are no known
meta-algorithmic results, similar to those of the case of minors, that permit a straightforward
resolution of this conjecture, as graphs are not well-quasi-ordered under topological minors. On
the positive side, there is an algorithm that checks topological minor containment in Oh(n3)-
time [13] and this result would be a special case of our conjecture for the case where k = 0.
In this paper we prove that this conjecture is true, when we are restricted to planar graphs.
Moreover, we develope results and techniques that may serve as the base of its full resolution.

Given a finite set F of graphs we use h(F) for the maximum size of a graph in F . We also
write F � G to denote the fact that some of the graphs in F is a topological minor of G. We
define pF (G) = min{k | ∃S ⊆ V (G) : |S| ≤ k ∧ F � G \ S}. The main result of this paper is
the following:

Theorem 1. There exists a an algorithm that given a finite set of graphs F , a k ∈ N, and a
planar graph G, outputs whether pF (G) ≤ k in Oh,k(n2) steps, where h = h(F).

1.3 High level description of our algorithm

Our main approach towards proving Theorem 1 is the application of the so-called irrelevant
vertex technique. This technique was introduced for the first time by Roberston and Seymour
in [24] for the design of an FPT-algorithm for the Disjoint Paths problem, parameterized by
the number of terminals. Subsequently, its was applied, in diverse ways, for the design of FPT-
algorithms for several graph-theoretical problems and is now considered as a powerful technique
of parameterized algorithm design [1, 9, 11, 12, 14–19,22,23]. We also refer to [8, Chapter 7] for

4A graph G is an minor of a graph G′ is G is the contraction of some subgraph of G′.
5A graph G is a subdivision of a graph G′ if G can be obtained by G′ if we replace its edges by paths with

the same endpoints.
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a high-level overview of the irrelevant vertex technique. The general algorithmic paradigm of
the irrelevant vertex technique takes profit of some structural characteristic of the input graph
in order to detect, in FPT-time, some vertex, called irrelevant, whose removal from G generates
an equivalent instance of the problem. By recursing on the produced equivalent instance we
end up with a graph where the structural parameter is bounded (by some function of k), a
fact that permits the resolution of the problem with other techniques – typically by dynamic
programming. In most of the times, this structural parameter is treewidth (see Section 2 for the
formal definition) and this is the one that we use in this paper. Towards proving Theorem 1,
the application of the irrelevant vertex technique is based to the following theorem.

Theorem 2. There exists a function f1 : N → N, and an algorithm with the following specifi-
cations:

Find_Irrelevant_Vertex(k, h,G)
Input: k, h ∈ N≥0 and an n-vertex planar graph G
Output:

1. an (irrelevant) vertex v ∈ V (G) such that, for every graph class F where h(F) ≤ h, it
holds that pF (G) ≤ k ⇐⇒ pF (G \ v) ≤ k or

2. a tree decomposition of G of width at most f1(h) · k.

Moreover, this algorithm runs in Ok,h(n) steps.

After applying the algorithm of Theorem 2 at most n times, the problem is reduced to
instances of bounded treewidth. As topological minor containment can be expressed by a
MSOL formula and vertex deletion to some MSOL definable property can also be expressed in
MSOL, it follows from the Theorem of Courcelle [7] (see also [2, 4, 28]) that the problem for
reduced instances can be solved in Ok,h(n) steps. Theorem 1 follows.

In the rest of this section we give an outline on how Theorem 2 is proved. All combinatorial
concepts used in this description are presented in an intuitive way; formal definitions can be
found in Section 2. Given a tuple of variables x = (x1, . . . , xq) by the term x-big/small we refer
to a quantity that is lower/upper bounded by some function of x. Alternatively, we use the
term x-many/few that is defined analogously. We work on some embedding of G in the plane.

Walls and annuli. An important combinatorial object is the one of a r-wall , as the one in
Figure 1, that can be seen the union of r horizontal paths intersected by r vertical paths. The
layers of a wall W are defined as indicated in Figure 1.

We call the outermost layer perimeter of the W . Using a result of [11] we know that if
the treewidth of a planar graph is (k, h)-big, then G contains a (k, h)-big wall such that the
subgraph of G, called the compass of W , inside the closed disk defined by the perimeter of
W has (k, h)-small treewidth (see Proposition 1). This additional property will permit us to
answer queries expressed by MSOL sentences on subgraphs of the compass of W .

The next step is to detect some more structure in the wall W that is intuitively depicted in
the left side of Figure 2. We first distinguish the collection C of the (k, h)-many outmost layers,
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Figure 1: A 17-wall and its 8 layers.

drawn in yellow, and then we consider in the rest of W a packing of (k, h)-many (h)-big walls,
drawn in green. This is done in Lemma 1.

P3

P4P5

P6

P7

P8 P1

P2D5

Figure 2: Left: The partition of a wall into a yellow annulus and several green subwalls. Right:
An example of a (5, 8)-railed annulus depicted in yellow; its inner disk D5 is depicted in green.

We now work on the “annulus” of the (k, h)-many outer layers ofW . For this, it is convenient
to see those cycles as “crossed” by a collection P of disjoint paths called rails. We call this system
of cycles and rails railed annulus, denoted by A = (C,P). (see the right side of Figure 2 for an
example of a railed annulus with 5 cycles and 8 rails).

Taming topological minor models. Notice that if H is a topological minor of a graph G,
then this is materialized by a pair (M,T ) where M is a subgraph of G and B is a set of vertices
of M , called branches, such that all vertices of V (G) \B have degree 2. We say that (M,T ) is
a topological minor model of H in G if a graph isomorphic to H is created after dissolving in
M all vertices in V (G) \B. For simplicity, assume that F = {H} and recall that PF (G) ≤ k if
there is a set S ⊆ V (G), |S| ≤ k, called from now on solution set, that intersects all topological
minor models of H in G.

Our next aim is to analyze how topological minor models of H may cross the cycles and
the rails of a railed annulus A = (C,P). For this we dedicate Section 5 to the proof of a
general theorem stating that if the branches of (M,A) are situated outside the annulus and
the annulus is (h)-big then it is possible to find an alternative “rail-tamed” model (M ′, T ′)
of G, whose intersection with the “middle cycle” of A consists only of (h)-few rail vertices.
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We refer to this theorem as the “model taming theorem” (Theorem 3). As it has independent
combinatorial interest, we present it in a slightly more general form that will appear useful on
further algorithmic applications. The proof of this theorem is technical and it is based on the
so-called unique linkage theorem by Robertson and Seymour in [26, 27] (also appeared in an
alternative form as the unique-linkage theorem in [20]).

Representations of topological minor models. Using the model-taming theorem, we can
pick a (h)-small collection P ′ of the rails of A for which the following holds: for every topological
minor model (M,T ) of H that crosses A, there is a disk ∆ bounded by some cycle C of A and
a “tamed” version (M ′, T ′) of (M,T ) that represents (M,T ) in the sense that a set of vertices
that are “not so close” to C, intersects M ∩∆ iff the same set intersects M ′ ∩∆. From now on
we refer to the instantiations of M ′ ∩∆ as the inner tamed models of A and we can see them
as models representing the “inner part” of all annulus-crossing models.

Reducing the solution space. The next step is to compute, for every cycle C of A, a set SC of
at (k, h)-many vertices intersecting each possible inner tamed model. This computation can be
done in Ok,h(n)-time as this question can be expressed in MSOL and concerns subgraphs of the
compass of W that has (k, h)-small treewidth. Let ∆in be the disk bounded by the innermost
cycle of C (cycle C5 in Figure 2). We then compute Sin = ∆in ∩ (

⋃
C∈C SC) and observe that

Sin has (k, h)-small size. Based on the fact that the inner tamed models represent the inner
part of all models crossing A and the fact that all these models are intersected by subsets of at
most k vertices whose restriction in ∆in is in Sin, we prove that if G \ S does not contain any
topological minor model of H, then the same holds if we restrict S to contains only members of
Sin (Lemma 3). This is an important restriction of the solution space of the problem in what
concerns its intersection with ∆in. As the (h)-big sub-walls packed inside ∆in are (k, h)-many,
there is a sub-wall whose compass can be avoided by all possible solution sets.

Finding an irrelevant vertex. We now fix our attention to the solution-free compass of some
(h)-big subwall of W . Once again, we see this wall as a railed annulus A′ and use the model
taming theorem in order to represent all ways topological minor models of H can “invade” the
compass of W by tamed topological models going through the rails of A′. This in turn permit
us to detect a vertex v of the solution-free compass of W such that if a solution set S intersects
a topological minor model that contains v, then it should also intersect some representation of
it that avoids v, therefore v is irrelevant (Lemma 4).

2 Definitions and preliminaries

We denote by N the set of all non-negative integers. Given an n ∈ N, we denote by N≥n the
set containing all integers equal or greater than n. Given two integers x and y we define by
[x, y] = {x, x+ 1, . . . , y − 1, y}. Given an n ∈ N≥1, we also define [n] = {1, . . . , n}. Let U be a
set, r ∈ N≥1, and A = [A1, . . . , Ar] ⊆ (2U )r, B = [B1, . . . , Br] ⊆ (2U )r. We say that A ⊆ B if
for all i ∈ [r], Ai ⊆ Bi. Also, if S ⊆ U we denote A ∩ S = [A1 ∩ S, . . . , Ar ∩ S].

5



2.1 Basic concepts on Graphs

All graphs in this paper are undirected, finite, and they do not have loops or multiple edges.
If G1 = (V1, E1) and G2 = (V2, E2) are graphs, then we denote G1 ∩ G2 = (V1 ∩ V2, E1 ∩ E2)
and G1 ∩ G2 = (V1 ∪ V2, E1 ∪ E2). Also, given a graph G and a set S ⊆ V (G), we denote by
G\S the graph obtained if we remove from G the vertices in S, along with their incident edges.
Given a graph G, we say that the pair (A,B) is a separation of G if A∪B = V (G) and there is
no edge in G with one endpoint in A \B and the other in B \A. A path (cycle) in a graph G is
a connected subgraph with all vertices of degree at most (exactly) 2. A path is trivial if it has
only one vertex and is empty if it is the empty graph (i.e., the graph with empty vertex set).

