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GEOMETRIC TRANSITION FROM HYPERBOLIC TO ANTI-DE

SITTER STRUCTURES IN DIMENSION FOUR

STEFANO RIOLO AND ANDREA SEPPI

Abstract. We provide the first examples of geometric transition from hyperbolic to

Anti-de Sitter structures in dimension four, in a fashion similar to Danciger’s three-

dimensional examples. The main ingredient is a deformation of hyperbolic 4-polytopes,

discovered by Kerckhoff and Storm, eventually collapsing to a 3-dimensional ideal cuboc-

tahedron. We show the existence of a similar family of collapsing Anti-de Sitter polytopes,

and join the two deformations by means of an opportune half-pipe orbifold structure.

The desired examples of geometric transition are then obtained by gluing copies of the

polytope.

1. Introduction

In this paper we provide explicit examples of geometric transition in dimension four.

Before stating the main result (Theorem 1.1 below), we begin with some motivational pre-

liminaries in dimension three.

Degeneration and transition. In his famous notes [Thu79], Thurston introduced a phe-

nomenon called degeneration of hyperbolic structures. Several contribuitions have then been

given on this topic [Hod86, Por98, HPS01, Por02, Ser05, PW07, Por13, Koz13, LMA15a,

LMA15b, Koz16], which plays an important role in the proof of the celebrated Orbifold

Theorem [BLP05, CHK00].

As an example, for some closed hyperbolic 3-orbifolds X , singular along a knot Σ ⊂ X
with cone angle 2π

m , the following holds. There is a path θ 7→ Xθ of hyperbolic cone-manifold

structures on X with singular locus Σ and cone angle θ ∈
[

2π
m , 2π

)
, such that Xθ collapses to

a lower-dimensional orbifold as θ → 2π. This holds, for instance, when X is an exceptional

Dehn filling of the figure-eight knot complement admitting a Seifert fibration X → N with

base a hyperbolic 2-orbifold N . As θ → 2π, the cone-manifold Xθ collapses to N , whose

hyperbolic structure is said to regenerate to 3-dimensional hyperbolic structures.

The familiar idea of going from spherical to hyperbolic geometry, through Euclidean geom-

etry, was known since Klein [AP15]. This is a continuous process inside projective geometry,

seen as a common “ambient” geometry. This phenomenon, called geometric transition, has

been recently studied in greater generality by Cooper Danciger and Wienhard [CDW18] (see

also [Tre19]) through the notion of limit geometry. For example, among others, Euclidean

geometry is a limit of both spherical and hyperbolic geometries inside projective geometry.

Let us come back to our hyperbolic cone 3-manifolds Xθ collapsing to the hyperbolic

2-orbifold N . The work of Danciger [Dan11, Dan13, Dan14] shows that in many such cases

the hyperbolic structure of N regenerates to Anti-de Sitter (AdS for short, the Lorentzian

analogue of hyperbolic geometry) structures on X , where the singular locus Σ is a spacelike

geodesic. Moreover, the two deformations are joined continuously via projective geometry so
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FOUR-DIMENSIONAL GEOMETRIC TRANSITION 2

as to have geometric transition. To this purpose, Danciger introduced the so called half-pipe

(HP for short) geometry, which is a limit geometry [CDW18] inside projective geometry of

both hyperbolic and Anti-de Sitter geometry. Half-pipe space naturally identifies with the

space of spacelike hyperplanes in Minkowski space R1,n−1, and its group of transformations,

which is a Chabauty limit of both Isom(Hn) and Isom(AdSn), is isomorphic to Isom(R1,n−1)

by means of this duality. Suitable projective transformations are used to “rescale” the hy-

perbolic and AdS metric along the direction of collapse, thus obtaining geometric transition

via half-pipe geometry.

In [Dan13, Theorem 1.1], Danciger provides an infinite class of Seifert 3-manifolds X
(unit tangent bundles of some hyperbolic 2-orbifolds) supporting such a kind of geomet-

ric transition. Also, [Dan13, Theorem 1.2] is a regeneration result of half-pipe structures

under a fairly general condition: the 1-dimensionality of the twisted cohomology group

H1
Ad ρ(π1(X rΣ), so(1, 2)), where ρ : π1(X rΣ)→ Isom(H2) is the representation associated

to the degenerate structure and Ad: Isom(H2)→ Aut(so(1, 2)) is the adjoint representation.

Examples of transition in dimension four. It seems natural to ask whether this phe-

nomenon is purely three-dimensional, or if it can happen also in higher dimension, where

hyperbolic structures are typically more rigid. In this paper we answer affirmatively in di-

mension four. We indeed build some examples of geometric transition from hyperbolic to

AdS structures. The construction is explicitly obtained by gluing copies of a hyperbolic or

AdS collapsing 4-polytope.

The study of deformations of 4-dimensional hyperbolic cone-manifolds is quite recent, and

in general very little is known on this topic. Recently, Martelli and the first author [MR18,

Theorem 1.2] provided the first example of degeneration of hyperbolic cone structures on

a 4-manifold to a 3-dimensional hyperbolic structure. We show that in this case there is

geometric transition from hyperbolic to AdS structures, and provide an infinite class of such

examples. The existence of such a phenomenon is a novelty in dimension four. Precisely, we

show the following:

Theorem 1.1. Let N be a hyperbolic 3-manifold that finitely orbifold-covers the ideal

right-angled cuboctahedron. There exists a C1 family {σt}t∈(−ε,ε] of simple projective cone-

manifold structures on the 4-manifold

X = N × S1,

singular along a compact foam Σ ⊂ X , such that σt is conjugated to a geodesically complete,

finite-volume,

• hyperbolic orbifold structure with cone angles π as t = ε,

• hyperbolic cone structure with decreasing cone angles αt ∈ [π, 2π) as t > 0,

• half-pipe structure with spacelike singularity as t = 0,

• Anti-de Sitter structure with spacelike singularity of increasing magnitude βt ∈
(−∞, 0) as t < 0.

As t → 0+ (resp. t → 0−), we have αt → 2π (resp. βt → 0) and the induced hyperbolic

(resp. AdS) structures on X r Σ degenerate to the complete hyperbolic structure of N .

Similarly to Danciger’s [Dan13, Theorem 1.1], but in higher dimension, there is a circle

bundle X → N over a hyperbolic orbifold N , and geometric transition from hyperbolic to

AdS singular structures on X with collapse to N . Let us briefly explain some terminology

used in the statement of Theorem 1.1.
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Figure 1. A cuboctahedron in R3. The ideal right-angled cuboctahedron in H3 can

be seen as a cusped hyperbolic 3-orbifold.

Figure 2. In red, the local models of a foam Σ, seen as open cones over some graphs

(drawn in black). From left to right, a neighbourhood in Σ of a point in a 2-, 1-, and

0-stratum of Σ, respectively. Note that the third local model includes the other two. A
foam in a 4-manifold is somehow the analogue of a trivalent graph in a 3-manifold.

The cuboctahedron, drawn in Figure 1, is a well-known uniform polyhedron whose ideal

hyperbolic counterpart C ⊂ H3 is right-angled. As such, the polyhedron C can be seen as a

cusped hyperbolic 3-orbifold.

Roughly speaking, simple projective cone-manifolds (Definition 5.3) are singular real pro-

jective manifolds locally modelled on the double of a simple polytope in projective space.

The singular locus Σ ⊂ X of an n-dimensional simple projective cone-manifold X is an

(n− 2)-complex with generic singularities: if n = 1, 2, 3 or 4, the set Σ is empty, discrete, a

trivalent graph or a foam, respectively. A foam is a 2-complex locally modelled on the cone

over the 1-skeleton of the tetrahedron; see Figure 2. Our singular locus is not a surface, as

it has edges and vertices. However foams are quite natural objects in dimension four (like

trivalent graphs in 3-manifolds). To the best of our knowledge, it is not known whether there

can even exist deformations of 4-dimensional, finite-volume, hyperbolic cone-manifolds with

singular locus an embedded surface.

The holonomy of a meridian γ ∈ π1(X r Σ) of a 2-stratum of Σ has a totally geodesic

2-plane as fixed point set. We have a rotation in H4 of angle αt when t > 0, and a Lorentz

boost in AdS4 of magnitude βt as t < 0. In the half-pipe case, we have a transformation

that can be interpreted as an infinitesimal rotation (resp. boost) in H4 (resp. AdS4).

It is worth remarking that the cone-manifolds of Theorem 1.1 are non-compact, but of

finite volume. (See [FS19, Chapter 5] and [BF18] for the notion of volume in half-pipe

geometry.) Nevertheless, the singularity Σ is compact, or in other words, it does not enter

into the ends of the cone-manifolds. These ends are (non-singular) cusps in a suitable sense:

while for hyperbolic manifolds this notion is well-established, we propose here an analogue

definition for AdS and half-pipe manifolds (Definition 3.6). As a direct consequence of our

methods, we achieve a nice description of the geometry of the cusps. A section of the cusps

will indeed naturally support a geometric transition from Euclidean to Minkowski (non-

singular) structures — going through an intermediate geometry which is a “flat version” of
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half-pipe geometry and is the so-called Galilean geometry [Yag79]. The curious reader might

want to have a preliminary look at Figure 20 at page 40.

Also the links (the “spheres of directions”) of the points of X naturally carry a geometric

transition, which enlightens the structure of Σ itself, and will be described in Figures 25, 26

and 27 at page 48.

Finally, we remark that the statement of Theorem 1.1 can be made slightly more general

by our methods, just assuming that N is a cuboctahedral manifold, namely a hyperbolic

manifold tessellated by ideal right-angled cuboctahedra. We however chose to keep the

statement in this simpler version. See Remark 7.29 for more details.

The proof: extending Kerkhoff and Storm’s construction. The essential ingredient

for the proof of Theorem 1.1 is a deforming 4-polytope Pt ⊂ H4 parametrised by t ∈ (0, 1],

introduced by Kerckhoff and Storm [KS10]. For a particular choice of the 3-manifold N , the

hyperbolic cone structures σt that degenerate were shown to exist by Martelli and the first

author [MR18, Theorem 1.2] by gluing eight copies of Pt.
A fundamental property of Pt is that most of its dihedral angles are right for all values

of t, while the remaining dihedral angles are all equal and tend to π as t → 0, i.e. when

Pt collapses to the aforementioned cuboctahedron. The presence of many right angles is

essential in order to glue copies of Pt without creating a too complicated singular locus.

To prove Theorem 1.1, we first show that the path of hyperbolic polytopes extends for

negative times t ∈ (−1, 0) to a path of AdS polytopes with the same combinatorics of

Pt ⊂ H4 with t ∈ (0, ε], and sharing similar properties on the dihedral angles and on the

collapse. A remarkable difference is that, since the AdS metric is Lorentzian, some of the

bounding hyperplanes are spacelike, and some others timelike.

The construction is however quite complicated and involves several computations. To

prove that the combinatorics of the AdS polytopes remains constant, we needed to implement

a Sage [The17] worksheet to prove Lemma 7.8. The proof of the analogous property on

the hyperbolic side [KS10, MR18] circumvented this amount of computations relying on

Vinberg’s theory of hyperbolic polytopes with non-obtuse dihedral angles.

By opportunely rescaling Pt inside projective space along the direction of collapse, as

suggested by the work of Danciger, we show that the resulting path of rescaled projective

polytopes extends as t = 0 to a half-pipe 4-polytope. This whole deformation can be

interpreted as a geometric transition of “cone-orbifold” structures. More precisely, the subset

P×t ⊂ Pt
obtained by removing the ridges (the codimension-2 faces) with non-constant dihedral angles

has a natural structure of hyperbolic (when t > 0) or AdS (when t < 0) orbifold. To show

that these structures are linked by geometric transition, we construct an opportune half-pipe

orbifold structure on the “rescaled limit” of P×t as t→ 0.

