Geometric transition from hyperbolic to Anti-de Sitter structures in dimension four - Archive ouverte HAL
Article Dans Une Revue Annali della Scuola Normale Superiore di Pisa, Classe di Scienze Année : 2022

Geometric transition from hyperbolic to Anti-de Sitter structures in dimension four

Résumé

We provide the first examples of geometric transition from hyperbolic to Anti-de Sitter structures in dimension four, in a fashion similar to Danciger's three-dimensional examples. The main ingredient is a deformation of hyperbolic 4-polytopes, discovered by Kerckhoff and Storm, eventually collapsing to a 3-dimensional ideal cuboc-tahedron. We show the existence of a similar family of collapsing Anti-de Sitter polytopes, and join the two deformations by means of an opportune half-pipe orbifold structure. The desired examples of geometric transition are then obtained by gluing copies of the polytope.
Fichier principal
Vignette du fichier
Stefano1_arxiv.pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-03000924 , version 1 (12-11-2020)

Identifiants

Citer

Stefano Riolo, Andrea Seppi. Geometric transition from hyperbolic to Anti-de Sitter structures in dimension four. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2022, XXIII (1), pp.115-176. ⟨10.2422/2036-2145.202005_031⟩. ⟨hal-03000924⟩
57 Consultations
153 Téléchargements

Altmetric

Partager

More