Partially disk-embedded graphs. A closed disk (resp. open disk) of ∆ is a subset of ∆ that
is homeomorphic to the set {(x, y} | x2 + y2 ≤ 1} (resp. {(x, y} | x2 + y2 < 1}). A disk of ∆ is a
closed or an open disk of ∆. We use bor(∆) to denote the boundary of ∆ and int(∆) to denote
the open disk ∆\bor(∆). We say that a graph G is partially disk-embedded in some closed disk
∆, if there is some subgraph K of G that is embedded in ∆ such that bor(∆) is a cycle of K
and (V (G) ∩∆, V (G) \ int(∆)) is a separation of G. From now one, we use the term partially
∆-embedded graph G to denote that a graph G is partially disk-embedded in some closed disk
∆. We also call the graph K compass of the partially ∆-embedded graph G and we always
assume that we accompany a partially ∆-embedded graph G together with an embedding of its
compass in ∆ that is the set G ∩∆.

Let G be a partially ∆-embedded graph and let C = [C1, . . . , Cr], r ≥ 2, be a collection of
vertex-disjoint cycles of the compass of G. We say that the sequence C is a ∆-nested sequence of
cycles of G if every Ci is the boundary of an open disk Di of ∆ such that ∆ ⊇ D1 ⊇ · · · ⊇ Dr.
From now on, each ∆-nested sequence C will be accompanied with the sequence [D1, . . . , Dr]
of the corresponding open disks as well as the sequence [D1, . . . , Dr] of their closures. Given
x, y ∈ [r] where x ≤ y, we call the setDx\Dy (x, y)-annulus of C and we denote it by ann(C, x, y).
Finally, we say that ann(C, 1, r) is the annulus of C and we denote it by ann(C).

Grids and Walls. Let k, r ∈ N. The (k × r)-grid is the Cartesian product of two paths on k
and r vertices respectively. An elementary r-wall, for some odd r ≥ 3, is the graph obtained
from a (2r× r)-grid with vertices (x, y), x ∈ [2r]× [r], after the removal of the “vertical” edges
{(x, y), (x, y + 1)} for odd x + y, and then the removal of all vertices of degree one. Notice
that, as r ≥ 3, an elementary r-wall is a planar graph that has a unique (up to topological
isomorphism) embedding in the plane such that all its finite faces are incident to exactly six
edges. The perimeter of an elementary r-wall is the cycle bounding its infinite face. Given an
elementary wall W, a vertical path of W is one whose vertices, in ordering of appearance, are
(i, 1), (i, 2), (i+ 1, 2), (i+ 1, 3), (i, 3), (i, 4), (i+ 1, 4), (i+ 1, 5), (i, 5), . . . , (i, r − 2), (i, r − 1), (i+
1, r − 1), (i + 1, r), for some i ∈ {1, 3, . . . , 2r − 1}. Also an horizontal path of W is the one
whose vertices, in ordering of appearance, are (1, j), (2, j), . . . , (2r, j), for some j ∈ [2, r− 1], or
(1, 1), (2, 1), . . . , (2r − 1, 1) or (2, r), (2, r), . . . , (2r, r). (see Figure 1).

An r-wall is any graph W obtained from an elementary r-wall W after subdividing edges.
We call the vertices that where added after the subdivision operations subdivision vertices. The
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perimeter ofW is the cycle ofW whose non-subdivision vertices are the vertices of the perimeter
of W . Also, a vertical (resp. horizontal) path of W is a subdivided vertical (resp. horizontal)
path of W . An r′-subwall W ′ of a wall W is any r′-wall that is a subgraph of W and whose
horizontal/vertical paths are subpaths of the horizontal/vertical paths of W .

A subgraph W of a graph G is called a wall of G if W is an r-wall for some odd r ≥ 3 and
we refer to r as the height of the wall W . The layers of an r-wall W are recursively defined as
follows. The first layer of W is its perimeter. For i = 2, . . . , (r− 1)/2, the i-th layer of W is the
(i − 1)-th layer of the subwall W ′ obtained from W after removing from W its perimeter and
all occurring vertices of degree one. Notice that each (2r + 1)-wall has r layers.

Treewidth. Given a k ∈ N≥0, we say that a graph G is a k-tree if G is isomorphic to Kk+1 or
(recursively) there is a vertex v in G where NG[{v}] isomorphic to Kk+1 and G\{v} is a k-tree.
The treewidth of a G is the minimum k for which G is a subgraph of some k-tree.

The following result from [11] intuitively states that given a q ∈ N and a graph G with “big”
enough treewidth, we can find a q-wall of G whose compass has “small” enough treewidth.

Proposition 1 ( [11]). There exists a constant c1 and an algorithm with the following specifi-
cations:

Find_Wall(G, q)
Input: a planar graph G and a q ∈ N.
Output:

1. A q-wall W of G whose compass has treewidth at most c1 · q or

2. A tree decomposition of G of width at most c1 · q.

Moreover, this algorithm runs in Oq(n) steps.

2.2 Railed annuli

Let r ∈ N≥3 and q ∈ N≥3. Assume also that r is an odd number. An (r, q)-railed annulus of
a partially ∆-embedded graph G is a pair A = (C,P) where C = [C1, . . . , Cr] is a ∆-nested
collection of cycles of G and P = [P1, . . . , Pq] is a collection of pairwise vertex-disjoint paths in
G such that

• For every j ∈ [q], Pj ⊆ ann(C).

• For every (i, j) ∈ [r]× [q], Ci ∩ Pj is a non-empty path, that we denote Pi,j .

We refer to the paths of P as the rails of A and to the cycles of C as the cycles of A.
Let A = (C,P) be an (r, q)-railed annulus of a partially ∆-embedded graph G. We call Dr

(resp. D1) the inner (resp. outer) disk of A. We also extend the notion of an annulus and we
say that the annulus of A = (C,P) is the annulus of C.

We now prove the following lemma which intuitively states that there is an algorithm that
given a “big enough” wall, it outputs a collection of railed annuli whose number and size will
be useful in the proof of Theorem 2.

7



Lemma 1. There exists a function f2 : N3 → N and an algorithm with the following specifica-
tions:
Find_Collection_of_Annuli(x, y, z,∆, G,W )
Input: two odd integers x, y ∈ N≥3, an integer z ∈ N, a partially ∆-embedded graph G and a
q-wallW of the compass of G whose perimeter is the boundary of ∆ and such that q ≥ f2(x, y, z).
Output: a collection A = {A0,A1, . . . ,Az} of railed annuli of the compass of G such that

• A0 is a (x, x)-railed annulus whose outer disk is ∆ and whose inner disk is ∆′,

• for i ∈ [z], Ai is a (y, y)-railed annulus of G ∩∆′, and

• for every i, j ∈ [z] where i 6= j, the outer disk of Ai and the outer disk of Aj are disjoint.

Moreover, this algorithm runs in O(n) steps and f2(x, y, z) = O(x+ y
√
z).

Proof. Let y′ := y + d(y − 2)/4e and assume that y′ is an odd integer (otherwise, make it odd
by adding 1) and let f2(x, y, z) = x + max{d(x − 2)/4e, d

√
z/2e · y′} + 1. We argue that the

following holds:
Claim: Let p ∈ Z≥3. If H is an h-wall of G, where h ≥ p + d(p − 2)/4e, then H contains a
(p, p)-railed annulus A = (C,P), where C = [C1, . . . , Cp] and for every i ∈ [p], Ci is the i-th
layer of H.
Proof of Claim: Let H be an h-wall of G, where h ≥ p + d(p − 2)/4e. We define the ∆-nested
collection C = [C1, . . . , Cp] of cycles of G, where, for every i ∈ [p], Ci is the i-th layer of H. Let
P̂ be the collection of the vertical and horizontal paths of H that intersect Cp. Observe that
for every i ∈ [p − 1], every path in P̂ also intersects Ci and that P̂ ∩ ann(C) is a collection of
pairwise-vertex disjoint paths of G. Also, notice that since h− p ≥ d(p− 2)/4e then P̂ ∩ ann(C)
contains at least p paths. Let P := [P1, . . . , Pp] be a subset of P̂ ∩ann(C). Then, P is a collection
of pairwise vertex-disjoint paths of G and it holds that for every j ∈ [p], Pj ⊆ ann(C) and for
every (i, j) ∈ [p]× [p], Ci∩Pj is a non-empty path. Therefore, H contains a (p, p)-railed annulus
A = (C,P) of G and the claim follows.

Following the claim above, for H := W , h := q, and p := x, since q ≥ x + d(x − 2)/4e, we
deduce the existence of a (x, x)-railed annulus A0 whose inner disk is Dx and whose outer disk
is D1 - that is ∆. Observe that since q − x ≥ d

√
z/2e · y′ + 1, then there exists an r-wall Ŵ of

G for some odd r ∈ Z≥3 such that r ≥ d
√
z/2e · y′ and Ŵ ⊆ G ∩Dx.

Now, notice that Ŵ contains a collection W = {W ′1, . . . ,W ′z} of z y′-subwalls of W such
that, for every i, j ∈ [z], i 6= j, K(W ′i )∩K(W ′j) = ∅. Therefore, for every i ∈ [z], applying again
the claim above for H := W ′i , h := y′ and p := y, we deduce the existence of a (y, y)-railed
annulus Ai ofW ′i . Furthermore, for every i, j ∈ [z], i 6= j, recall that K(W ′i )∩K(W ′j) = ∅ which
implies that the outer disk of Ai and the outer disk of Aj are disjoint. The proof concludes by
setting A = {A0,A1, . . . ,Az}.

2.3 Rerouting topological minors

We say that (M,T ) is a tm-pair if M is a graph, T ⊆ V (M), and all vertices in V (M) \ T have
degree two. We denote by diss(M,T ) the graph obtained from M by dissolving all vertices in
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V (M) \T . A tm-pair of a graph G is a tm-pair (M,T ) where M is a subgraph of G. Given two
graphs H and G, we say that a tm-pair (M,T ) of G, is a topological minor model of H in G if
H is isomorphic to diss(M,T ). We call the vertices in T branch vertices of (M,T ).