Then, inspired by [MR18], we glue several copies of Pt in the following way. Any d-

sheeted orbifold cover N → C of the the ideal right-angled cuboctahedron naturally induces

a way to pair certain facets of d copies of Pt. When t < 0, these facets are precisely the

timelike facets of the AdS polytope. The resulting space is homeomorphic to N × [0, 1], and

its two boundary components contain all the ridges of the copies of Pt with non-constant

dihedral angle. The final step is to double this manifold, thus obtaining X = N ×S1 with a

structure of hyperbolic, or AdS, cone-manifold. The singular locus Σ consists of the union

of the copies of the ridges with non-constant dihedral angle.
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We would like to stress here a particular caveat of this construction. The fact that the

polytope Pt, suitably rescaled, converges when t→ 0 to a half-pipe polytope is not sufficient

to produce a half-pipe orbifold structure on the rescaled limit of P×t . Indeed, in contrast with

the hyperbolic or AdS case, a hyperplane in half-pipe space does not uniquely determine a

half-pipe reflection: there is a one-parameter family of reflections which fix a non-spacelike

(i.e. degenerate) hyperplane. This counterintuitive phenomenon, which often occurs in the

realm of real projective geometry, highlights the fact that half-pipe geometry is neither

Riemannian, nor pseudo-Riemannian. Hence finding the “half-pipe glueings” is somehow

subtler, and will be achieved by analysing the behaviour of the holonomy representations of

the hyperbolic and AdS structures infinitesimally, near the collapse.

This analysis of the holonomy representations “nearby” the collapse, which is important

in our construction of half-pipe structures, is one of the motivations of our work [RSa]. In

general, a half-pipe structure is never rigid, because one can always conjugate with a trans-

formation which “stretches” the degenerate direction, and obtain a new structure equivalent

to the initial one as a real projective structure, but inequivalent as a half-pipe structure. We

discover a posteriori in [RSa] that such “stretchings” are the only possible deformations of

the HP orbifold structure we found, which is therefore essentially unique.

Organisation of the paper. We first develop some tools which will be useful in the

following. In Section 2 we recall the relevant notions of geometric structures and geometric

transition in any dimension. We introduce AdS and HP cusps in Section 3, hyperplanes,

rotations and reflections in Section 4, and cone-manifolds in Section 5.

Then, we construct our examples of geometric transition. More precisely, in Section 6

we study some examples in dimension three, which are of fundamental importance to the

understanding of the four-dimensional construction. The latter is developed in Section 7,

which provides the proof of Theorem 1.1.

Acknowledgments. We are grateful to Francesco Bonsante and Bruno Martelli for inter-

esting discussions, useful advices, and encouragement. We also thank Jeffrey Danciger and

Gye-Seon Lee for interest in this work and related discussions. We owe to François Fillas-

tre and Ivan Izmestiev the observation that the transitional geometry from Euclidean to

Minkowski geometry is called Galilean geometry.

We thank the mathematics departments of Pavia, Luxembourg and Neuchâtel, for the

warm hospitality during the respective visits while part of this work was done. The stage

of this collaboration was set during the workshop “Moduli spaces”, held in Ventotene in

September 2017: we are grateful to the organisers for this opportunity.

2. Geometric transition from Hn to AdSn

In this first part of the paper, we recall the relevant notions of geometric structures and

geometric transition in any dimension, and we develop some tools which will be useful in

the following.

We start by recalling the basic definitions concerning projective structures, in particular

hyperbolic, Anti-de Sitter and half-pipe structures, and geometric transition.

2.1. (G,X)-structures. Recall that, given a Lie group G of analytic diffeomorphisms of a

manifold X, a (G,X)-structure P on a smooth manifold M consists of an atlas

A = {ϕU : U → X |U ∈ U }
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where U is an open covering ofM, the maps ϕ are diffeomorphisms onto their images, and

the transition functions are restrictions of elements of G.

Let M̃ → M the universal covering. It is well-known that a (G,X)-structure on M is

equivalent to the data of a developing map

dev : M̃ → X ,

which is a local diffeomorphism, and a holonomy representation

ρ : π1M→ G ,

satisfying the condition that dev is equivariant for the holonomy representation. The pair

(dev, ρ) is well-defined up to the action of G on such pairs, where G is acting on local

diffeomorphisms from M̃ to X by post-composition and on G-valued representations by

conjugation.

We say that a family Pt of (G,X)-structures on M is Ck if it admits a family of pairs

(devt, ρt) such that t 7→ devt ∈ C∞(M̃, X) is continuous for the Ck-norm on any compact

set of M̃, and t 7→ ρt(γ) ∈ G is Ck for every γ ∈ π1M.

2.2. Real projective structures. In this paper, we are interested in real projective struc-

tures on manifolds — namely, structures locally modelled on the real projective space Pn.

We denote by Aut(Pn) the group of projective transformations of Pn, which is identified

to PGLn+1(R).

Definition 2.1. A real projective structure on an n-manifold M is an (Aut(Pn),Pn)-

structure. A real projective manifold is a manifold endowed with a real projective strucure.

The goal of this paper is to produce families of real projective structures on a fixed

smooth manifold. Our structures will be obtained by gluing several copies of a projective

polytope. In general, (convex) polytopes are conveniently defined as the intersection of some

half-spaces (see Section 5.1). Since in Pn there is no notion of half-space, we will work with

its double cover, namely the projective sphere

Sn = {x ∈ Rn+1 r {0}}/R>0 ,

where the group R>0 acts by multiplication. We will always use the notation

x = (x0, . . . , xn) ∈ Rn+1, [x] = [x0 : . . . : xn] ∈ Sn.

The projective sphere Sn is clearly endowed with a real projective structure induced by the

double covering Sn → Pn. We will denote by Aut(Sn) the group of projective automorphisms

of Sn, which is the double cover of Aut(Pn) induced by Sn → Pn.

An affine chart is a subset of Sn defined by an equation of the form α(x) > 0, for some

nonzero linear form α ∈ Rn+1,∗. Throughout the paper, we will mostly consider the following

affine chart:

An = {[x0 : . . . : xn] ∈ Sn |x0 > 0} .
We will also denote the affine coordinates of An by

(y1, . . . , yn) =

(
x1

x0
, . . . ,

xn
x0

)
.

Remark 2.2. To be precise, in this paper we will construct families of (Aut(Sn),Sn)-structures.

Actually, for the structures we will construct, the restriction of the projection Sn → Pn on

the image of the developing map will be injective. Thus the (Aut(Sn),Sn)-structures we will

construct will be automatically equivalent to (Aut(Pn),Pn)-structures.
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Our deformations of projective structures interpolate between hyperbolic and Anti-de

Sitter structures, going through half-pipe structures. These are introduced in the following

sections.

2.3. Hyperbolic structures. We introduce the hyperbolic n-space as follows:

Hn = {[x] ∈ Sn | q1(x) < 0 , x0 > 0} ,

where q1 is the quadratic form

q1(x) = −x2
0 + x2

1 + . . .+ x2
n .

Observe that Hn is well-defined as a subset of Sn, since both conditions

q1(x) < 0 and x0 > 0

are invariant under multiplication by a positive number. By construction, Hn is contained

in the affine chart An defined in Section 2.2, and is expressed in affine coordinates as the

unit ball {y2
1 + . . .+ y2

n < 1}.
The boundary at infinity of Hn is its topological frontier:

∂Hn = {[x] ∈ Sn | q1(x) = 0 , x0 > 0} ,

which in affine coordinates is the sphere {y2
1 + . . .+ y2

n = 1}.
It is well-known that Hn carries a Riemannian metric of constant sectional curvature −1,

which is obtained by pulling-back the standard bilinear form b1 of signature (−,+, . . . ,+)

on Rn+1 (whose associated quadratic form is q1) via the immersion σ : Hn → Rn+1 which

maps the class [x] to the unique positive multiple of x such that q1(x) = −1.

It then turns out that the group Isom(Hn) of isometries of Hn, endowed with the Rie-

mannian metric σ∗b1 as above, coincides with the subgroup of Aut(Sn) which preserves

Hn ⊂ Sn. The group Isom(Hn) is also identified to an index two subgroup of O(q1), the

group of linear isometries of the quadratic form q1. In conclusion, we have the following

definition:

Definition 2.3. A hyperbolic structure on an n-dimensional manifoldM is an (Isom(Hn),Hn)-

structure.

As a consequence of the above discussion, a hyperbolic structure on M is a particular

case of real projective structure, as we can consider it as a Sn-valued atlas with transition

functions in Aut(Sn).

2.4. Anti-de Sitter structures. Let us now introduce the Anti-de Sitter n-space, in a

somewhat parallel way to Hn. We define it as:

AdSn = {[x] ∈ Sn | q−1(x) < 0} ,

where now q−1 is the quadratic form of signature (−,+, . . . ,+,−):

q−1(x) = −x2
0 + x2

1 + . . .+ x2
n−1 − x2

n .

The boundary at infinity of AdSn is then naturally defined as

∂AdSn = {[x] ∈ Sn | q−1(x) = 0} .

Remark 2.4. Anti-de Sitter space is more often defined as the image of what we defined

AdSn through the double covering Sn → Pn. Nevertheless, the polytopes we will construct

are contained in the affine chart An = {x0 > 0} (although AdSn is not), hence this choice

will make no substantial difference with the more frequent definition.
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As already said, AdSn is not contained in a single affine chart. However, we can easily

describe its intersection with An as the internal region of the one-sheeted hyperboloid

AdSn ∩ An = {y2
1 + . . .+ y2

n−1 − y2
n < 1},

while ∂AdSn ∩ An is the one-sheeted hyperboloid {y2
1 + . . .+ y2

n−1 − y2
n = 1} itself.

Similarly to Hn, the space AdSn is endowed with a metric, which is now Lorentzian,

obtained as the pull-back the standard bilinear form b−1 of signature (−,+, . . . ,+,−) on

Rn+1 by the immersion σ : AdSn → Rn+1 mapping the class [x] to the unique positive

multiple of x such that q−1(x) = −1. Again, the group Isom(AdSn) of isometries of AdSn
coincides with the subgroup of Aut(Sn) preserving AdSn, and is identified to O(q−1).

We give the following definition of Anti-de Sitter structure, which will be another partic-

ular case of projective structure:

Definition 2.5. An Anti-de Sitter (or AdS ) structure on an n-dimensional manifold M is

an (Isom(AdSn),AdSn)-structure.

2.5. Half-pipe structures. In [Dan11], Danciger introduced half-pipe geometry as a limit

(in the sense of [CDW18]; see Section 2.7) of both hyperbolic and Anti-de Sitter geometries

inside real projective geometry. Its definition is the following. Let us denote by q0 the

degenerate quadratic form on Rn+1:

q0(x) = −x2
0 + x2

1 + . . .+ x2
n−1 .

Then we define

HPn = {[x] ∈ Sn | q0(x) < 0 , x0 ≥ 0} ,
This is again well-defined by homogeneity of the two conditions, and the boundary at infinity

of half-pipe space is:

∂HPn = {[x] ∈ Sn | q0(x) = 0 , x0 ≥ 0} .
By construction, HPn is contained in the affine chart An = {x0 > 0}, where it is represented

as a solid cylinder, defined by the equation y2
1 + . . . + y2

n−1 < 1 in affine coordinates. Its

boundary at infinity is topologically a sphere, consisting of the frontier of the solid cylinder

in An and two additional points at infinity.

