A blow-up approach for singular elliptic problems with natural growth in the gradient - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

A blow-up approach for singular elliptic problems with natural growth in the gradient

Résumé

We prove existence results concerning elliptic problems whose basic model is \begin{equation*} \begin{cases} \displaystyle-\Delta u+\mu(x)\frac{|\nabla u|^2}{(u+\delta)^\gamma}= \lambda u^p, &x\in \Omega, \\ u> 0, &x\in \Omega, \\ u=0, &x\in\partial\Omega, \end{cases} \end{equation*} where $\Omega\subset\mathbb{R}^N (N\geq 3)$ is a bounded smooth domain, $\lambda>0$, $p>1$, $\delta\geq 0$, $\gamma>0$ and $\mu\in L^\infty(\Omega)$. The main achievement is to handle a possibly singular ($\delta=0$) first order term having a nonconstant coefficient $\mu$ combined with a superlinear zero order term. Our approach is based on fixed point theory. With the aim of applying it, a previous analysis on a related non-homogeneous problem is carried out. Moreover, the required a priori estimates are proven via a blow-up method.
Fichier principal
Vignette du fichier
Salvador Lopez Martinez.pdf (567.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-03001143 , version 1 (12-11-2020)

Identifiants

  • HAL Id : hal-03001143 , version 1

Citer

Salvador López Martínez. A blow-up approach for singular elliptic problems with natural growth in the gradient. 2020. ⟨hal-03001143⟩
92 Consultations
52 Téléchargements

Partager

More