Topological minor models in railed annuli. Let G be a partially ∆-embedded graph, let
H be a graph, A = (C,P) be a (r, q)-railed annulus of G. Let r = 2t+ 1. Let also s ∈ [r] where
s = 2t′ + 1. Given some I ⊆ [q], we say that a topological minor model (M,T ) of H in G is
(s, I)-confined in A if

M ∩ ann(C, t− t′, t+ t′) ⊆
⋃
i∈I

Pi.

Intuitively, the above definition demands that M traverses the “middle” (s, q)-annulus by
intersecting it only the rails of A.

Our algorithms are based on the following combinatorial result whose proof is postponed in
Section 5.

Theorem 3 (Model Taming). There exist two functions f3, f4 : N≥0 → N≥0 such that if

• s is a positive odd integer,

• H is a graph on g edges,

• G is a partially ∆-embedded graph,

• A = (C,P) is a (r, q)-railed annulus of G, where r ≥ f4(g) + 2 + s and q ≥ 5/2 · f3(g),

• (M,T ) is a topological minor model of H in G such that T ∩ ann(A) = ∅, and

• I ⊆ [q] where |I| > f3(g),

then G contains an topological minor model (M̃, T̃ ) of H in G such that

1. T̃ = T ,

2. M̃ is (s, I)-confined in A and

3. M̃ \ ann(A) ⊆M \ ann(A).

Apart from being the combinatorial base of our results, the Model Taming theorem will
appear useful in future results using the irrelevant vertex technique.

2.4 Boundaried graphs and folios

Let t ∈ N. A t-boundaried graph is a triple G = (G,B, ρ) where G is a graph, B ⊆ V (G),
|B| ≤ t, and ρ : B → [t] is an injective function. We call B the boundary of G and we call the
vertices of B the boundary vertices of G. We also call G the underlying graph of G. Moreover,
we call |B| the boundary size of G. We say that the t-boundaried G′ = (G′, B′, ρ′) is a subgraph
of G if G′ is a subgraph of G, B′ = B ∩ V (G′), and ρ′ = ρ|B′ . Also, for S ⊆ V (G), we define
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G\S to be the t-boundaried graph (G′, B′, ρ′) where G′ = G\S, B′ = B \S and ρ′ = ρ|B′ . Two
t-boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2) are isomorphic if G1 is isomorphic
to G2 via a bijection φ : V (G1) → V (G2) such that ρ1 = ρ2 ◦ φ|B1 , i.e., the vertices of B1 are
mapped via φ to equally indexed vertices of B2. A boundaried graph is any t-boundaried graph
for some t ∈ N.

We also define the treewidth of a boundaried graph G = (G,B, ρ), denoted by tw(G) as the
minimum width of a tree decomposition (T, χ) of G for which there is some t ∈ V (T ) such that
B ⊆ χ(t). Notice that the treewidth of a t-boundaried graph is always lower bounded by its
boundary size.

Topological minors of boundaried graphs. If M = (M,B, ρ) is a boundaried graph and
T ⊆ V (M) with B ⊆ T , we call (M, T ) a btm-pair and we define diss(M, T ) = (diss(M,T ), B, ρ)
(notice that we consider all boundary vertices to be branch vertices, therefore we do not permit
their dissolution). If G = (G,B, ρ) is a boundaried graph and (M,T ) is a tm-pair of G where
B ⊆ T , then we say that (M, T ), where M = (M,B, ρ), is a btm-pair of G = (G,B, ρ). Let
Gi = (Gi, Bi, ρi), i ∈ [2]. We say that G1 is a topological minor of G2, denoted by G1 � G2, if
there is a btm-pair (M, T ) of G2 such that diss(M, T ) is isomorphic to G1. We call diss(M, T )
representation of the btm-pair (M, T ) of G.

Folios. Let h, t ∈ N where h ≥ t. We denote by B(t)
h the set of all (pairwise non-isomorphic)

t-boundaried graphs with at most h vertices. We set the function f5 : N2 → N such that
f5(t, h) = |B(t)

h |. Given a t-boundaried graph G and an integer h ∈ N, we define the h-
folio of G, denoted by F (t)

h (G), as the set containing all t-boundaried graphs in B(t)
h that are

representations of the btm-pairs of G. Notice that |F (t)
h (G)| ≤ f5(t, h).

Given that topological minor containment can be expressed in Monadic Second Order logic,
the next lemma follows from Courcelle’s theorem.

Lemma 2. There is an algorithm with the following specifications:

Compute_Folio(h,w, t,G)
Input: h,w, t ∈ N, where h ≥ t and a t-boundaried graph G of treewidth at most w.
Output: the set F (t)

h (G).
Moreover, this algorithm runs in Oh,w(n) steps.

3 The two main subroutines of the algorithm

In this section, we provide two main subroutines that will be useful in the proof of Theorem 2.
For now on, functions f3, f4 will always denote the functions of Theorem 3.

Boundaried graphs in railed annuli. Let A = (C,P) be a (r, q)-railed annulus of a partially
∆-embedded graph G. We can see each path Pj in P as being oriented towards the “inner”
part of ∆, i.e., starting from an endpoint of P1,j and finishing to an endpoint of Pr,j . For every
(i, j) ∈ [r] × [q], we define ri,j as the first vertex of Pj that appears in Pi,j while traversing Pj
according to this orientation.
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C1 Cr
C(i−1)(h+1)µ+1

C(i−1)(h+1)µ+(j−1)µ+1 C(i−1)(h+1)µ+jµ

C(i−1)(h+1)µ+(j−1)µ+dµ/2e

Ci(h+1)µ

A1

B1,1 B1,h+1

Ai

Bi,1 Bi,j Bi,h+1

Ak+1

Bk+1,1 Bk+1,h+1

Figure 3: Visualization of the partition of the cycles of A in sets Ai, i ∈ [k + 1] and of the
partition in sets Bi,j , i, j ∈ [k + 1]× [h+ 1].

Given an i ∈ [r] and a t ∈ [q], we define the t-boundaried graph Gi,t = (Gi, Ri,t, ρi,t) where
Gi = G ∩Di, Ri,t = {ri,1 . . . , ri,t} and, for j ∈ [t], ρ(ti,j) = j.

3.1 Reducing the solution space

We now prove the following lemma that intuitively states that there is an algorithm that given
a graph G and a “big enough” railed annulus A of G, it “reduces” the set of vertices that are
candidates to the hitting set S.

Lemma 3. There exists an algorithm with the following specifications:

Reduce_Solution_Space(k, h, g,∆, G,w, C,P)
Input: three integers k, h, g ∈ N≥0, a partially ∆-embedded graph G whose compass has treewidth
≤ w and an (r, q)-railed annulus A = (C,P) of G, where r = (k + 1)(h + 1)(f4(g) + 3) and
q ≥ 5/2 · f3(g).
Output: a set R ⊆ Dr ∩ V (G) such that

• |R| ≤ f5(f3(g) + 1, h+ f3(g) + 1)h+1 · k(k + 1) and

• for every h-vertex and g-edge graph H and every S ⊆ V (G), if |S| ≤ k and H � G \ S,
then there is some S′ ⊆ (V (G) \Dr) ∪R such that |S′| ≤ k and H � G \ S′.

Moreover, this algorithm runs in Oh,w(n) steps.

Proof. We set µ := f4(g) + 3 and λ := f3(g). Given an i ∈ [k + 1] we use notation Ai

as a shortcut to ann(C, (i − 1)(h + 1)µ + 1, i(h + 1)µ) and for every j ∈ [h + 1] we define
Bi,j = ann(C, (i− 1)(h+ 1)µ+ (j − 1)µ+ 1, (i− 1)(h+ 1)µ+ jµ). Intuitively, we partition C in
k + 1 sets of consecutive cycles (i.e., the cycles of Ai, i ∈ [k + 1]) and then, for every i ∈ [k + 1]
we partition the set of cycles of Ai into h+ 1 sets of consecutive cycles (i.e., the cycles of Bi,j ,
j ∈ [h+ 1]). Notice that for every i, j ∈ [k + 1]× [h+ 1], |Bi,j ∩ C| = µ.
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Also, we define for every (i, j) ∈ [k + 1] × [h + 1] the (λ + 1)-boundaried graph Ĝi,j =
G(i−1)(h+1)µ+(j−1)µ+dµ/2e,λ+1 (to get some intuition, notice that the boundary vertices of Ĝi,j

lie on the “middle” cycle of Bi,j – see Figure 3). Let i ∈ [k + 1] and for every j ∈ [h + 1], let
Fj := F (λ+1)

h+λ+1(Ĝi,j). Then we define the collection Fi = [F1, . . . ,Fh+1] ∈ (B(λ+1)
h+λ+1)h+1. Let

Si,Fi be a subset of V (G)∩D(i−1)(h+1)µ+1 of at most k vertices such that, for every j ∈ [h+ 1],
it holds that F (λ+1)

h+λ+1(Ĝi,j \ S) ⊆ Fj . If such a set does not exist, then we set Si,Fi = ∅. We
define

R = (
⋃

i∈[k+1]

Fi∈(B(λ+1)
h+λ+1)h+1

Si,Fi) ∩Dr

Notice that as each Ĝi,h+1 is a subgraph of the compass of G, it has treewidth at most w.
Moreover, the set Si,Fi can be expressed in MSOL and, again from Courcelle’s theorem, each
Si,Fi , and therefore R as well, can be computed in Ok,g(|G|) steps.