In analogy with the hyperbolic and Anti-de Sitter construction, we can introduce a de-

generate metric on HPn by means of the embedding of σ : HPn → Rn+1 sending [x] to the

unique positive multiple of x on which q0 takes value −1. Then one pulls-back the degener-

ate bilinear form b0 of signature (−,+, . . . ,+, 0). The symmetric 2-tensor σ∗b0 obtained in

this way actually corresponds to the splitting HPn = Hn−1 × R, where σ∗b0 coincides with

the hyperbolic metric when restricted to the first factor, and is zero whenever one of the two

arguments is in the R factor.

One would be tempted to define the transformation group of HPn as the group Aut(HPn) <

Aut(Sn) of projective transformations that preserve HPn ⊂ Sn. However, we are interested

in a more rigid geometry, which will be the limit of both hyperbolic and Anti-de Sitter

geometry. One then defines the group of half-pipe transformations as:

GHPn = {A ∈ O(q0) |A(en) = ±en , (A(e0))0 > 0} .

Here we used e0, . . . , en to denote the standard basis of Rn+1. The last condition means

that the first coordinate of A(e0) in the standard basis is positive. Together with the fact

that A ∈ O(q0), this implies that A preserves HPn ⊂ Sn.
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As a consequence of the definition, one sees that elements of GHPn are of the form:

A =


0

Â
...

0

? . . . ? ±1

 , (1)

where Â is a linear isometry for the quadratic form of signature (−,+, . . . ,+), and the stars

denote the entries of any vector in Rn. The square brackets denote the projective class of a

matrix in GLn+1(R)/R>0.

Remark 2.6. In contrast with Hn and AdSn (where in place of the strict inclusions there are

equalities), we have

GHPn ( Aut(HPn) ( Isom(HPn),

where by Isom(HPn) we denote the group of self-homeomorphisms of HPn which preserve the

degenerate symmetric 2-tensor σ∗b0. Indeed, from (1), the condition that en is eigenvector

with eigenvalue ±1 implies that A cannot “stretch” in the degenerate direction. Moreover,

the group Isom(HPn) is infinite-dimensional, and so it cannot even embed into Aut(Sn).

This finally enables us to provide the definition of half-pipe structures, which is the third

special type of projective structures of our interest:

Definition 2.7. A half-pipe (or HP) structure on an n-manifold M is a (GHPn ,HPn)-

structure.

2.6. Relation with Minkowski geometry. There are two main motivations behind this

definition of half-pipe geometry. One motivation is that half-pipe geometry is transitional

from hyperbolic to Anti-de Sitter geometry, as explained in detail in Section 2.7 below.

The other motivation comes from the fact that HPn is naturally the dual space of

Minkowski space R1,n−1, which is the vector space Rn endowed with the quadratic form

q̂(x̂) = −x2
0 + x2

1 + . . .+ x2
n−1 ,

where x̂ = (x0, . . . , xn−1). Indeed, if b̂ denotes the bilinear form of R1,n−1 whose associated

quadratic form is q̂, then any spacelike hyperplane in R1,n−1 writes as

{p ∈ R1,n−1 | b̂(p, x̂) = a} , (2)

where x̂ is a future-directed normal vector to the hyperplane, hence satisfying

q̂(x̂) = −x2
0 + x2

1 + . . .+ x2
n−1 < 0 and x0 > 0 ,

and a ∈ R. This means that the class of the pair (x̂, a) belongs to HPn. Moreover, two

pairs (x̂, a) and (x̂′, a′) determine the same spacelike hyperplane if and only if they differ by

multiplication by a positive number.

In conclusion, HPn parameterises the spacelike hyperplanes in R1,n−1. Similarly, ∂HPn

consists of a cylinder (homeomorphic to Sn−2 × R) which naturally parametrises lightlike

hyperplanes of R1,n−1, plus two additional points at infinity. Moreover, we have:

Lemma 2.8. The action of Isom(R1,n−1) on the set of spacelike hyperplanes of R1,n−1

induces a group isomorphism between Isom(R1,n−1) and GHPn .

Although this fact has already been observed, for instance in [FS19] and [BF18], we

provide a complete proof since the explicit computation of the isomorphism will be useful

in the remainder of the paper.
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Proof. Our purpose is to construct a group isomorphism

φ : Isom(R1,n−1)→ GHPn .

Let us first check that it is well-defined, i.e. its image is actually composed of elements of

GHPn . It will then be obvious from the definition that φ is a group homomorphism, and

that it is injective, since clearly only the identity element of Isom(R1,n−1) fixes all spacelike

hyperplanes.

For this purpose, we denote by (Â, v) an isometry of R1,n−1, of the form

p 7→ Â · p+ v ,

for Â ∈ O(q̂), and let us compute its action on HPn. We need to distinguish two cases.

If Â is future-preserving, namely (Â(e0))0 > 0, then the hyperplane parameterised (up to

positive multiples) by (x̂, a), namely

P = {p ∈ R1,n−1 | b̂(p, x̂) = a}

is mapped to the hyperplane

Â · P + v = {q ∈ R1,n−1 | b̂(q, Â · x̂) = a+ b̂(v, Â · x̂)} ,

which is parameterised by (Â · x̂, a+ b̂(v, Â · x̂)). From (1), this shows that (Â, v) corresponds

to the following element of GHPn :

φ(Â, v) =


0

Â
...

0

. . . vTJÂ . . . 1

 ,

where J = diag(−1, 1, . . . , 1) is the matrix which represents the bilinear form b̂. Similarly,

one checks that the induced action of (−Â, v), with (Â(e0))0 > 0, gives the following element

of GHPn :

φ(−Â, v) =


0

Â
...

0

. . . vTJÂ . . . −1

 .

It thus follows from (1) that φ is well-defined and surjective, and this concludes the proof. �

2.7. Rescaled limits and geometric transition. Let us consider the family rt ∈ Aut(Sn),

depending on the real parameter t 6= 0, defined by:

rt =

[
diag

(
1, . . . , 1,

1

t

)]
∈ GLn+1(R)/R>0 .

Let us denote by qt the quadratic form:

qt(x) = −x2
0 + x2

1 + . . .+ x2
n−1 + sign(t)t2x2

n .

(Observe that the notation is consistent with the definitions of q−1, q0, q1 in the previous

sections.) Then it follows that, for t > 0, rt(Hn) is the domain Xnt in Sn defined as follows:

Xnt = {[x] ∈ Sn | qt(x) < 0 , x0 > 0} .

In particular, Xn1 = Hn. Moreover, if we endow Xnt with a Riemannian metric induced by

the quadratic form qt as we did for Hn, then rt is an isometry between Hn and Xnt , and
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Figure 3. The transition from the ball model of Hn to the hyperboloid model of

AdSn, in an affine chart (for n = 3).

therefore conjugates the isometry group of Hn to the isometry group of Xnt :

Isom(Xnt ) = rtIsom(Hn)r−1
t .

The following lemma says that half-pipe geometry is a “limit” of hyperbolic geometry:

Lemma 2.9 ([CDW18, FS19]). When t→ 0+, the closure Xnt converges to HPn in the Haus-

dorff topology of Sn, and the groups Isom(Xnt ) converge to GHPn in the Chabauty topology

on closed subgroups of Aut(Sn).

If we project to Pn, the situation is exactly the same for t < 0. However, in our setting

there is a small difference due to the fact that we defined AdSn as the double cover of what

is usually defined as Anti-de Sitter space inside Pn (recall Remark 2.4). In particular, AdSn
is invariant by the antipodal map a = [diag(−1, . . . ,−1)] ∈ Aut(Sn) (which is in the centre

of Aut(Sn)), while HPn is contained in the affine chart {x0 > 0} and is therefore clearly not

invariant by a. Nevertheless, if we define, for t < 0:

Xnt = {[x] ∈ Sn | qt(x) < 0} ,

then again r|t| defines an isometry between AdSn and Xnt endowed with the Lorentzian

metric induced by qt, so that

Isom(Xnt ) = r|t|Isom(AdSn)r−1
|t| .

Similarly to the hyperbolic case, we have:

Lemma 2.10 ([CDW18, FS19]). When t→ 0−, Xnt ∩ An converges to HPn, and the groups

Isom(Xnt ) converge to a central Z/2Z-extension of GHPn by means of the antipodal map.

See also Figure 3. Motivated by this construction, we have the following definition of

geometric transition:

Definition 2.11. [Dan13, Definition 3.8] Given an n-dimensional manifold M, a geomet-

ric transition on M from hyperbolic to Anti-de Sitter structures is a continuous path

{Pt}t∈(−ε,ε) of real projective structures on M such that Pt is conjugate to a hyperbolic

structure for t > 0, to a half-pipe structure for t = 0, and to an Anti-de Sitter structure for

t < 0.

In fact, the geometric transitions we construct in this paper will be C1 deformations of

geometric structures.

Remark 2.12. Theorem 1.1 shows that there exists a cusped hyperbolic 3-manifold N , a

foam Σ ⊂ X = N × S1, and a geometric transition on the 4-manifold M = X r Σ (see
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Corollary 7.26). As in [Dan11, Dan13], the geometric structures of M extend to X with

some special kinds of singularities along Σ. Such singular structures will be described in

Section 5.2.

2.8. A recipe to construct examples. A direct way to construct examples of geometric

transition from hyperbolic to Anti-de Sitter structures, which is essentially the strategy we

will use in this paper, is the following. Observe that there is an isometric embedding ι of

Hn−1 into both Hn and AdSn, which is given by:

ι([x0 : . . . : xn−1]) = [x0 : . . . : xn−1 : 0] . (3)

Hence ι(Hn−1) is a totally geodesic hyperplane in Hn (resp. AdSn), whose image is Hn ∩
{xn = 0} (resp. AdSn∩{xn = 0}∩{x0 > 0}), and the embedding ι extends to an embedding

of ∂Hn−1 into ∂Hn (resp. ∂AdSn). The same formula (3) defines also a copy of Hn−1 inside

HPn.

In fact, observe that the subgroup

G0 =




0

Â
...

0

0 . . . 0 ±1


∣∣∣∣ Â ∈ O(q̂), (Â(e0))0 > 0

 , (4)

is simultaneously a subgroup of Isom(Hn), Isom(AdSn) and GHPn in Aut(Sn), composed

precisely of those elements of Isom(Hn), Isom(AdSn) and GHPn which preserve the image of

ι. The group G0 is isomorphic to Isom(Hn−1)×Z/2Z. The reflection r = diag(1, . . . , 1,−1),

along the hyperplane ι(Hn−1) of Hn, AdSn, or HPn is indeed central. The group G0 is also

isomorphic to O(q̂), the isomorphism being given by

ri

[
Â 0

0 1

]
∈ G0 7→ (−1)iÂ ∈ O(q̂) (5)

for i = 0, 1. We will sometimes implicitly use this isomorphism in the paper.

With these premises, one then constructs a continuous family of projective structures Pt

on a manifold M, with pairs developing map-holonomy (devt, ρt) such that:

• For t > 0, devt takes values in Hn and ρt in Isom(Hn);

• For t < 0, devt takes values in AdSn and ρt in Isom(AdSn);

• When t → 0±, devt converges to a submersion d0 with image in ι(Hn−1), which

is h0-equivariant for a representation h0 of π1M into the subgroup G0 preserving

ι(Hn−1).

Then by applying the projective transformations r|t|, the pair (r|t| ◦ devt, r|t|ρtr
−1
|t| ) de-

termines a path of projective structures which, by construction, are conjugate to a hyper-

bolic structure when t > 0, and to an Anti-de Sitter structure when t < 0. If the pair

(r|t| ◦ devt, r|t|ρtr
−1
|t| ) converges to a pair developing map-holonomy (dev0, ρ0), then, as a

consequence of Lemma 2.9 and Lemma 2.10, this will determine a half-pipe structure onM.

3. Geometry of the cusps

Since the cone-manifolds of Theorem 1.1 are cusped, in this section we introduce the

notion of cusp in AdS and half-pipe manifolds.

