A blow-up approach for singular elliptic problems with natural growth in the gradient
Résumé
We prove existence results concerning elliptic problems whose basic model is
\begin{equation*}
\begin{cases}
\displaystyle-\Delta u+\mu(x)\frac{|\nabla u|^2}{(u+\delta)^\gamma}= \lambda u^p, &x\in \Omega,
\\
u> 0, &x\in \Omega,
\\
u=0, &x\in\partial\Omega,
\end{cases}
\end{equation*}
where $\Omega\subset\mathbb{R}^N (N\geq 3)$ is a bounded smooth domain, $\lambda>0$, $p>1$, $\delta\geq 0$, $\gamma>0$ and $\mu\in L^\infty(\Omega)$. The main achievement is to handle a possibly singular ($\delta=0$) first order term having a nonconstant coefficient $\mu$ combined with a superlinear zero order term. Our approach is based on fixed point theory. With the aim of applying it, a previous analysis on a related non-homogeneous problem is carried out. Moreover, the required a priori estimates are proven via a blow-up method.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...