Let H be h-vertex graph and g-edge graph and S ⊆ V (G) such that |S| ≤ k and H � G\S.
As r = (k+ 1)(h+ 1)µ and |S| ≤ k, then by the pigeonhole’s principle there is some ` ∈ [k+ 1]
such that S ∩ A` = ∅. (In case there are many such `’s, we take the minimum one.) Let
Sin = S ∩D`(h+1)µ and Sout = S \D(`−1)(h+1)µ+1. Let also kin := |Sin| and kout := |Sout| and
keep in mind that kin + kout = |S| ≤ k. Let H be the set of all topological minor models of H
in G and notice that for every (M,T ) ∈ H, S ∩ V (M) 6= ∅, i.e., S intersects at least one vertex
of each graph in H. Let H` be the members of H that are intersected only by vertices in Sin.

The next claim shows that there is a collection of cycles of A such that for each tm-pair
(M,T ) ∈ H` there exists a cycle C of this collection and a tm-pair (M̃, T̃ ) ∈ H` that is equivalent
to (M,T ) and is “tamed in C” in the sense that M ∩ C is a subgraph of the rails of A.
Claim: For every (M,T ) ∈ H`, there is an jM ∈ [h + 1] and a topological minor model
(M̃, T̃ ) of H in G \ S such that M̃ \ A` ⊆ M \ A` and whose intersection with CyM is the
union of the paths {PyM ,cM1 , . . . , PyM ,cMzM } where yM = (`− 1)(h+ 1)µ+ (jM − 1)µ+ dµ/2e and
{cM1 , . . . , cMzM } ⊆ [λ+ 1] (see Figure 4).

A`

B`,1 B`,jM
B`,h+1

A`

B`,1 B`,jM
B`,h+1

Figure 4: Visualization of the statement of the Claim. (M,T ) is depicted in the left figure,
while (M̃, T̃ ) is depicted in the right figure.

Proof of Claim: Let (M,T ) ∈ H` and notice that Sin ∩ V (M) 6= ∅. As |T | = h, there is some
jM ∈ [h + 1] such that T ∩ B`,jM = ∅ (if many such jM ’s exist, take the minimum one). We

12



use notation A(M) = (C(M),P(M)) instead of A ∩ B`,jM . We can now apply Theorem 3 for
s = 1, A := A(M), and I = [λ + 1] and obtain a topological minor model (M̃, T̃ ) of H in G

such that T̃ = T , M̃ is (1, I)-confined in A(M) and M̃ \B`,jM ⊆M \B`,jM , which implies that
M̃ \ A` ⊆ M \ A`. Let yM = (` − 1)(h + 1)µ + (iM − 1)µ + dµ/2e. Notice that (M̃, T̃ ) is a
topological minor model of H in G \ S whose intersection with CyM is the union of some of
the paths in {PyM ,1, . . . , PyM ,λ+1}. Suppose that these paths are {PyM ,cM1 , . . . , PyM ,cMzM } where
{cM1 , . . . , cMzM } ⊆ [λ+ 1]. The claim follows.

Following the above claim, for every (M,T ) ∈ H` we define the (λ + 1)-boundaried graph
GM = (GM , BM , ρM ) where GM = (M̃ ∩ DyM ) ∪ (BM , ∅) (i.e. the graph M̃ ∩ DyM together
with the isolated vertices BM ), BM = {ryM ,1, . . . , ryM ,λ+1}, and for d ∈ [λ+ 1], ρM (ryM ,d) = d.

We now define, for every j ∈ [h+1], the set Fj = {diss(GM , T ∪BM ) | jM = j and (M,T ) ∈
H`} and we set FS = [F1, . . . ,Fh+1].

Notice that Sin is a subset of V (G) ∩ D(`−1)(h+1)µ+1 of kin vertices such that, for every
j ∈ [h + 1], it holds that F (λ+1)

h+λ+1(Ĝ`,j \ Sin) = Fj . Clearly, |S`,FS | ≤ Sin. We now set
S′ = S`,FS ∪ Sout and we observe that S`,FS ⊆ R, |S′| ≤ k, and that S′ ⊆ (V (G) \Dr) ∪ R. It
remains to prove that H � G \ S′.

Suppose to the contrary that the graph G\S′ contains some topological minor model (M,T )
of H as a subgraph. According to the claim above, there is an jM ∈ [h + 1] and a topological
minor model (M̃, T̃ ) of H in G\S such that M̃ \A` ⊆M \A` and whose intersection with CyM is
the union of the paths {PyM ,cM1 , . . . , PyM ,cMzM } where yM = (`−1)(h+1)µ+(iM−1)µ+dµ/2e+1
and {cM1 , . . . , cMzM } ⊆ [λ + 1]. Therefore diss(GM , T ∪ BM ) ∈ FjM , which contradicts the
definition of S`,FS .

3.2 Finding an irrelevant area

Before we proceed with the proof of the second result of this section we need some more
definitions. Let A = (C,P) be an (r, q)-railed annulus of a partially ∆-embedded graph G.

For every i ∈ [r], we define F (i)
A as the edge set of the unique (Pi,q, Pi,1)-path that does not

contain any vertex from P2. We also set FA =
⋃
i∈[r] F

(i). Let (i, j, j′) ∈ [r]× [q]2 where j 6= j′.
We denote by Li,j→j′the shortest path in Ci starting from a vertex of Pi,j and finishing to a
vertex of Pi,j′ and that does not contain any edge from FA. Let (i, i′, j) ∈ [r]2× [q] where i 6= i′

(see Figure 5). We denote by Ri→i′,j the shortest path in Pj starting from a vertex of Pi,j and
finishing to a vertex of Pi′,j . Let (i, i′, j, j′) ∈ [r]2 × [q]2 such that i < i′ and j < j′. We define
∆i,i′,j,j′ as the closed disk bounded by the unique cycle in the graph

Pi,j ∪ Li,j→j′ ∪ Pi,j′ ∪Ri→i′,j′ ∪ Pi′,j′ ∪ Li′,j′→j ∪ Pi′,j ∪Ri′→i,j .

The next lemma intuitively states that there exists an algorithm that given a partially ∆-
embedded graph G and a “big enough” railed annulus of G, then there exists a bidimensional
area ∆′ ⊆ ∆ such that for every hitting set S outside ∆, ∆′ ∩ V (G) is an irrelevant part of the
instance.
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P3

P4P5

P6

P7

P8 P1

P2

Figure 5: An example of a (5, 8)-railed annulus A, the set FA (depicted in green), and the
graphs L2,5→7 (depicted in red), R2→4,1 (depicted in yellow), and ∆3,5,2,5 (depicted in blue).

Lemma 4. There exists an algorithm with the following specifications:

Find_irrelevant_area(h, g, b,∆, G,w, C,P)
Input: three integers h, g ∈ N≥1 and b ∈ N≥2, a partially ∆-embedded graph G whose compass
has treewidth at most w, and an (r, q)-railed annulus A = (C,P) of G, where r = f5(f3(g) +
1, h+ f3(g) + 1) ·

(
(h+ 1)(f4(g) + 3) + b+ 1

)
and q = max{5/2 · f3(g), f3(g) + b}.

Output: a closed disk ∆′ ⊆ ∆ such that

• tw(G ∩∆′) ≥ b and

• for every h-vertex and g-edge graph H and for every S ⊆ V (G) \ ∆, if H � (G \ (∆′ ∩
V (G))) \ S then H � G \ S.

Moreover, this algorithm runs in Oh,w(b · |G|) steps.

Proof of Lemma 4. Let t := f3(g) + 1, µ := f4(g) + 3, ` := (h+ 1)µ+ b+ 1. Using this notation
we have that r = f5(t, h+ t) · `.

We consider the t-boundaried graphs Gi,t, i ∈ [r]. As the underlying graph of each Gi,t is a
subgraph of the compass of G, we have that tw(Gi,t) ≤ w+ t = Oh(w). For each i ∈ [r], we call
the algorithm Compute_Folio(h+ t, t,Gi,t, w+ t) and compute the (h+ t)-folio of Gi,t which,
from now on, we denote by Fi. According to Lemma 2 Fi, for all i ∈ [r] can be computed in
Oh,w(r · |G|) = Oh,w(b · |G|) steps. We observe that if 1 ≤ i ≤ i′ ≤ r, then Fi′ ⊆ Fi. This,
together with the fact that |B(t)

h | = f5(t, h+ t), implies that there is an i′ ∈ [r− `+ 1] such that
Fi′ = Fi′+1 = . . . = Fi′+`−1. We define

∆′ = ∆i′+µ(h+1),i′+`−2,t+1,t+b

and notice that G∩∆′ contains a (b×b)-grid as a minor, therefore tw(G∩∆′) ≥ b (see Figure 6).
Also keep in mind that ∆′ does not intersect the cycle Ci′+`−1.
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C1 Ci′
Ci′+µ(h+1) Ci′+`−1

Cr

b

`

∆′

Pt+b

Pt+1

Figure 6: An example showing the disk ∆′.

Let now H be a h-vertex and g-edge graph and S ⊆ V (G) \∆ such that H � (G \∆′) \ S.
It remains to prove that H � G \ S. Suppose to the contrary that the graph G \ S contains
some topological minor model (M,T ) of H as a subgraph. As |T | = h and ` = µ · (h+ 1) + b+ 1
there is some i′′ ∈ [i′, i′ + `− µ] such that T ∩ ann(C, i′′, i′′ + µ− 1) = ∅.

We consider the (µ, q)-railed annulus A′ = (C′,P) of G \ S where

• C′ = [C ′1, . . . , C ′µ] := [Ci′′ , . . . , Ci′′+µ−1] and

• P ′ = [P ′1, . . . , P ′q] := [P1 ∩ ann(A′), . . . , Pq ∩ ann(A′)]. (See Figure 7.)

A′

C1 Ci′
Ci′′ Ci′′+µ−1 Ci′+`−1

Cr

µ

∆′

Figure 7: An example showing the (µ, q)-railed annulus A′.

We are now in position to apply Theorem 3 for s := 1, H, G := G \ S, A := A′, r := µ, M ,
and I = [t]. We deduce the existence of a topological minor model (M̃, T̃ ) of H in G \ S such
that T̃ = T , M̃ is (1, I)-confined in A′, and M̃ \ ann(A′) ⊆M \ ann(A′) (see Figure 7).
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A′

Ci′′ Ci′′+µ−1 Ci′+`−1

∆′

Figure 8: An example of (M̃, T̃ ), the result of applying Theorem 3 in the railed annulus A′.