3.1. Horospheres. Let us start with the notion of horosphere in the three geometries of

our interest.
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Figure 4. Hyperbolic, half-pipe, and Anti-de Sitter horospheres in an affine chart.

Definition 3.1. A horosphere in Hn is a smooth surface H ⊂ Hn which is orthogonal to all

the geodesics with the same endpoint p ∈ ∂Hn. A horosphere in AdSn is a smooth timelike

surface H ⊂ AdSn which is orthogonal to all the spacelike geodesics with the same endpoint

p ∈ ∂AdSn.

Since there is no notion of orthogonality in HPn, the half-pipe notion is slightly different.

Definition 3.2. A horosphere in HPn is the union of all the degenerate lines going through

a hyperbolic horosphere Ĥ contained in a spacelike hyperplane.

See Figure 4 to visualise the horospheres in the affine models of Hn, HPn and AdSn. In

each of the three geometries, we call boundary at infinity of a horosphere H the set

∂∞H = H rH

(here H denotes the closure of H in Sn), which consists of a single point in ∂Hn for the

hyperbolic case, a pair of antipodal points in ∂AdSn for the AdS case, and of a closed interval

in ∂HPn for the half-pipe geometry.

In fact, in terms of the duality with R1,n−1, a horosphere in HPn can be described as

the space of all spacelike hyperplanes in R1,n−1 whose normal vector (which is a point of

Hn−1) lies in a horosphere of dimension n − 2. Hence the boundary at infinity of a half-

pipe horosphere consists of a degenerate (vertical) line, which corresponds to all lightlike

hyperplanes in R1,n−1 containing the same lightlike direction, plus the two additional points

which lie outside the affine chart An.

3.2. Metric expressions and upper half-space models. Let us now give a parameteri-

sation of horospheres and recover their Euclidean, Minkowski, or Galilean geometry. Recall

that we defined

Xnt = {[x] ∈ Sn | qt(x) < 0} ,
where

qt(x) = −x2
0 + x2

1 + . . .+ x2
n−1 + t|t|x2

n .

For t 6= 0, Xnt is endowed with a pseudo-Riemannian metric (Riemannian for t > 0 and

Lorentzian for t < 0) of constant curvature −1, given by pulling back the bilinear form bt
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on Rn+1 associated to qt by the embedding that sends [x] to the unique positive multiple of

x on which qt takes the value −1. Let us thus consider the embedding

ηt : Rn−1 → Rn+1

given by

ηt(y2, . . . , yn) = (ft(y2, . . . , yn) + 1, ft(y2, . . . , yn), y2, . . . , yn) ,

where the function ft : Rn−1 → R is given by

ft(y2, . . . , yn) =
1

2
(y2

2 + . . .+ y2
n−1 + t|t|y2

n) .

(Note that ft is determined by the condition qt ◦ ηt ≡ −1.) By pulling back the bilinear

form bt = −dx2
0 + dx2

1 + . . .+ t|t|dx2
n, we obtain

η∗t bt = dy2
2 + . . .+ dy2

n−1 + t|t|dy2
n .

In particular we obtained:

• for t = 1, a horosphere in Hn is isometric to Euclidean space Rn−1;

• for t = −1 a horosphere in AdSn is isometric to Minkowski space R1,n−2;

• for t = 0 a horosphere in HPn is isometric to Rn−1, endowed with a degenerate

metric of signature + . . .+ 0 (the pull-back of the degenerate metric of HPn).

In all cases, we have

p = [1 : 1 : 0 : . . . : 0] ∈ ∂∞ ηt(Rn−1).

In fact, applying the projective transformation rt one sees that the half-pipe horosphere

which is the image of η0 is the rescaled limit of hyperbolic and AdS horospheres.

With a little more effort, we can use the embeddings ηt to obtain an upper half-plane

model for the spaces Xt. Let us define a parameterization ζt : R>0 × Rn−1 → Xnt (this is

only a local parameterization if t < 0, see Remark 3.4 below):

ζt(y1, . . . , yn) =



1
2

(
y1 + 1

y1

)
1
2

(
y1 − 1

y1

)
0 . . . 0

1
2

(
y1 − 1

y1

)
1
2

(
y1 + 1

y1

)
0 . . . 0

0 0 1
...

...
. . .

0 . . . . . . 1


ηt

(
y2

y1
, . . . ,

yn
y1

)
. (6)

A tedious but elementary computation shows that

ζ∗t bt =
dy2

1 + . . .+ dy2
n−1 + t|t|dy2

n

y2
1

.

Remark 3.3. To explain how the expression (6) is obtained, let us observe that the big matrix

in Equation (6) is an isometry for every Xnt , translating along the geodesic x2 = . . . = xn = 0,

which is orthogonal to the horosphere parameterised by ηt.

Hence ζt provides a upper half-space model for Hn (t = 1), AdSn (t = −1) and HPn

(t = 0). It is moreover evident that the multiplication of the last coordinate by |t| provides

an isometry between the upper half-space model for Xnt and Hn (if t > 0) and for Xnt and

AdSn (if t < 0). The (spacelike, for the AdS and HP case) geodesics with endpoint at infinity

p = [1 : 1 : 0 : . . . : 0] are represented by vertical lines, as expected.

Remark 3.4. The upper half-space model for AdS3 has been described in [Dan11, Appendix

A], although obtained in a different way. We remark here that, with our definition of AdSn,

the upper half-space model only covers a part of AdSn — roughly speaking, half of AdSn.
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A little trick to visualise a larger portion is to allow y1 ∈ R r {0} in the parameterization

ζ−1. In this way, one gets a parameterization of the complement of the lightlike hyperplane

{x0 = x1} as the union of the upper half-space and the lower half-space. However, the

boundary at infinity is somewhat more complicated to describe in this model.

3.3. Cusps. From the upper half-space models we constructed, we see that every isometry

of Hn or AdSn which preserves a horosphere H acts on H by isometries for its intrinsic

(Euclidean or Minkowski) metric. Conversely, every isometry of H extends uniquely to a

global isometry.

Given a horosphere H of Xnt , we thus define:

• for t = 1, the subgroup P1 := StabHn(H) ∼= Isom(Rn−1) of Isom(Hn);

• for t = −1, the subgroup P−1 := StabAdSn ∼= Isom(R1,n−2) of Isom(AdSn);

• for t = 0, the subgroup P0 := StabHPn(H)∩StabHPn(p) of GHPn , for some p ∈ ∂∞H
that is not a vertex of the closed interval ∂∞H.

The third point needs some explication. First, recall that the boundary at infinity of a

half-pipe horosphere does not consist of a single point, but of a closed interval. It is for this

reason that we need to specify that P0 is the stabiliser of both H and p ∈ ∂∞H. Moreover,

the condition that p is an interior point of ∂∞H means that p is not one of the two points

which lie outside the affine chart An (the two points at infinity in Figure 4). In other words,

in the usual duality with Minkowski space, p corresponds to a lightlike hyperplane in R1,n−1.

The geometry (G,X) = (P0, H) of a half-pipe horosphere H is called Galilean geometry

[Yag79]. It can be checked that P0 is the limit of r|t|P1r
−1
|t| and r|t|P−1r

−1
|t| . In other words,

Galilean geometry is transitional between Euclidean and Minkowski geometry.

Remark 3.5. It turns out that P0 is isomorphic to the semidirect product Isom(Rn−2)nRn−1.

(An explicit geometric interpretation can be given using the duality with Minkowski space.)

We omit the precise details here, as we will explain concretely some examples of interest for

this paper — see Example 3.8 below.

We are now ready for the definition of cusp in each of the three cases.

Definition 3.6. A cusp in a hyperbolic (resp. Anti-de Sitter, half-pipe) manifold is a region

isometric to the quotient of {y1 > 1} in the upper half-space model, by a subgroup Γ of P1

(resp. P−1, P0) acting properly and co-compactly on H = {y1 = 1}.

Remark 3.7. By a standard computation, one sees that a cusp in a hyperbolic or Anti-de

Sitter manifold has finite volume. For half-pipe geometry, there is a canonical volume form

as well [FS19], and in the same way it is immediate to check that the volume of a cusp is

finite also in this case.

Example 3.8. Simple examples are toric cusps, where Γ ∼= Zn−1 lies in the normal subgroup

Rn−1 of P1, P−1, or P0, and the section H/Γ is a Euclidean, Minkowski, or Galilean (n −
1)-torus, respectively. In hyperbolic geometry, Zn−1 acts by translations on a Euclidean

horosphere, where the standard generators of Zn−1 are linearly independent translations.

Exactly the same construction goes through for the AdS case for actions on Minkowski

horospheres.

Let us now provide a similar example for half-pipe geometry. Recall that a horosphere

H in HPn is the product of a horosphere Ĥ in Hn−1 and the degenerate direction, in the

standard decomposition HPn ∼= Hn−1×R. We let Zn−1 act on H in the following way. The

first n−2 standard generators γ1, . . . , γn−2 act on Ĥ by translation as above. We now define

the action of the remaining generator γn−1. Suppose Ĥ is obtained as the intersection of
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the hyperboloid in R1,n−1 with a lightlike hyperplane parallel to w⊥, where w is a lightlike

vector in R1,n−1 and w⊥ is its orthogonal complement with respect to the Minkowski bilinear

form b̂. Then we let γn−1 act by translation by (a multiple of) w.

We now check, by means of the duality with Minkowski geometry (see Section 2.6), that

this action of Zn−1 is faithful. Indeed, in the dual Minkowski picture, γ1, . . . , γn−2 act as

x 7→ Â · x ,

where Â is a linear isometry such that Â · w = w. The generator γn−1 acts as

x 7→ x+ λw

for some λ ∈ R. Since Â ·w = w, it is clear that these actions commute. The resulting group

Γ < P0 thus provides an example of toric cusp in a half-pipe manifold.

The examples of geometric transition we construct in the second part of the paper will

be examples of hyperbolic/Anti-de Sitter/half-pipe manifolds with cusps. We will describe

the geometry of the cusps, and their transition, in terms of the geometric structures induced

on the quotient of a horosphere, as in Section 7.3. We will therefore be able to visualise the

corresponding transition from Euclidean to Minkowski structures of codimension one.

4. Half-spaces, reflections and rotations

In this section, we describe the behaviour of hyperplanes and half-spaces under geometric

transition and introduce projective reflections. Finally, we introduce rotations, boosts and

their infinitesimal analogues in half-pipe geometry.

4.1. Dual projective sphere. Let us introduce the necessary notation.

A hyperplane (resp. subspace) H ⊂ Sn of the projective sphere is the image through the

quotient map Rn+1r{0} → Sn of a linear hyperplane (resp. subspace) of Rn+1. A half-space

H ⊂ Sn of the projective sphere is the closure of one of the two connected components of

Sn r H, where H is a hyperplane. In other words, a half-space is the closure of an affine

chart (see Section 2.2).

The dual projective sphere is defined as

Sn,∗ = {α ∈ Rn+1,∗ r {0}}/R>0 ,

where Rn+1,∗ is the vector space of linear forms on Rn+1. We will use coordinates with

respect to the dual basis of the standard basis, namely the basis {e∗0, . . . , e∗n} defined by

e∗i (x0, . . . , xn) = xi. We will also denote elements of Sn,∗ by

(α) = (α0 : . . . : αn) ∈ Sn,∗

if α = α0e
∗
0 + . . . + αne

∗
n. The dual projective sphere Sn,∗ is identified to the space of

half-spaces in Sn, by associating to the class of a linear form α the half-space defined by:

H = {[x] ∈ Sn |α(x) ≤ 0 } .

By a small abuse of notation, we will sometimes denote a half-space H ⊂ Sn with the

corresponding point (α) ∈ Sn,∗ of the dual sphere.

The following elementary lemma will be useful to control the behaviour of half-spaces

under geometric transition.