Let y = i′′ + bµ/2c. Notice now that M̃ ∩ Cy is the union of some of the paths in
{Py,1, . . . , Py,t}. Suppose that these paths are {Py,c1 , . . . , Py,cµ} where {c1, . . . , cµ} ⊆ [t]. We
consider the boundaried graph My = (My, By, ρy) where My = (M̃ ∩ Dy) ∪ (By, ∅) (i.e. the
graph M̃∩Dy together with the isolated vertices By), By = {ry,1, . . . , ry,t}, and for every d ∈ [t],
ρy(ry,d) = d. We also define M̂y = M̃ \Dy \

⋃
d∈[t](V (Py,cd) \ ry,cd). Keep in mind that M̂y does

not intersect the disk ∆′ (see Figure 7).

Cy

ry,c1

ry,c2

Cy

ry,c1

ry,c2

Figure 9: The graphs My (depicted in red) and M̂y (depicted in blue).

Now consider the t-boundaried graph diss(My, T ∪By) and notice that it is isomorphic to a
member F ∈ Fy. We set y′ = i′+ `− 1. Recall that F ∈ Fy′ , as Fy = Fy′ . This means that Gy′

contains as a subgraph a model My′ = (My′ , By′ , ρy′′) of F where By′ = {ry′,1, . . . , ry′,t}, and
for every d ∈ [t], ρy(ry′,d) = d. Notice that My′ does not intersect ∆′. Let M̂y′ be the graph
obtained from My′ after removing the vertices ry′,j , j ∈ [t] \ {c1, . . . , cµ}. For every d ∈ [µ],
we define P ∗d = Py,cd ∪ Ry→y′,cd and observe that none of the paths in P∗ = {P ∗d | d ∈ [µ]}
intersects ∆′. Consider now the graph M0 := M̂y ∪ M̂y′ ∪

⋃⋃⋃⋃⋃⋃⋃⋃⋃
P∗ and observe that (M0, T ) is a

topological minor model of H in G \ S such that V (M0)∩∆′ = ∅. Therefore H � (G \∆′) \ S,
a contradiction (see Figure 10).
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A′

Ci′′ Ci′′+µ−1 Cy′

Cy

∆′ M ′y

P ∗1

P ∗2

Figure 10: Visualization of the last part of the proof.

4 Proof of the main result

Now we have all necessary results in order to prove Theorem 2.

Proof of Theorem 2. Let g :=
(h

2
)
. Also, let

x := (k + 1)(h+ 1)(f4(g) + 3),

y := f5(f3(g) + 1, h+ f3(g) + 1) ·
(
(h+ 1)(f4(g) + 3) + 1

)
, and

z := f5(f3(g) + 1, h+ f3(g) + 1)h+1 · k(k + 1) + 3.

For q := f2(x, y, z), we call the algorithm Find_Wall(G, q) of Proposition 1 which outputs
either a q-wall W of G whose compass has treewidth at most c1 · q or a tree decomposition of
G of width at most c1 · q. We consider the first case.

Let ∆ be the closed disk defined by the compass of W . Then, we call the algorithm
Find_Collection_of_Annuli(x, y, z,∆, G,W ) of Lemma 1 which outputs a collection A =
{A0,A1, . . . ,Az} of railed annuli of the compass of G such that

• A0 is a (x, x)-railed annulus whose outer disk is ∆ and whose inner disk is ∆′,

• for i ∈ [z], Ai is a (y, y)-railed annulus of G ∩∆′, and

• for every i, j ∈ [z] where i 6= j, the outer disk of Ai and the outer disk of Aj are disjoint.

We call the algorithm Reduce_Solution_Space(k, h, g,∆, G,w, C,P) of Lemma 3 for
(C,P) := A0 and w := c1 · q which outputs a set R ⊆ ∆′ ∩ V (G) such that

• |R| ≤ f5(f3(g) + 1, h+ f3(g) + 1)h+1 · k(k + 1) = z − 1 and

• for every graph H on at most h vertices and g edges and every |S| ≤ k and H � G \ S,
then there is some S′ ⊆ (V (G) \∆′) ∪R such that |S′| ≤ k and and H � G \ S′.
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Since |R| < z then there exists a j ∈ [z] such that R ∩ ann(Aj) = ∅. Let (C(j),P(j)) := Aj .
Now, for b := 2, the algorithm Find_irrelevant_area(h, g, b,∆, G,w, C(j),P(j)) of Lemma 4
computes a closed disk ∆′ ⊆ ∆ such that

• tw(G ∩∆′) ≥ b, and

• for every graph H on at most h vertices and g edges and every S ⊆ V (G) \ ∆, if H �
(G \ (∆′ ∩ V (G))) \ S then H � G \ S.

Therefore, there exists a vertex v ∈ V (G) ∩∆′ such that pH(G) ≤ k ⇐⇒ pH(G \ v) ≤ k.

5 Proof of the Model Taming theorem

This section is devoted to the proof of Theorem 3 that is the base of the correctness of both
algorithmic results of the previous section.

5.1 Linkages in railled annuli

A linkage in a graph G is a subgraph L of G whose connected components are all non-trivial
paths. The paths of a linkage are its connected components and we denote them by P(L). The
size of L is the number of its paths and is denoted by |L|. The terminals of a linkage L, denoted
by T (L), are the endpoints of the paths in P(L), and the pattern of L is the set{

{s, t} | P(L) contains some (s, t)-path
}
.

Two linkages L1, L2 of G are equivalent if they have the same pattern and we denote this fact
by L1 ≡ L2.We say that a linkage L of a graph G is vital if V (L) = V (G) and there is no other
linkage of G that is equivalent to L.

Let G be a partially ∆-embedded graph, let A = (C,P) be a (r, q)-railed annulus of G and
L be a linkage of G. If L is a linkage of a partially ∆-embedded graph, and D ⊆ ∆, then we
say that L is D-avoiding if T (L) ∩D = ∅. We also say that L is D-free if D ∩ L = ∅. We also
say that L is A-avoiding if it is ann(C)-avoiding (see Figure 11).

D

Figure 11: An example of a railed annulus A, a closed disk D (depicted in blue) and a linkage
L (depicted in red) that is D-free and A-avoiding.
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Let r = 2t+ 1. Let also s ∈ [r] where s = 2t′+ 1. Given some I ⊆ [q], we say that a linkage
L is (s, I)-confined in A if

L ∩ ann(C, t− t′, t+ t′) ⊆
⋃
i∈I

Pi.

Our purpose is to prove the following.

Theorem 4. There exist two functions f3, f4 : N≥0 → N≥0 such that for every odd s ∈ N≥1

and every k ∈ N≥0, if G is a partially ∆-embedded graph, A = (C,P) is a (r, q)-railed annulus
of G, where r ≥ f4(k) + s and q ≥ 5/2 · f3(k), L is an A-avoiding linkage of size at most k,
and I ⊆ [q], where |I| > f3(k), then G contains a linkage L̃ where L̃ ≡ L, L̃ is A-avoiding,
L̃ \ ann(C) ⊆ L \ ann(C), and L̃ is (s, I)-confined in A.

We say that a function is even if its images are even numbers. We state the following result.

Proposition 2 ( [20,26]). There exists an even function f3 : N≥0 ×N≥0 → N≥0 such that if G
is a graph and L is a vital linkage of G, then tw(G) ≤ f3(|L|).

In the above proposition, f3 is a non-decreasing function that is important for the statement
of many of the results of this paper. For this reason, for now on, f3 will always denote the
function of Proposition 2.

5.2 Taming a Linkage

LB-pairs. Given a graph G, a LB-pair of G is a pair (L,B) where B is a subgraph of G with
maximum degree 2 and L is a linkage of G. We define cae(L,B) = |E(L) \ E(B)| (i.e., the
number of linkage edges that are not edges of B).

Lemma 5. Let (L,B) be an LB-pair of a G. If tw(L∪B) > f3(|L|), then G contains a linkage
L′ where

1. cae(L′, B) < cae(L,B),

2. L′ ≡ L,

3. L′ ⊆ L ∪B.

Proof. Let H = L∪B. From Proposition 2, L is not a vital linkage of H, therefore, H contains
a linkage L′ such that L 6= L′ and L′ ≡ L. Notice that E(L′)\E(B) ⊆ E(L)\E(B). It remains
to prove that this inclusion is proper.

Let {x, y} be a member of the common pattern of L and L′ such that the (x, y)-path P

of L is different than the (x, y)-path P ′ of L′. Clearly, P and P ′, when oriented from x to y,
have a common part P ∗. Formally, this is the connected component of P ∩ P ′ that contains x.
Let e be the (m + 1)th edge of P , starting from x, where m is the length of P ∗. Notice that
e ∈ E(L) \ E(B), while e 6∈ E(L′) \ E(B).

We conclude that E(L′) \ E(B) ( E(L) \ E(B), therefore |E(L′) \ E(B)| < |E(L) \ E(B)|,
as required.
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Minimal linkages. Let G be a partially ∆-embedded graph, C be a ∆-nested cycle collection
of G, D ⊆ ∆, L be a ann(C)-avoiding and D-free linkage of G. We say that a linkage L′ of G is
(C, D, L)-minimal if, among all the ann(C)-avoiding linkages of G that are equivalent to L and
are subgraphs of L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D), L′ is one where the quantity cae(L′,

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D) is minimized.

Lemma 6. Let G be a partially ∆-embedded graph, C be a ∆-nested cycle collection of G,
D ⊆ ∆, L be an ann(C)-avoiding and D-free linkage of G, and L′ be a (C, D, L)-minimal linkage
of G, then tw(L′ ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D)) ≤ f3(|L′|).