Lemma 4.1. Let H = (α0 : . . . : αn) be a half-space in Sn. Then for every t > 0, the

half-space rtH has coordinates

rtH =
(α0

t
: . . . :

αn−1

t
: αn

)
.
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Proof. Recall that the projective transformation rt is defined by

rt =

[
diag

(
1, . . . , 1,

1

t

)]
.

Given [x] = [x0 : . . . : xn], then [x] ∈ rtH if and only if [x] = rt([x
′]) for some [x′] ∈ H;

namely:

[x0 : . . . : xn−1 : xn] =

[
x′0 : . . . : x′n−1 :

x′n
t

]
,

where [x′0 : . . . : x′n−1 : x′n] satisfies the defining condition for H, namely:

α0x
′
0 + . . .+ αnx

′
n ≤ 0 .

By multiplying by 1/t, this is equivalent to

α0

t
x0 + . . .+

αn−1

t
xn−1 + αnxn ≤ 0 .

This proves the claim. �

Definition 4.2. A half-space (resp. hyperplane, subspace) in Xnt is a nonempty intersection

of Xnt with a half-space (resp. hyperplane, subspace) of Sn.

4.2. Hyperplanes in Hn and AdSn. We shall now provide a geometric description of

hyperplanes and half-spaces in Hn, AdSn and HPn. Let us start with the hyperbolic space.

We have the following simple lemma.

Lemma 4.3. Given a half-space H = (α) of Sn, ∂H intersects Hn if and only if

q1(α0, . . . , αn) > 0 .

Proof. It is well-known that a hyperplane in Rn+1 intersects Hn if and only if its orthogonal

complement for the bilinear form b1 (whose associated quadratic form is q1), seen as a line in

Minkowski space R1,n, is spacelike. Compared to our lemma, there is only one small caveat:

when choosing the dual basis of Rn+1,∗ as {e∗0, . . . , e∗n}, we are essentially using the standard

Euclidean product to identify Rn+1,∗ with Rn+1. On the other hand, taking the orthogonal

complement in R1,n corresponds to choosing the basis {−e∗0, e∗1, . . . , e∗n−1, e
∗
n}. However, the

two choices differ by the following change of coordinates

(α0, α1, . . . , αn) 7→ (−α0, α1, . . . , αn)

which is an isometry for the quadratic form q1. Hence Lemma 4.3 follows. �

By the same reason, we can also use the usual formulae to compute the dihedral angle

between two half-spaces:

Lemma 4.4. Given α, α′ such that q1(α), q1(α′) < 0 let H = (α) and H ′ = (α′) be the

corresponding half-spaces. The hyperplanes ∂H and ∂H ′ intersect transversely in Hn if and

only if

|b1(α, α′)| <
√
|q1(α)|

√
|q1(α′)| .

In this case, the dihedral angle θ between the half-spaces H and H ′ satisfies

cos θ = − b1(α, α′)√
|q1(α)|

√
|q1(α′)|

.

One can also find similar formulae for the Anti-de Sitter case. It turns out that every

hyperplane ∂H in Sn intersects AdSn non-trivially. Moreover, recall that a hyperplane in

Anti-de Sitter space is called spacelike, timelike or lightlike if the induced bilinear form is

positive definite, indefinite or degenerate, respectively. One then has the following charac-

terisation:
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Lemma 4.5. Let H = (α0 : . . . : αn) be a half-space of Sn. Then ∂H ∩ AdSn is:

• Spacelike if q−1(α0, . . . , αn) < 0. In this case, ∂H ∩ AdSn consists of two discon-

nected totally geodesic copies of Hn−1.

• Timelike if q−1(α0, . . . , αn) > 0. In this case, ∂H ∩ AdSn consists of a totally

geodesic copy of AdSn−1.

• Lightlike if q−1(α0, . . . , αn) = 0.

One can then compute angles between hyperplanes by a direct formula in terms of the

bilinear form b−1. We provide here the formula for the case of two spacelike hyperplanes.

We recall that the angle between two spacelike hyperplanes in a Lorentzian space is

a number ϕ ∈ [0,+∞), which is defined as the distance in a copy of Hn−1 between the

two points corresponding to the two future unit normal vectors in the tangent space at an

intersection point. This notion of angle is used in Lemma 4.6 below. See also Figure 5.

Lemma 4.6. Given α, α′ such that q−1(α), q−1(α′) < 0 let H = (α) and H ′ = (α′) be the

corresponding half-spaces. The hyperplanes ∂H and ∂H ′ intersect transversely in AdSn if

and only if

|b−1(α, α′)| >
√
|q−1(α)|

√
|q−1(α′)| .

In this case, the angle ϕ between the hyperplanes ∂H and ∂H ′ satisfies the equation:

coshϕ =
|b−1(α, α′)|√

|q−1(α)|
√
|q−1(α′)|

,

where the sign of b−1(α, α′) is negative if H ∩H ′ contains timelike segments with endpoints

in ∂H ∩ ∂H ′, and positive otherwise.

We also need to briefly analyse the situation for the intersection between two timelike

hyperplanes. See also Figure 6.

Lemma 4.7. Given α, α′ such that q−1(α), q−1(α′) > 0 let H = (α) and H ′ = (α′) be

the corresponding half-spaces. The hyperplanes ∂H and ∂H ′ always intersect in AdSn.

Moreover:

• The intersection is spacelike (i.e. a totally geodesic copy of Hn−2) if and only if

|b−1(α, α′)| >
√
|q−1(α)|

√
|q−1(α′)| .

• The intersection is timelike (i.e. a totally geodesic copy of AdSn−2) if and only if

|b−1(α, α′)| <
√
|q−1(α)|

√
|q−1(α′)| .

4.3. Hyperplanes in half-pipe geometry. Let us now move to the case of hyperplanes

in half-pipe space. In this case, we have two types of hyperplanes: spacelike hyperplanes,

for which the induced bilinear form is positive definite (these are isometrically embedded

copies of Hn−1), and degenerate hyperplanes, for which the induced bilinear form is indeed

degenerate. These two types are detected by the following lemma.

Lemma 4.8. A half-space H = (α0 : . . . : αn) in Sn intersects HPn if and only if αn 6= 0

or q0(α0, . . . , αn) > 0. In this case, the hyperplane ∂H ∩ HPn is:

• Spacelike if αn 6= 0. In this case, ∂H ∩ HPn consists of a copy of Hn−1.

• Degenerate if αn = 0 and q0(α0, . . . , αn) > 0. In this case, ∂H ∩ HPn consists of a

copy of HPn−1.

Proof. If αn = 0, then H is of the form

H = {(x̂ : xn) | x̂ ∈ Ĥ, xn ∈ R} ,
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Figure 5. In an affine chart for Anti-de Sitter space, the two possibilities (above and

below in the same figure) for the configuration of H and H′ as in Lemma 4.6.

Figure 6. The two possibilities for the intersection of two timelike planes in AdS3: a
timelike (left) or spacelike (right) line.

where Ĥ is a half-space of Sn−1 defined by the condition α0x0+. . .+αn−1xn−1 ≤ 0. Hence in

the affine chart An, H is the product of a half-space in An−1 ⊂ An and R. Since HPn can be

regarded in An as the product of Hn−1×R, the condition that H intersects HPn is equivalent

to the condition that Ĥ intersects Hn−1, which by Lemma 4.3 is −α2
0 +α2

1 + . . .+α2
n−1 > 0,

or equivalently,

q0(α0, . . . , αn) > 0 .

In this case, for each x̂ ∈ Ĥ, the “vertical” line {(x̂, t) | t ∈ R} is in ∂H and its tangent space

coincides with the kernel of the degenerate form σ∗b0 (see Section 2.5). Hence ∂H ∩HPn is

degenerate, namely it is vertical in the affine chart An. See Figure 7, on the right.

The other case is thus αn 6= 0. In this case, the sign of αn determines whether H is

unbounded in the positive or negative xn direction. In fact, up to multiplying by a positive
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Figure 7. Hyperplanes in the affine (cylindric) model of HPn: on the left, two space-

like hyperplanes, on the right, a degenerate hyperplane.

number, we can assume

H = (α0 : . . . : αn−1 : ±1) .

For instance, if αn = 1, we get that H is defined by the condition

α0x0 + . . . αn−1xn−1 + xn ≤ 0 ,

and therefore ∂H is given by the condition

α0x0 + . . . αn−1xn−1 + xn = 0 . (7)

This shows that ∂H ∩ HPn is transverse to the degenerate direction, and it is therefore of

spacelike type. �

Remark 4.9. This discussion also gives a deeper insight into the duality between HPn and

Minkowski space. Recall that, as mentioned in Section 2.6, any point of HPn corresponds

to a spacelike hyperplane in Minkowski space R1,n−1. Dually, any spacelike hyperplane ∂H

of HPn corresponds to a point in R1,n−1, which turns out to be the intersection point of all

the spacelike hyperplanes associated to points of ∂H. Such a dual point is easily computed:

if the hyperplane ∂H in HPn is determined by the equation

α0x0 + . . .+ αn−1xn−1 + xn = 0 ,

then its dual point is

p = (α0,−α1, . . . ,−αn−1) .

Moreover, this correspondence is again natural with respect to the action of the isometry

groups GHPn and Isom(R1,n−1).

As a consequence of the above remark, the condition that two spacelike hyperplanes

H,H ′ ⊂ HPn intersect is equivalent to the condition that the two dual points p and p′ in

R1,n−1 belong to the same spacelike hyperplane. Indeed, every point in the intersection

H ∩H ′ corresponds to a spacelike hyperplane in R1,n−1 which contains both p and p′. See

also Figure 8. This shows the following:

Lemma 4.10. Given α̂, α̂′ such that q̂(α̂), q̂(α̂′) < 0, consider the half-spaces H = (α̂ : 1)

and H ′ = (α̂′ : 1). The hyperplanes ∂H and ∂H ′ intersect transversely in HPn if and only

if α̂− α̂′ is a spacelike segment in Minkowski space.
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Figure 8. A sheaf of hyperplanes in HPn (on the left) corresponds to the points of

R1,n−1 lying on a spacelike line ` (on the right). Viceversa, the intersection of the sheaf
is in bijection with the spacelike hyperplanes containing `.

Recall that we denote by q̂ the quadratic form of signature (−,+, . . . ,+) on Rn, viewed

as the subspace of Rn+1 defined by the vanishing of the last coordinate.

In [Dan13] a notion of angle between spacelike hyperplanes in HPn was introduced, which

is the infinitesimal version of dihedral angles in Hn and AdSn under the geometric transition

we described above. In this setting, it is easy to give a definition of dihedral angle between

two spacelike hyperplanes:

Definition 4.11. Given two HP spacelike half-spaces defined by H = (α̂ : 1) and H ′ =

(α̂′ : 1) (i.e. such that q̂(α̂), q̂(α̂′) < 0), the angle between ∂H and ∂H ′ is the number

ψ =
√
q̂(α̂− α̂′) ∈ [0,+∞) .

In other words, the angle is defined as the length of the segment connecting the two dual

points, which is spacelike by Lemma 4.10. In Section 4.4 below we show that this notion

actually coincides with the infinitesimal version of the angles between hyperplanes in Hn
and AdSn.

4.4. Rotations, boosts, and their infinitesimal analogues. In this section we briefly

introduce rotations and their analogues in AdS geometry (boosts) and in half-pipe geometry

(infinitesimal rotations). This will be relevant for our Theorem 1.1, because the holonomy

of the geometric structures on a peripheral loop around the singular locus Σ will consists of

these elements.

Definition 4.12. A rotation (resp. boost or infinitesimal rotation) is a non-trivial orientation-

preserving element of Isom(Hn) (resp. Isom(AdSn) or GHPn) which fixes point-wise a co-

dimension two subspace (which is required to be spacelike, for AdSn and HPn).

If r is such a rotation (resp. boost or infinitesimal rotation), the angle associated to r is

defined as the angle between H and r(H), where H is any (spacelike) hyperplane containing

Fix(r).

Remark 4.13. To motivate the existence of infinitesimal rotations in HPn, recall Lemma

4.10 and Figure 8. Two intersecting spacelike hyperplanes correspond precisely to two

points α̂, α̂′ ∈ R1,n−1 which are spacelike separated. Hence any translation in R1,n−1 in the
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direction of α̂− α̂′ induces an infinitesimal rotation r of HPn, which fixes the points of HPn

corresponding to spacelike hyperplanes P containing α̂− α̂′.
Observe that r also fixes pointwise an entire degenerate hyperplane in HPn, corresponding

to all the translates of the hyperplanes P as above. This is a qualitative difference with

respect to hyperbolic and AdS geometries.

We now briefly show that the infinitesimal angle in half-pipe geometry is exactly the

infinitesimal version of angle in Hn and AdSn. Let rt be a smooth family of rotations of

angle θ(t) with θ(0) = 0. Up to isometries, we assume that

rt =


1 0 . . . 0

0
. . .

...
... cos θ(t) sin θ(t)

0 . . . − sin θ(t) cos θ(t)

 .

That is, rt is a rotation which fixes the codimension two totally geodesic subspace defined

by xn−1 = xn = 0, and sends the hyperplanes xn = 0 to another hyperplane forming an

angle θ(t). By a direct computation, one sees that

lim
t→0

rtrtr
−1
t =


1 0 . . . 0

0
. . .

...
... 1 0

0 . . . −θ̇ 1

 ,

which is a half-pipe infinitesimal rotation, corresponding under the usual isomorphism with

Isom(R1,n−1) to a translation of the vector (0, . . . , 0,−θ̇). Hence in the limit the angle of the

infinitesimal rotation is |θ̇|, by Definition 4.11. The computation can be done analogously

for a boost in Anti-de Sitter space by replacing sin and cos by sinh and cosh, respectively.

This argument also explains the name “infinitesimal rotation”, introduced in [Dan13].

4.5. Reflections along hyperplanes. More generally, the holonomy group of our geo-

metric structures will be generated by compositions of reflections through the bounding

hyperplanes of the polytopes that we will glue. In this section, we describe half-pipe limits

of reflections in Hn or AdSn.

Definition 4.14. A (projective) reflection is a non-trivial involution r ∈ Aut(Sn) that fixes

point-wise a hyperplane.

Note that in Isom(Hn) and Isom(AdSn) there is a unique reflection fixing a given hyper-

plane. This turns out not to be true in half-pipe geometry. Since this point will be very

relevant in the following, let us explain this phenomenon more precisely.

Let H be a degenerate hyperplane in HPn, as in the second point of Lemma 4.8. In the

duality with Minkowski space, H corresponds to the set of all the spacelike hyperplanes

P in R1,n−1 having normal vector in a totally geodesic hyperplane of Hn−1, which is of

the form w⊥ ∩ Hn−1, where w is some spacelike vector in R1,n−1 and w⊥ is its orthogonal

complement for the Minkowski product. Now, every reflection of R1,n−1 in a spacelike

hyperplane orthogonal to w leaves (set-wise) invariant each such hyperplane P . See Figure

9.

In summary, the above argument shows the following proposition, which is a remarkable

difference with respect to hyperbolic and AdS geometry.
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P1

w

wT

P2

Figure 9. The argument of Proposition 4.15: Minkowski reflections in hyperplanes
parallel to w⊥ (in grey) leave set-wise invariant every spacelike hyperplane (like P1 and

P2 in the figure) having normal vector in w⊥ ∩ Hn−1 (this intersection is pictured as a

hyperbola here). They all induce half-pipe reflections fixing a degenerate hyperplane, as
in Figure 7 on the right.

Proposition 4.15. Given any degenerate hyperplane in HPn, there is a one-parameter

family of reflections in GHPn which fix the hyperplane pointwise.

On the other hand, for spacelike hyperplanes uniqueness of the half-pipe reflection holds:

Proposition 4.16. Given any spacelike hyperplane in HPn, there is a unique reflection in

GHPn which fix the hyperplane pointwise.

To see this, recall that a spacelike hyperplane H in HPn corresponds to all the spacelike

hyperplanes P in R1,n−1 which contain a given point p, and we can assume that p is the

origin. If an isometry (Â, v) of R1,n−1 fixes (set-wise) all the hyperplanes P going through

the origin, it must also fix the origin itself, hence it must be linear (i.e. the translation part v

is trivial). Since it fixes timelike normal directions, then Â is either id or −id. In conclusion,

the unique half-pipe reflection fixing H is (−id, 0).

5. Polytopes and cone-manifolds

In this section, we provide some additional tools to prove Theorem 1.1. We first in-

troduce projective polytopes and simple projective cone-manifolds. Then, we describe the

singularities of such cone-manifolds in the hyperbolic, AdS, and HP cases by means of the

(G,X)-structures given by the links of points.

5.1. Polytopes. We now introduce our main tool to provide examples of transition. Recall

Section 4 about half-spaces of the projective sphere.

Definition 5.1. An n-dimensional projective polytope is a finite intersection of half-spaces

P = H1 ∩ . . . ∩HN ⊂ Sn

in the projective sphere such that the interior of P is non-empty.
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We will always assume that the set of half-spaces defining P is minimal, that is, there is

no Hi containing the intersection of the remaining half-spaces. In this case, each ∂Hi is

called a bounding hyperplane of P.

The polytope P is naturally stratified into k-faces, k = 0, . . . , n, as follows. The unique

n-face is P itself. The (n− 1)-faces, called facets, are given by Fi = P ∩ ∂Hi, i = 1, . . . , N .

Now, each facet Fi is a projective (n − 1)-polytope. The (n − 2)-faces of P, called ridges,

are by definition the facets of each Fi. One proceeds inductively in this way, until reaching

the 1-faces, called edges, and the 0-faces, called vertices. The combinatorics of a polytope

P is (the isomorphism class of) the poset of the faces of P, ordered by set inclusion.

Given a point p ∈ P, we have p = [v] for some v ∈ Rn+1 r {0}. Each (possibly none)

half-space Hi such that p ∈ ∂Hi determines a half-space of the projective sphere Sn−1

over the quotient vector space Rn+1/〈v〉. The link of the point p is the (n− 1)-dimensional

projective polytope Lp ⊂ Sn−1 defined as the intersection of such half-spaces. (If p is in the

interior of P, then Lp is nothing but Sn−1.)

The polytope P is said to be simple if every k-face is contained in exactly (n−k) bounding

hyperplanes. Equivalently, the link of each vertex is a simplex.

Definition 5.2. A hyperbolic (resp. half-pipe or Anti-de Sitter) polytope is a non-empty

subset

P̂ = P ∩Hn (resp. P̂ = P ∩ HPn or P̂ = P ∩ AdSn),

where P ⊂ Sn is a projective polytope.

5.2. Simple projective cone-manifolds. The process of geometric transition typically

involves a path of singular geometric structures. In this section, we describe such structures

in the special case of Theorem 1.1.

We call stratified manifold a topological n-manifold X together with a stratification, that

is a partition

X = X [0] t . . . t X [n]

such that X [k] is an embedded k-manifold with empty boundary. The connected components

of X [k] are called k-strata.

Let us fix n half-spaces H1, . . . ,Hn ⊂ Sn such that the hyperplanes ∂H1, . . . , ∂Hn are

in general position. The intersection

P = H1 ∩ . . . ∩Hn ⊂ Sn

is a simple projective polytope (see Section 5.1).

Let us now consider the double D(P) of P, that is, the space obtained from two copies of P
by identifying the two copies of ∂P through the map induced by the identity. Note that D(P)

is homeomorphic to the n-sphere. By considering the natural stratification P [0] t . . . t P [n]

of P induced by its faces, we define the following stratification of D(P):

• D(P)[k] = P [k] for k ≤ n− 2,

• D(P)[n−1] = ∅,
• D(P)[n] = D(P [n−1] ∪ P [n]).

Recalling now Section 2.2 about projective stuctures, we note that for k ≤ n − 2 each

k-stratum is a projective manifold homeomorphic to Rk, while the n-stratum D(P)[n] does

not have a preferred projective structure. Choosing for each i ∈ {1, . . . , n} a projective

reflection ri (recall Definition 4.14) that fixes the hyperplane ∂Hi, we have a well defined

projective structure also on D(P)[n].

We call D the double D(P) together with its stratification and such an additional pro-

jective structure on each of its strata. This will be the local model for our cone-manifolds.
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Definition 5.3. A simple projective cone-manifold is a stratified manifold X with an atlas of

stratum-preserving charts, each with values in someD constructed as above, whose transition

functions restrict to an isomorphism of projective manifolds on each stratum.

Remark 5.4. One could give a much more general definition of “projective cone-manifold”,

by induction on the dimension. We do not need this here. However, our notion of simple

projective cone-manifold includes the one introduced by Danciger in his works on geometric

transition. In contrast with the projective cone-manifolds of Theorem 1.1, the ones consid-

ered in [Dan11, Dan13, LMR19] are stratified as X = X [n] t X [n−2]. In other words, the

singular locus Σ ⊂ X is a codimension-two submanifold.

We note that each stratum of such a cone-manifold X is a real projective manifold. The

set

Σ = X [0] ∪ . . . ∪ X [n−2]

is called the singular locus of X , while X [n−1] = ∅ and X [n] = X r Σ (which is the unique

n-stratum if X connected) is called the regular locus of X . The singular locus Σ is an

(n− 2)-complex with generic singularities: Σ is empty if n = 1, a discrete set if n = 2, and

is locally modelled on the cone over the (n− 3)-skeleton of an (n− 1)-simplex if n ≥ 3. In

particular, Σ is a trivalent graph if n = 3, and a so called foam if n = 4.

Given a point p ∈ X r Σ, we define its link Lp to be the sphere of directions at p of the

projective manifold X r Σ, that is, the projective sphere Sn−1 over the tangent space at

p. If instead p ∈ Σ, we define its link Lp to be the double of the link (see Section 5.1) of

a corresponding point in ∂P through a chart. The link Lp is naturally a simple projective

cone-manifold homeomorphic to the (n− 1)-sphere.

For example, if X has dimension n = 2, then Lp is a projective circle, which is equivalent

to S1 if and only if p is non-singular. If n = 3, then Lp is a cone 2-sphere with 0, 2, or 3

singular points, depending on whether p belongs to a 3-, 1-, or 0-stratum, respectively. If

n = 4, the singular locus of the cone 3-sphere Lp is empty, an unknotted cicle, an unknotted

theta graph, or the 1-skeleton of a tetrahedron, depending whether p belongs to a 4-, 2-, 1-,

or 0-stratum, respectively.

The holonomy representation and developing map of a projective cone-manifold X are by

definition those of its regular locus. The holonomy ρ(γ) of a meridian γ ∈ π1(X r Σ) of an

(n− 2)-stratum is conjugated to a product of reflections rirj ∈ Aut(Sn) that fix a common

(n− 2)-subspace of Sn.

5.3. The hyperbolic, AdS, and HP case. We are interested in some special classes of

simple projective cone-manifolds:

Definition 5.5. A simple projective cone-manifold X is said to be hyperbolic (resp. half-pipe

or Anti-de Sitter) if

• each chart has values in some D(P̂) ⊂ D(P) = D, where P̂ = P ∩ Hn (resp.

P̂ = P ∩ HPn or P̂ = P ∩ AdSn);

• for eachD, the reflections r1, . . . , rn belong to Isom(Hn) (resp. GHPn or Isom(AdSn));

• the transition functions restrict to isometries (resp. GHP-isomorphisms, isometries)

on the strata.