Proof. Let B =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \ D and observe that (L′, B) is an LB-pair of G. Assume, towards a

contradiction, that tw(L′ ∪ B) > f3(|L′|). From Lemma 5, G contains a linkage L′′ that is
equivalent to L′ where cae(L′′, B) < cae(L′, B) and L′′ ⊆ L′ ∪B. This contradicts the choice of
L′ as a (C, D, L)-minimal linkage of G.

Streams, rivers, mountains, and valleys. Let G be a partially ∆-embedded graph, C =
[C1, . . . , Cr] be ∆-nested cycle collection of G, and L be a ann(C)-avoiding linkage of G. A
(C, L)-stream of G is a subpath of L that is a subset P of ann(C) and such that V (P ∩ C1)
consists of the one endpoint of P and V (P ∩ Cr) consists of the other. A disjoint collection
of (C, L)-streams of G is a collection R of (C, L)-streams such that

⋃⋃⋃⋃⋃⋃⋃⋃⋃
R is a linkage of G. A

(C, L)-river of G is a (C, L)-stream that is a subpath of a connected component of L ∩ ann(C)
that has one of its endpoints in C1 and the other in Cr. Notice that not each (C, L)-stream of G
is a (C, L)-river and any collection of (C, L)-rivers is a disjoint collection of (C, L)-streams (see
Figure 12).

Figure 12: An example of a (C, L)-stream (depicted in solid red) and a (C, L)-river (depicted in
solid blue).

Let i ∈ [r] and D ⊆ ∆. An (C, D, L)-mountain (resp. (C, D, L)-valley) of G based on Ci is
a non-trivial subpath P of some path of L where

1. P ⊆ Di (resp. P ⊆ ∆ \Di),

2. P ∩Dr = ∅ (resp. P ∩ (∆ \D1) = ∅),

3. P ∩Ci has two connected components, each containing exactly one of the endpoints of P ,

4. if D′ is the closure of the connected component of Di \ P (resp. (∆ \Di) \ P ) that does
not contain Dr (resp. ∆ \D1), then D′ ∩ T (L) = ∅ and D′ ∩D = ∅.
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D

C1

C5

Figure 13: An example of a (C, D, L)-valley (depicted in solid red), and some (C, D, L)-
mountains (depicted in solid colors). Notice that the (C, D, L)-mountain depicted in green
is tight.

Clearly, in (4), D′ is a closed disk. We call it, the disk of the (C, D, L)-mountain (resp. valley)
P and we denote it by disk(P ).Notice that there is no (C, D, L)-mountain based on Cr and there
is no (C, D, L)-valley based on C1.

A (C, D, L)-mountain (resp. (C, D, L)-valley) of G is any (C, D, L)-mountain (resp. (C, D, L)-
valley) of G based on some of the cycles of C.

The height (resp. depth) of a (C, D, L)-mountain (resp. (C, D, L)-valley) P that is based on
Ci is the maximum j such that Ci+j−1 (resp. Ci−j+1) intersects P and, in both cases, we denote
it by dehe(P ). Moreover, the height (resp. depth) of P is at least 1 and at most r.

Notice that if a (C, L)-stream P of G is a subpath of a (C, D, L)-mountain P ′ or a (C, D, L)-
valley P ′ of G then dehe(P ′) = r. Moreover, if a (C, L)-stream P of G is not a subpath of some
(C, D, L)-mountain or some (C, D, L)-valley of G, then P is a (C, L)-river of G.

We say that a (C, D, L)-mountain (resp. (C, D, L)-valley) P based on Ci, is tight if dehe(P ) =
d ≥ 2 and there is a sequence [P2, . . . , Pd] of (C, D, L)-mountains (resp. (C, D, L)-valleys) based
on Ci such that

• P = Pd,

• ∀j ∈ [2, d], dehe(Pj) = j, and

• ∀j ∈ [2, d− 1], Pj ⊆ disk(Pj+1) (see Figure 13).

Lemma 7. Let G be a partially ∆-embedded graph, C be a ∆-nested cycle collection of G,
D ⊆ ∆, L be a ann(C)-avoiding and D-free linkage of G. Let also L′ be a (C, D, L)-minimal
linkage of G. Then all (C, D, L′)-mountains (resp. (C, D, L′)-valleys) of G are tight.

Proof. Let B =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D. We present the proof for the case of (C, D, L′)-mountains as the case

of (C, D, L′)-valleys is symmetric.
Claim: Let i ∈ N≥1, j ∈ N≥2. If Pj is a (C, D, L′)-mountain of G based on Ci such that
dehe(Pj) = j, then there exists a (C, D, L′)-mountain P ′ based on Ci such that dehe(P ′) = j−1
and P ′ ⊆ disk(Pj).
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Proof of Claim: Suppose to the contrary that there does not exist a (C, D, L′)-mountain P ′

based on Ci such that dehe(P ′) = j − 1 and P ′ ⊆ disk(Pj). Let P (j−1)
j = (Pj \ Di+(j−1)−1) ∪

(Ci+(j−1)−1 ∩ disk(Pj)) and notice that dehe(P (j−1)
j ) = j − 1 (see Figure 14).

Ci

Ci+j−2

Figure 14: An example of a (C, D, L′)-mountain Pj of G based on Ci such that dehe(Pj) = j

(depicted in red) and the (C, D, L′)-mountain P (j−1)
j (depicted in green).

Then G contains a linkage L′′ = (L′\Pj)∪(P (j−1)
j ) that is equivalent to L where cae(L′′, B) <

cae(L′, B) and L′′ ⊆ L′ ∪B. This contradicts the choice of L′ as a (C, D, L)-minimal linkage of
G. The claim follows.

Let P be a (C, D, L′)-mountain of G based on Ci such that dehe(P ) = d ≥ 2. The fact that
P is tight follows by recursively applying the Claim above.

Orderings of streams. Let G be a partially ∆-embedded graph, C be a ∆-nested cycle
collection of G, D be an open disk where D ⊆ ann(C), L be an ann(C)-avoiding and D-free
linkage of G.

If Z is a disjoint collection of (C, L)-streams ofG we define itsD-ordering as follows: Consider
the sequence [Z1, . . . , Zd] such that for each i ∈ [d], one, sayDi, of the two connected components
of ann(C) \ (Zi ∪ Zi+1) does not intersect

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Z (here Zd+1 denotes Z1). Among all (d− 1!) such

sequences we insist that [Z1, . . . , Zd] is the unique one where D ⊆ Dq and that the order of Z
is the counter-clockwise order that its elements appear around ann(C) (see Figure 15). We call
[Z1, . . . , Zd] the D-ordering of Z.

D Z1

Z2

Z3Z4

Z5

Figure 15: An example of an ∆-nested cycle collection C, an open disk D ⊆ ann(C) (depicted
in blue), a linkage L (depicted in red) that is D-free and ann(C)-avoiding, a disjoint collection
Z of (C, L)-streams, and the D-ordering [Z1, . . . , Z5] of Z.
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Brambles. Given a graph G, we say that a subset S of V (G) is connected if G[S] is connected.
Given S1, S2 ⊆ V (G), we say that S1 and S2 touch if either S1 ∩ S2 6= ∅ or there is an edge
e ∈ E(G) where e∩S1 6= ∅ and e∩S2 6= ∅. A bramble in G is a collection B is pairwise touching
connected subsets of V (G). The order of a bramble B is the minimum number of vertices that
intersect all of its elements.

Proposition 3 ( [29]). Let k ∈ N≥0. A graph G has a bramble of order k + 1 if and only if
tw(G) ≥ k.

We now use the notions of ordering of streams and brambles to prove the following result.

Lemma 8. Let G be a partially ∆-embedded graph, C be ∆-nested cycle collection of G, D be
an open disk where D ⊆ ann(C), L be an ann(C)-avoiding and D-free linkage of G, and Z be a
disjoint collection of (C, L)-streams of G. Then tw(L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D)) ≥ min{|C|, |Z|}.

Proof. Let [Z1, . . . , Zd] be the D-ordering of Z and let D′ be the connected component of
ann(C) \ (Zd ∪ Z1) that contains D. Let r = min{|C|, |Z|}, and let [Z1, . . . , Zr] be the sequence
consisting of the first r elements of the D-ordering of Z. Let also C′ be the sequence consisting
of the first r elements of C. Notice that there is a disjoint collection Z ′ = [Z ′1, . . . , Z ′r] of
(C′, L)-streams of G such that for each i ∈ [r], Z ′i ⊆ Zi.

We now set B = C′ \ D′, denote B = [B1, . . . , Br], and notice that both B and Z ′ are
sequences of paths in G, such that both

⋃⋃⋃⋃⋃⋃⋃⋃⋃
B and

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Z ′ are linkages of G. Consider now the graph

Q =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
B ∪

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Z ′ and notice that C = B1 ∪ Z ′1 ∪Br ∪ Z ′r is a cycle of G.

As Q ⊆ L∪(
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C\D), it remains to prove that tw(Q) ≥ r. For this, because of Proposition 3,

it suffices to give a bramble of Q of order r + 1. For each (i, j) ∈ [2, r − 1]2 we define X(i,j) =
(Bi ∪ Z ′j) \ V (C). It is easy to check that X = {X(i,j) | (i, j) ∈ [2, r − 1]2} is a bramble of
Q of order ≥ r − 2. Let also X(1) = Z1 \ B1, X(2) = B1, and X(3) = Z ′r ∪ Br. Notice that
X ∪ {X(1), X(2), X(3)} is also a bramble of Q and its order is the order of X incremented by 3.
Therefore Q contains a bramble of order at least r + 1, as required (see Figure 5.2).

Z ′1 Z ′2 Z ′3 Z ′4 Z ′5

B1

B2

B3

B4

B5

Figure 16: An example of the construction of a bramble of Q, where |B| = 5 and |Z ′| = 5. Here,
X(2,2), X(3,3), X(4,4) are depicted in red, green, and yellow, respectively, while X(1), X(2), X(3)

are depicted in orange, brown, and blue, respectively.
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Lemma 9. Let G be a partially ∆-embedded graph, C be a ∆-nested cycle collection of G, D
be a connected subset of ∆, and L be a ann(C)-avoiding and D-free linkage of G. If P is a tight
(C, D, L)-mountain (resp. (C, D, L)-valley) of G, then tw(L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D)) ≥ 2

3 · dehe(P ).