A simple AdS or HP cone-manifold has spacelike singularities if every bounding hyper-

plane of each P̂ is spacelike.

We refer to [BLP05] (see also [Thu98, CHK00, McM17]) for the general definition of

hyperbolic cone-manifold, and to [BBS11] for the 3-dimensional AdS case.
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Recall now Section 4.4 about rotations, boosts and their infinitesimal counterpart. Given

an n-dimensional simple projective cone-manifold X , the holonomy of a meridian of an

(n− 2)-stratum is conjugated to:

• a rotation in Isom(Hn) if X is hyperbolic,

• a boost in Isom(AdSn) if X is Anti-de Sitter and Σ is spacelike,

• their infinitesimal version in GHPn if X is half-pipe and Σ is spacelike.

In such cases, to each (n − 2)-stratum is thus associated a number: the angle of rotation

is called cone angle, the angle of the boost (with opposite sign) is called magnitude, and

that of the infinitesimal rotation (again with opposite sign) is called infinitesimal cone angle,

respectively. The sign convention is consistent with [Dan11, Dan13], where roughly speaking

the negative sign corresponds to the fact that the singularity is a “defect” with respect to

the non-singular case. We refer to [Dan13, Sections 2.5 and 4.2] for more details.

The transitional 3-dimensional AdS cone-manifolds in [Dan11, Dan13] have spacelike

singularities — said “with tachyons” [BBS11], being each 1-stratum a spacelike geodesic, i.e.

a “particle faster than light”. In this case, the holonomy representation at a meridian is a

AdS boost which fixes pointwise a spacelike geodesic.

The local structure of a point p ∈ X is determined by its link Lp. We now briefly describe

the situation in the three cases of interest for us.

In hyperbolic geometry. Given a point x ∈ Hn, we have StabHn(x) ∼= O(n), and the link of

x can be identified to the round sphere. Simple hyperbolic cone-manifolds can be defined

as manifolds locally modelled on the hyperbolic cone [BH11] over a spherical cone-manifold

one dimension less, which is the double of a spherical simplex.

In Anti-de Sitter geometry. The analogous geometry for AdSn has been introduced in

[BBS11], where it is called HS geometry. By identifying TxAdSn with R1,n−1, the link

of a point x ∈ AdSn is called HSn−1, and is a projective (n − 1)-sphere identified with the

space of rays in R1,n−1. The stabiliser StabAdSn(x) is identified to O(1, n− 1). The sphere

HSn−1 is partitioned into (see Figure 10–right):

• the region of timelike rays, which corresponds to two copies of Hn−1;

• the region of spacelike rays, which is a copy of de Sitter space dSn−1;

• the set of lightlike rays, which is the common boundary of the two latter regions

and is topologically the disjoint union of two (n− 2)-spheres.

An HS-structure is by definition an (O(1, n − 1),HSn−1)-structure. An HS manifold is

thus partitioned into a hyperbolic region, a de Sitter region, and a null locus. In analogy with

the hyperboic case, simple AdS cone-manifolds are locally modelled on the AdS suspension

[BBS11] over the double of an HS simplex of one dimension less. In the AdS case with

spacelike singularities, the facets of the HS simplex are contained in the de Sitter region of

HSn−1 and are spacelike.

In half-pipe geometry. The stabiliser inGHPn of a point x ∈ HPn is isomorphic to Isom(Rn−1)×
Z/2Z. To see this, recall that by the usual duality (Section 2.6), the stabiliser of a point in

HPn is the same as the stabiliser of a spacelike hyperplane P in Isom(R1,n−1). The Z/2Z
factor is generated by a reflection in P , while Isom(Rn−1) corresponds to Euclidean isome-

tries of H which extend to R1,n−1 by preserving setwise each component of R1,n−1rP . The

link of a point in HPn is thus endowed with a (G,X)-structure, where X is an (n−1)-sphere

identified to the set of rays in TxHP
n, and G = StabHPn(x) is the stabiliser of x as described

above. Note that such a (G,X)-structure has some distinguished points, which correspond
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Figure 10. The link of a point in a hyperbolic, half-pipe, or Anti-de Sitter n-manifold.

In the hyperbolic case (left), we have the round sphere Sn−1. In the AdS case (right),

the link is called HSn−1, and is subdivided into two timelike regions (copies of Hn−1),
one spacelike region (copy of the de Sitter space dSn−1), and two lightlike (n − 2)-

spheres. In the HP case (centre), we have just a sphere with two marked antipodal points,

corresponding to the degenerate direction. In the transition from AdS to hyperbolic
geometry the two timelike regions shrink to points and then disappear.

to the degenerate rays exiting from x. These are well-defined since they are preserved by

the action of G (see Figure 10–centre).

Analogously to the hyperbolic and AdS case, one can visualise the link of a point in a

simple half-pipe cone-manifold as the double of a simplex in the space of rays in TxHP
n. If

the singularity Σ is spacelike, then the facets of such simplex are spacelike.

Remark 5.6. We omit the details here, but (similarly to Remark 3.5) it can be seen directly

that the rescaled limits of the point stabilisers StabHn(x) and StabAdSn(x) are point stabilis-

ers in half-pipe geometry. Hence a geometric transition from hyperbolic to AdS geometry

on simple projective cone-manifolds induces a geometric transition from spherical to HS

cone structures, going through the analogous structure for half-pipe geometry. This can be

visualised in Figure 10 for non-singular points, and in Figures 25, 26, 27 for singular points

in dimension four (as in Theorem 1.1).

6. Warm up in dimension three

We are ready to build explicitly some examples of geometric transition. Section 6 is a

warm up in dimension three, while in Section 7 we prove Theorem 1.1.

In this section, we describe two examples of 3-dimensional geometric transition from

hyperbolic to an Anti-de Sitter structures, going through a half-pipe structure. These will

serve as a toy model for the 4-dimensional geometric transition constructed in Section 7.

In contrast with the deformations studied in [Dan13] and [Dan14], where the 3-manifold is

closed and the singular locus is a knot, our examples are cusped and the singular locus is

either a link or a trivalent graph. We will not provide all the proofs in this section, since

they will actually follow from the results we prove in dimension four; the reader can also see

the survey paper [Sep20] for more details on some examples in dimension two and three.

6.1. Singularity along a link. Consider an ideal right-angled octahedron O0 ⊂ H3, with

the natural colouring of its facets in black and white in the chequerboard fashion. By

doubling O0 along its white faces, and then doubling the resulting manifold with boundary,

we get [KM13, Figure 2] a well-known complete, finite-volume, hyperbolic 3-manifold M
homeomorphic to the complement in S3 of the minimally twisted 6-chain link (see Figure

11). Note that M is tessellated by four copies of the octahedron O0.
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Figure 11. The minimally twisted 6-chain link in the 3-sphere. Its complement M
is hyperbolic, and can be tessellated by four ideal right-angled octahedra. By 0-surgery

on the two red components, we get a Dehn filling X of M homeomorphic to S0,4 × S1,
where S0,4 is a 4-times punctured sphere.

Figure 12. The polyhedron Oθ ⊂ H3. The white dots represent ideal vertices, the
black edges are right-angled, and the red edges have dihedral angle θ ∈ (0, π). As θ → 0,

the red edges disappear, and we have the original ideal octahedron O0. As θ → π, the

polyhedron collapses to the horizontal ideal quadrilateral Q. By rescaling and continuing
the path, we have similarly an AdS polyhedron with the same combinatorics and the same

convention on the dihedral angles, where now the quadrliateral faces are spacelike, and

the triangular ones are timelike. The polyhedron Oθ (and its AdS version) is isometric
to a facet FX , X ∈ {A, . . . ,F }, of the 4-polytope Pt of Section 7. The quadrilateral

faces are the ridges R
Xi+

of Pt, while the triangular faces are the ridges of type R
Xi−

(see the end of Section 7.2 for the notation).

Let us now deform O0 by a path θ 7→ Oθ ⊂ H3 of polyhedra described in Figure 12,

where the two red edges have varying dihedral angle θ and all the remaining edges are right-

angled, while the white dots represent ideal vertices. Geometric models of this deformation

are shown in Figure 13. The polyhedron Oθ exists for all θ ∈ (0, π) by Andreev’s Theorem

[And70a, And70b]. As θ → 0, the red edges shrink and go to infinity, and we have the

original octahedron O0.

More concretely, Oθ can be defined as the intersection in S3 of the half-spaces in Table 1,

for t ∈ (0, 1), using the notation introduced in Section 4.1. It can be checked directly that

the correct orthogonality relations hold, and that the relation between the angle θ and the

parameter t ∈ (0, 1) (by applying Lemma 4.4 to the first and third vector in the left column,

for instance) is given by:

cos θt =
3t2 − 1

1 + t2
.

By deforming simultaneously in this way each copy of O0 in M, we get a Dehn filling

X of the hyperbolic 3-manifold M, i.e. X r Σ is homeomorphic to M for a link Σ ⊂ X
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Figure 13. A movie of the collapse of the polyhedron Oθ in an affine chart (Klein

model of H3), from the ideal octahedron O0 to the ideal quadrilateral Q.

(
−|t| : −

√
2|t| : 0 : −1

)
,

(
−1 : −

√
2 : 0 : +t

)
,(

−|t| : 0 : −
√

2|t| : +1
)
,

(
−1 : 0 : −

√
2 : −t

)
,(

−|t| : +
√

2|t| : 0 : −1
)
,

(
−1 : +

√
2 : 0 : +t

)
,(

−|t| : 0 : +
√

2|t| : +1
)
,

(
−1 : 0 : +

√
2 : −t

)
.

Table 1. The half-spaces defining the deformation of the right-angled ideal octahe-

dron, expressed as elements of S3,∗. When t < 0, we have an AdS polyhedron.

(see Figure 11). Each component of Σ is the double of a red edge of Oθ. Moreover, the

deformation describes a path of hyperbolic cone-structures on X with cone angles 2θ along

Σ, converging to the hyperbolic manifold M as θ → 0.

The path of polyhedra is arranged in such a way that the four ideal vertices of Oθ stay

fixed, and belong to ∂H2 ⊂ ∂H3 for the fixed hyperplane H2 = {x3 = 0} ⊂ H3 — this

arrangement is indeed used in Table 1 and in Figure 13. In particular, we have a fixed

ideal quadrilateral Q = Oθ ∩ H2. As θ → π, the polyhedron Oθ collapses to the polygon

Q. The corresponding cone-manifolds collapse to the hyperbolic four-punctured sphere S0,4

obtained by doubling Q. Note that there is a homeomorphism Oθ → Q× [−1, 1] wich sends

the quadrilateral faces to Q×{1,−1} and the triangular faces to ∂Q× [−1, 1]. It follows that

X is homeomorphic to S0,4×S1. (In particular, X does not admit any complete hyperbolic

structure.)

The reader can check that when t ∈ (−1, 0), the polyhedron defined in Table 1 is Anti-

de Sitter, its quadrliateral faces are spacelike, and the triangular ones are timelike. All the

edges are right-angled, with the exception of the red ones (which are spacelike). By rescaling

the polyhedron in the direction of collapse, i.e. orthogonally to the plane H2 ⊂ H3, we get

transition from hyperbolic to AdS polyhedra with constant combinatorics. In the limit half-

pipe polyhedron, the triangular faces are degenerate. The path of rescaled polyhedra is

easily computed by applying Lemma 4.1 and pictured (in an affine chart) in Figure 14.

The essential point to prove the transition at the level of geometric structures on M is

to show that for every plane in the list of Table 1 (which depends on the parameter t), if rt
is the hyperbolic (for t > 0) or AdS (for t < 0) reflection in the given plane, then rtrtr

−1
t

converges to a half-pipe reflection when t→ 0 (with the same limit for t→ 0+ and t→ 0−).