Proof. Let d = dehe(P ). We examine the non-trivial case where d ≥ 3. We present the proof for
the case where P is a (C, D, L)-mountain as the case where P is a (C, D, L)-valley is symmetric.

We assume that P is based on Ci, for some i ∈ [r]. By the definition of tightness, there is
a sequence P = [P2, . . . , Pd = P ] of (C, D, L)-mountains (resp. (C, D, L)-valleys) based on Ci

such that

• P = Pd,

• ∀i ∈ [2, d], dehe(Pi) = i, and

• ∀i ∈ [2, d− 1], Pi ⊆ disk(Pi+1).

For every j ∈ [2, d], we denote C(j) = [Ci, . . . , Ci+j−1]. Notice that for every j ∈ [2, d], L is an
ann(C(j))-avoiding and D-free linkage of G.
Claim: For every j ∈ [2, d − 1] there exists a disjoint collection Zj of (C(j), L)-streams of G
where |Zj | ≥ 2(d− j) + 1.
Proof of Claim: Let j ∈ [2, d − 1]. Observe that for each h ∈ [j + 1, d] exactly two of the
connected components of ann(C(j)) ∩ Ph are (C(j), L)-rivers in G. This implies that there is a
collection Rj of at least 2(d− j) (C(j), L)-rivers in G. Recall that Rj is a disjoint collection of
(C(j), L)-streams of G. Observe also that we can pick some sub-path of ann(C(j))∩ Pj that has
one endpoint in Ci and the other in Ci+j−1. As this path does not share vertices with any of
the paths in Rj we can add it in Rj and obtain a disjoint collection Zj of (C(j), L)-streams of
G where |Zj | ≥ 2(d− j) + 1. Claim follows (see Figure 17).

Ci

Ci+j−1

C(j)

Ci+d−1P

Figure 17: An example of a tight (C, D, L)-mountain P based on Ci of height d and the respective
sequence of (C, D, L)-mountains based on Ci (depicted in red), an annulus C(j) (depicted in blue),
for some j ∈ [2, d],and a disjoint collection Zj (depicted in green) of (C(j), L)-streams of G.

We now set j′ = b(2d+ 1)/3c and observe that 2 ≤ j′ ≤ d− 1. The above claim implies that
there exists a disjoint collection Zj′ of (C(j′), L)-streams of G such that |Zj′ | ≥ 2(d− j′) + 1 ≥
j′ = |C(j′)|. Therefore, we can apply Lemma 8 on C(j′) and deduce that tw(L∪(

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C(j′)\D)) ≥ j′.

The Lemma follows as L ∪ (
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C(j′) \D) ⊆ L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D) and b(2d+ 1)/3c ≥ 2d/3.
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Lemma 10. Let G be a partially ∆-embedded graph, C be a ∆-nested cycle collection of G,
D be a connected subset of ∆, L be a ann(C)-avoiding and D-free linkage of G, and L′ be a
(C, D, L)-minimal linkage of G. Then all (C, D, L′)-mountains (resp. (C, D, L′)-valleys) of G
have height (resp. depth) at most 3

2 · f3(|L′|).

Proof. We set B =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \ D. By Lemma 6, tw(L′ ∪ B) ≤ f3(|L′|). Let P be a (C, D, L′)-

mountain (resp. (C, D, L′)-valley) of G based on Ci, for some i ∈ [r − 1] (resp. i ∈ [2, r]).
From Lemma 7, P should be tight and, from Lemma 9, tw(L′ ∪ B) ≥ 2

3 · dehe(P ). Therefore,
dehe(P ) ≤ 3

2 · f3(|L′|).

Lemma 11. Let G be a partially ∆-embedded graph, C = [C1, . . . , Cr] be a ∆-nested cycle
collection of G, and L be a D1-avoiding linkage. Then there is a linkage L′ of G such that

1. L′ is D1-avoiding,

2. L′ ≡ L,

3. L′ is D3m/2+1-free, where m = f3(|L′|).

Proof. Let G+ be the graph obtained if we take its disjoint union with a cycle Cr+1 ⊆ Dr and
we set C+ = [C1, . . . , Cr, Cr+1]. Observe that L is an ann(C+)-avoiding linkage of G+. Let L′

be a (C+, ∅, L)-minimal linkage of G+.
As L′ ≡ L, L′ is a D1-avoiding linkage of both G and G+. Therefore L′ satisfies conditions

1 and 2. For condition 3, assume to the contrary that L′ is a linkage of G that is intersecting
D3m/2+1. As L′ is a D1-avoiding linkage of G+ we obtain that G+ contains some (C, ∅, L′)-
mountain P , based on C1 where dehe(P ) > 3m/2. On the other side, as L is an ann(C+)-
avoiding linkage of G+ we can apply Lemma 10, on G+, C+, ∅, L, and L′ and obtain that
dehe(P ) ≤ 3m/2, a contradiction.

Lemma 12. Let G be a partially ∆-embedded graph, C be a ∆-nested cycle collection of G,
D ⊆ ∆, and L be an A-avoiding and D-free linkage. If |C| > m = f3(|L|), then G contains a
linkage L′ of G such that

1. L′ ≡ L,

2. L′ ∩D = ∅,

3. All (C, D, L′)-mountains of G have height at most 3
2m,

4. All (C, D, L′)-valleys of G have depth at most 3
2m, and

5. L′ has at most m A-rivers.

Proof. Let L′ be a (C, D, L)-minimal linkage. (1) and (2) follow by the definition of a (C, D, L)-
minimal linkage. (3) and (4) follow directly from Lemma 10. To prove (5), assume that G
contains a collection Z of (C, L′)-rivers where |Z| > m. Recall that Z is a disjoint collection of
(C, L′)-streams of G. From Lemma 8, tw(L′ ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D)) ≥ min{|C|, |Z|} > m. We arrive to a

contradiction as, from Lemma 6, tw(L′ ∪ (
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D)) ≤ m.
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5.3 Rerouting a linkage

The following proposition is a direct consequence of [1, Lemma 7].

Proposition 4. Let k, k′, d be integers such that 0 ≤ d ≤ k′ ≤ k. Let Γ be a (k × k′)-grid and
let {pup

1 , . . . , pup
ρ } (resp. {pdown

1 , . . . , pdown
ρ }) be vertices of the higher (resp. lower) horizontal

line arranged as they appear in it from left to right. Then the grid Γ contains ρ pairwise disjoint
paths P1, . . . , Pρ such that, for every h ∈ [ρ], the endpoints of Ph are pup

h and pdown
h .

Given two vertex disjoint paths P1 and P2 of G, we say that an (P1, P2)-path of G is a path
that whose one endpoint is a vertex of P1 the other endpoint is a vertex of H2 and contains all
edges of P1 ∪ P2. We now prove the following:

Lemma 13. Let r, q, s ∈ N≥3, b, d ∈ N≥0, such that r ≥ s+ 2b and q ≥ b+d, where r and s are
odd numbers. If G is a partially ∆-embedded graph, A is a (r, q)-railed annulus of G, I ⊆ [q]
where |I| ≥ d, then there is a linkage K of G such that,

(a) there is an ordering P(K) = [K1, . . . ,Kd], where for i ∈ [d], Ki is a (P1,b+i, Pr,b+i)-path
of G.

(b) K is (s, I)-confined in A.

Proof. Let A = (C,P), let t = br/2c and t′ = bs/2c. Also, let {i1, . . . , id} ⊆ I such that
∀j ∈ [d− 1], ij < ij+1.
Claim: There is a collection of pairwise disjoint paths Pdown = {P down

1 , . . . , P down
d } such that,

for every h ∈ [d], P down
h is a (P1,b+h, Pb,ih)-path.

Proof of Claim: For i ∈ [b], j ∈ [q] let pi,j be the vertex obtained after contracting all edges in
Pi,j . We also define:

• E1 = {e = {pi,j , pi,j+1} | e is the edge obtained after contracting all but one of the edges
of Li,j→j+1, i ∈ [b], j ∈ [q − 1]} and

• E2 = {e = {pi,j , pi+1,j} | e is the edge obtained after contracting all but one of the edges
of Ri→i+1,j , i ∈ [b− 1], j ∈ [q]}.

Let H be the graph where V (H) = {pi,j | (i, j) ∈ [b] × [q]} and E(H) = E1 ∪ E2. Observe
that H is isomorphic to a (q × b)-grid (see Figure 18). For h ∈ [d], let plow

h (resp. phigh
h ) be the

vertex p1,b+h (resp. pb,ih).

Figure 18: An example showing the construction of the graph H. For every h ∈ [d], the resulting
vertices plow

h and phigh
h (corresponding to the vertices of the paths P1,b+h and Pb,ih , respectively)

are depicted in white.
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Due to Proposition 4, H contains d pairwise disjoint paths P1, . . . , Pd such that, for every
h ∈ [d], the endpoints of Ph are plow

h and phigh
h . Therefore, if we substitute every vertex of each

Pi with the the edges that where contracted in G in order to obtain it in H, we obtain the
claimed result.

By applying the previous claim symmetrically, we can find a collection of pairwise disjoint
paths Pup = {P up

1 , . . . , P up
d } such that, for every h ∈ [d], P up

h is a (Pr−b,ih , Pr,b+h) path.
Now, for every h ∈ [d], let Pmid

h = ann(C, b, r − b) ∩ Pih and let Kh = P down
h ∪ Pmid

h ∪ P up
h .

Since r ≥ s + 2b and s = 2t′ + 1 then ann(C, t− t′, t+ t′) ⊆ ann(C, b, r − b) and therefore
K = {K1, . . . ,Kd} is the desired linkage. This concludes the proof.

Let A = (C,P) be an (r, q)-railed annulus of a partially ∆-embedded graph G. We set
z = bmin{r, q}/2c. For each i ∈ [z], we define CAi as the unique cycle of the graph

Li,i→q−i+1 ∪ Lr−i+1,i→q−i+1 ∪Ri→r−i+1,i ∪Ri→r−i+1,q−i+1.

Notice that if r, q ≥ 5, then [CA1 , . . . , CAz ] is a ∆-nested collection of cycles of G and we denote
it by CA (see Figure 19).

Figure 19: An example of an (8, 8)-railed annulus A = (C,P) and the sequence CA (depicted in
red).

Proof of Theorem 4. Recall that f3 is the function of Proposition 2. We define f4(k) := 3 ·
(f3(k))2 + 6 · f3(k) + 2. For simplicity, we use m = f3(k). Let also b = 3m/2, and keep in mind
that r ≥ f4(k) + s = 3m2 + 6m+ 2 + s = 2(m+ 1) · b+ 2 + s+ 2b and that |I| ≥ m+ 1.

Recall that CA = [C ′1, . . . , C ′z], where z = bmin{q, r}/2c, is a ∆-nested collection of cycles of
G. For each i ∈ [z], we denote by D′i (resp. D

′
i) the open (closed) disk corresponding to C ′i. Let

also D̆ := D′b+1 and D := D
′
b+1. Keep in mind that D′1 = ∆1,r,1,q and D = ∆b+1,r−b,b+1,q−b.

Observe now that L is a D′1-avoiding linkage. By applying Lemma 11 on G, CA, L, and D
′
1,

we obtain that G has a D′1-avoiding and D-free linkage L′ such that L′ ≡ L.
It is easy to verify that L′ is A-avoiding, r ≥ a > m, D ⊆ ann(C), and |L′| = |L| ≤ k.

Therefore, we may apply Lemma 12 on k, G, A, D, and L′. We obtain a D-free linkage L′′ of
G that is equivalent to L′ (and therefore to L as well) and such that

(a) All (C, D, L′′)-mountains/valleys of G have height/depth at most b.

(b) L′′ has at most m A-rivers of G,

Let Z = [Z1, . . . , Zd] the D-ordering of the A-rivers of L′′ in G and keep in mind that, from
(b), d ≤ m.
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Figure 20: Visualization of an (r, q)-railed annulus and the notations introduced above.

For every i ∈ [d], we define xdown
i (resp. xup

i ) as the vertex in the path C(i+1)·b+1 \ D̆ (resp.
Cr−(i+1)·b \ D̆) that belongs in Zi and has the minimum possible distance to the vertices of
the path P(i+1)b+1,q−b (resp. Pr−(i+1)·b,q−b). We also denote by Qdown

i (resp. Qup
i ) the path

certifying this minimum distance.
For i ∈ [d], let Zdown

i and Zup
i be the two connected components of the graph obtained from

Zi if we remove the edges of its (xdown
i , xup

i )-subpath (see Figure 20). We choose Zdown
i (resp.

Zup
i ) so that it intersects C1 (resp. Cr).

Claim: For i ∈ [d], Zdown
i−1 (resp. Zup

i−1 ) does not intersect Qdown
i (resp. Qup

i ) — where Zdown
0

(resp. Zup
0 ) denotes Zq.

Proof of claim: If Zdown
i−1 ∩ Qdown

i 6= ∅ (resp. Zup
i−1 ∩ Q

up
i 6= ∅) for some i ∈ [d], then some of

the connected components of Zdown
i−1 ∩ Di·b+1 (resp. Zup

i−1 ∩ (∆ \ Dr−i·b)) whose endpoints are
in Ci·b+1 (resp. Cr−i·b) should be a (C, D, L′′)-mountain (resp. (C, D, L′′)-valley) of G of height
(resp. depth) > b, a contradiction to (a). Claim follows.

Because of the above claim, it follows that the paths Qdown
i ∪Zdown

i (resp. Qup
i ∪Z

up
i ), i ∈ [d]

are pairwise vertex-disjoint (Zi ∩ C1, P(i+1)·b+1,q−b)-paths (resp. (Zi ∩ Cr, Pr−(i+1)·b,q−b)-paths)
in G that do not intersect the open disk D̆.

Let w = (m+1) · b+2 and w′ = r− (m+1) · b−1. For i ∈ [d], we now define (see Figure 21)

Y down
i = the (Pq−b, Pb+i)-path in L(i+1)·b+1,q−b→b+i ∪ P(i+1)·b+1,b+i ∪R(i+1)·b+1→w,b+i,

Y up
i = the (Pq−b, Pb+i)-path in Lr−(i+1)·b,q−b→b+i ∪ Pr−(i+1)·b+1,b+i ∪Rr−(i+1)·b→w′,b+i.

By the definition of Y down
i and Y up

i , the graphs Xdown
i = Zdown

i ∪ Qdown
i ∪ Y down

i and
Xup
i = Zup

i ∪ Q
up
i ∪ Y

up
i , i ∈ [d], are pairwise vertex-disjoint paths. In particular, taking into

account the definition of Y down
i and Y up

i , we have that

Xdown
i is a (Zi ∩ C1, Pw,b+i)-path and (1)

Xup
i is a (Zi ∩ Cr, Pw′,b+i)-path (2)

Let Ω = ann(C, w, w′) and K ′ =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
Xdown
i ∪

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Xup
i . Observe that

K ′ ∩ Ω = {Pw,b+i, Pw′,b+1 | i ∈ [d]}. (3)
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Figure 21: Visualization of the definition of Y up
i and Y down

i , i ∈ [d].

Let Ā = (C̄, P̄), where C̄ = [Cw, . . . , Cw′ ] and P̄ = P ∩ Ω.
Notice that |C̄| = w′−w+ 1 = r− 2(m+ 1) · b− 2 ≥ s+ 2b. Notice also that d ≤ |I|, I ⊆ [q].

Finally, b = 3/2m and d ≤ m imply that d+ b ≤ 5/2m ≤ q. We can now apply Lemma 13 for
r, q, s, b, d, Ā, and I and obtain a linkage K of Ā satisfying properties (a), and (b) of Lemma 13.

From Property (a) we can write P(K) = [K1, . . . ,Kd] and, using (3), we deduce that that,
for i ∈ [d], Ki is a (Pw,b+i, Pw′,b+i)-path of G. This, together with (1), (2), and (3), implies that
K ∪K ′ is a linkage of G where K ∪K ′ ⊆ ann(C). From Property (b), K is (s, I)-confined in
Ā, therefore, from (3), K ∪K ′ is (s, I)-confined in A. Observe also that each of the d paths of
P(K ∪K ′) is a (Zi ∩ C1, Zi,∩Cr)-path of G for some i ∈ [d]. We define

L̃ = (L \A′) ∪K ∪K ′

where A′ = ann(C) \ (C1 ∪Cr). By definition L̃ is a linkage of G where L̃ ≡ L and L̃ \ ann(C) ⊆
L \ ann(C). Finally, as K ∪K ′ is (s, I)-confined in A, then L̃ (s, I)-confined in A as well.

Now, since we proved Theorem 4, we will use it to in order to prove Theorem 3.

Proof of Theorem 3. Let s be a positive odd integer, H be a graph on g edges, G be a partially
∆-embedded graph, A = (C,P) be a (r, q)-railed annulus of G, where r ≥ f4(g) + 2 + s and
q ≥ 5/2 · f3(g), (M,T ) be a topological minor model of H in G such that T ∩ ann(A) = ∅.

Let A′ = ([C2, . . . , Cr−1],P ∩ ann(C, 2, r − 1)) and keep in mind that A′ is a (r, q)-railed
annulus of G, where r ≥ f4(g)+s and q ≥ 5/2·f3(g). Notice that it also holds that T∩ann(A′) =
∅ (see Figure 22).

Let M̃ (1) = M̃ [NM̃ [T̃ ]]. Notice that all the connected components of M \ T are paths of
G. Let L be the linkage of G \ T created if we take the union of all non-trivial connected
components of M \ T . Observe that P(L) is the set of all paths of G connecting neighbors of
branch vertices of M and consisting only of subdividing vertices of M . Also, notice that since
T ∩ ann(A′) = ∅, then L is A′-avoiding and there is an one-to-one correspondence of P(L) with
E(H) and thus |L| ≤ g.
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Figure 22: An example of a topological minor model (M,T ) of H in G. Vertices of T are
depicted in blue while the neighbors of vertices of T that are also subdividing vertices are
depicted in red. Also, ann(A′) is depicted in green.

Let I ⊆ [q], where |I| > f3(h). By applying Theorem 4 for s, g,G,A′, L, and I we obtain a
linkage L̃ of G such that L̃ ≡ L, L̃ is A′-avoiding, L̃\ann(A′) ⊆ L\ann(A′), and L̃ (s, I)-confined
in A′. We define

M̃ = (M \ L) ∪ L̃.

By definition, (M̃, T ) is a topological minor model of H in G. Also, since L, L̃ ⊆ ann(A), then
M̃ \ ann(A) ⊆M \ ann(A). Finally, as L̃ is (s, I)-confined in A′ then M̃ is (s, I)-confined in A
as well.

6 Conclusions

In this paper we prove that F-TM-Deletion is Fixed Parameter Tractable on planar graphs
by designing an Ok,h(n2)-time algorithm for his problem. The remaining question is whether
the same result can be derived for all graphs, as we conjectured in the introduction. Towards
this, we chose to state all combinatorial theorems of this paper in more general forms. Based
on them, a straightforward generalization is possible for the class of surface embeddable graphs,
that is graphs with Euler genus at most γ. Indeed, the only piece of the proof that needs
extension is the starting point of the proof, that is the algorithm of Proposition 1, that can
easily be extended to work on graphs of Euler genus γ. Using this, we can directly derive a
Ok,h,γ(n2)-time algorithm for the version of the problem on surfaces. It follows that will much
more effort it is possible to extend the result to every class that excludes some fixed graph as a
minor. However, for a complete resolution of our conjecture one has to deal with the case where
the input graph contains a big clique minor. We believe that the techniques of the algorithm
of [13] can be a good starting point in this direction. However, the technical challenges of such
an extension are cumbersome.
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