This essentially shows the convergence at the level of holonomy representations, since the

holonomy of any element of π1(M) is obtained by composition of a finite number of such
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Figure 14. In an affine chart, the rescaled path of polyhedra for t ≤ 0. In the left

figure (t=0), the polyhedron is in half-pipe space and the triangular faces are degenerate

(vertical). In the middle picture, an AdS polyhedron with timelike triangular faces and
spacelike quadrilateral faces. When t = −1 (in the right), the faces become lightlike

and the polyhedron is inscribed in the one-sheeted hyperboloid which is the boundary at

infinity of AdS3.

reflections. This point is certainly non-trivial in general since, as we explained in Section

4.13, a (degenerate) plane in HP3 does not determine uniquely a half-pipe reflection.

Although all the previous statements can be verified directly, we avoid detailed computa-

tions, since everything follows from the fact that, as θ ≥ π
2 , the polyhedron Oθ is a facet of

the 4-polytope introduced in Section 7 (see also Remark 7.2 for the case θ < π
2 ), and meets

the adjacent facets of the 4-polytope orthogonally (see Propositions 7.3, 7.10, 7.11 and 7.12

in the sequel).

In particular, we get (all the details follow from the proof of Theorem 1.1 in Section 7):

Proposition 6.1. There exists a C1 family {σt}t∈(−1,1] of simple projective cone-manifold

structures on the 3-manifold X = S0,4 × S1, singular along a link Σ with two components,

such that σt is conjugated to a geodesically complete, finite-volume

• hyperbolic cone structure with decreasing cone angles 2θt ∈ (0, 2π) as t > 0,

• half-pipe structure with spacelike singularity as t = 0,

• Anti-de Sitter structure with spacelike singularity of increasing magnitude ϕt ∈
(−∞, 0) as t < 0.

As t → 1, we have 2θt → 0 and the hyperbolic structures on M = X r Σ converge to

the complete one. As t → 0+ (resp. t → 0−), we have 2θt → 2π (resp. ϕt → 0) and the

hyperbolic (resp. AdS) structures degenerate to the hyperbolic structure of S0,4 = Double(Q).

6.2. Singularity along a graph. Let now S0,3 be the hyperbolic thrice punctured sphere.

Similarly to the previous section, we now provide an example of 3-dimensional transition

where the singular locus is a theta-graph:

Proposition 6.2. There exists a C1 family {σs}s∈(−1,ε] of simple projective cone-manifold

structures on the 3-manifold X = S0,3 × S1, singular along a theta-graph Σ, such that σs is

conjugated to a geodesically complete, finite-volume

• hyperbolic orbifold structure with cone angles π as s = ε > 0,

• hyperbolic cone structure with decreasing cone angles ϑs ∈ [π, 2π) as s > 0,

• half-pipe structure with spacelike singularity as s = 0,

• Anti-de Sitter structure with spacelike singularity of increasing magnitude φs < 0 as

s < 0.
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Figure 15. A facet F
i− , i− ∈ {0−, . . . ,7−}, of the 4-polytope of Section 7 (see the

end of Section 7.2 for the notation). The white dots represent ideal vertices, the black
edges are right-angled, and the red edges have dihedral angle θ ∈ [π

2
, π). As θ → π, the

polyhedron collapses to the horizontal ideal triangle. By rescaling and continuing the

path, we have similarly an AdS polyhedron with the same combinatorics and the same
convention on the dihedral angles, where now the three vertical triangular faces (ridges

of the 4-polytope of type R
i−X

) are timelike, while the horizontal ideal triangle (the

ridge R
i−i+

of the 4-polytope) and the remaining three quadrilateral faces (ridges of

type R
i−j+

) are spacelike.

Figure 16. The collapse of the polyhedron Fϑ of Section 6.2, in the Klein model of

H3. The leftmost polyhedron turns out to be also the rescaled limit, inside HP3.

As s→ 0+ (resp. s→ 0−), we have ϑs → 2π (resp. φs → 0) and the hyperbolic (resp. AdS)

structures on X r Σ degenerate to the complete hyperbolic structure of S0,3.

Consider indeed the polyhedron Fϑ in Figure 15, where the red edges have varying dihe-

dral angle ϑ
2 ∈ [π2 , π) and the black edges are right-angled. Again, the path ϑ 7→ Fϑ can be

arranged so that the three ideal vertices stay fixed. As ϑ→ 2π, the polyhedron collapses to

the horizontal ideal triangle T , which is a face of Fϑ for all ϑs ∈ [π, 2π). Figure 16 gives a

geometric picture.

Similarly to the previous section, for s < 0 we have a path of AdS polyhedra collapsing

to T , and by rescaling opportunely the two paths are joined by a half-pipe polyhedron with

the same combinatorics. Again, the black edges are constantly right-angled. In the AdS

side, the three vertical triangular faces are timelike, while the remaining three quadrilateral

faces (and the ideal triangle T ) are spacelike. In the half-pipe limit, the triangular faces are

degenerate.

By doubling Fϑ along the three vertical triangular faces, and then doubling the resulting

manifold with boundary, we get the desired transition on a 3-manifold homeomorphic to

S0,3×S1 (where S0,3 is the double of T ), with singularity along a theta-graph (which is the

double of the red locus in Fϑ).

Again, all these statements can be proved directly, but will follow from the fact that Fϑ
is isometric to a facet of the 4-dimensional polytope of Section 7.
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0+ =
(
−
√

2 |t| : +|t| : +|t| : +|t| : +1
)
, 0− =

(
−
√

2 : +1 : +1 : +1 : −t
)
,

1+ =
(
−
√

2 |t| : +|t| : −|t| : +|t| : −1
)
, 1− =

(
−
√

2 : +1 : −1 : +1 : +t
)
,

2+ =
(
−
√

2 |t| : +|t| : −|t| : −|t| : +1
)
, 2− =

(
−
√

2 : +1 : −1 : −1 : −t
)
,

3+ =
(
−
√

2 |t| : +|t| : +|t| : −|t| : −1
)
, 3− =

(
−
√

2 : +1 : +1 : −1 : +t
)
,

4+ =
(
−
√

2 |t| : −|t| : +|t| : −|t| : +1
)
, 4− =

(
−
√

2 : −1 : +1 : −1 : −t
)
,

5+ =
(
−
√

2 |t| : −|t| : +|t| : +|t| : −1
)
, 5− =

(
−
√

2 : −1 : +1 : +1 : +t
)
,

6+ =
(
−
√

2 |t| : −|t| : −|t| : +|t| : +1
)
, 6− =

(
−
√

2 : −1 : −1 : +1 : −t
)
,

7+ =
(
−
√

2 |t| : −|t| : −|t| : −|t| : −1
)
, 7− =

(
−
√

2 : −1 : −1 : −1 : +t
)
,

A =
(
−1 : +

√
2 : 0 : 0 : 0

)
, B =

(
−1 : 0 : +

√
2 : 0 : 0

)
,

C =
(
−1 : 0 : 0 : +

√
2 : 0

)
, D =

(
−1 : 0 : 0 : −

√
2 : 0

)
,

E =
(
−1 : 0 : −

√
2 : 0 : 0

)
, F =

(
−1 : −

√
2 : 0 : 0 : 0

)
.

Table 2. The half-spaces in S4 that define the projective polytope Pt are given by
these elements of S4,∗ and denoted by the same symbols. We will often omit the depen-

dence in t in the symbols i+, i− and X, to simplify the notation.

7. Transition in dimension four

In this section we prove Theorem 1.1, giving as a byproduct also rigours to the assertions

of the previous section about 3-dimensional transition.

7.1. A deforming polytope. Recall Section 4 about half-spaces of the projective sphere

Sn, and Section 5.1 about projective polytopes. We define

Pt ⊂ S4

to be the intersection of the 22 half-spaces listed in Table 2, depending on the time parameter

t ∈ I =
(
−1, 1√

3

]
.

We set

I− =
(
− 1, 0

)
, I+ =

(
0, 1√

3

]
,

and

Pt =

{
Pt ∩H4 when t ∈ I+ ∪ {0},
Pt ∩ AdS4 when t ∈ I− ∪ {0}.

We will see that this last definition is well posed as t = 0. It will be clear later that Pt is

the closure in S4 of Pt.
When t ∈ I+, each element (α) ∈ S4,∗ in the list of Table 2 satisfies q1(α) > 0, and thus by

Lemma 4.3 defines a half-space of H4. When t ∈ I+, the set Pt ⊂ H4 is indeed a hyperbolic

4-polytope, first introduced in [KS10] and then studied in [MR18]. The set of half-spaces

of Table 2 is minimal for t 6= 0; in other words, none of them contains any other — this

is shown in [MR18, Proposition 3.3] for t ∈ I+ and holds for t ∈ I− by a straightforward

adaptation of the proof.
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Throughout the remainder of the paper, we will denote

ι(H3) = {x4 = 0} ⊂ H4,HP4,AdS4,

simply as H3, where the isometric embedding ι is defined by (3) in Section 2.8. As t→ 0+,

the polytope Pt collapses to a 3-dimensional polytope in the hyperplane H3 ⊂ H4.

Proposition 7.1 ([KS10, MR18]). When t ∈ I+, the set Pt is a finite-volume hyperbolic

4-polytope, whose combinatorics does not depend on t ∈ I+. The set P0 is a finite-volume

3-polytope in H3 ⊂ H4.

In the next sections, we will show that when t ∈ I− the behaviour of Pt is analogue, in

the AdS setting, to that when t ∈ I+ given by Proposition 7.1.

Remark 7.2. The path t 7→ Pt ⊂ H4 of hyperbolic polytopes extends beyond t = 1√
3

to all

t ∈ (0, 1]. When t > 1√
3

the combinatorics changes a few times, and moreover when t > 1√
2

the volume becomes infinite. This whole path of hyperbolic polytopes was discovered by

Kerckhoff and Storm [KS10].

The smaller polytope P1 ∩G ∩H is the ideal right-angled 24-cell, where the half-spaces

G = (−1 : 0 : 0 : 0 : −
√

2) and H = (−1 : 0 : 0 : 0 :
√

2) correspond to two opposite facets.

The partition

{0+, . . . ,7+} t {0−, . . . ,7−} t {A, . . . ,H}
gives the standard 3-colouring of the facets of the 24-cell: if two hyperplanes belong to the

same octet, then they are disjoint in H4.

Moreover, it is easily checked that all the orthogonality relations that occur when t = 1

between any two vectors in Table 2 are maintained for all t ∈ (−1, 1], with respect to the

bilinear form of signature −+ + + + when t ∈ [0, 1), and −+ + +− when t ∈ (−1, 0].

7.2. Combinatorics of the polytope. The main goals here are to prove that when t ∈ I−
the set Pt ⊂ AdS4 is a deforming AdS 4-polytope, that the combinatorics of Pt is independent

on t ∈ I r {0}, and that the rescaled limit (see Section 2.7)

lim
t→0

r|t|(Pt) ⊂ HP4

is a half-pipe polytope with the same combinatorics of Pt with t 6= 0. In particular, we will

show that {r|t|(Pt)}t∈I is a path of projective 4-polytopes (extended to t = 0 by continuity)

whose combinatorics is constant. For easiness of the reader, we record the list of rescaled

half-spaces defining r|t|(Pt) in Table 3, calculated using Lemma 4.1.

All these facts will follow from the following proposition (recall that we denote by A4 the

affine chart {x0 > 0} ⊂ S4):

Proposition 7.3. The set r|t|(Pt) is contained in X4
t ∩ A4, and is a 4-polytope whose com-

binatorics does not depend on t ∈ I.

Remark 7.4. Recall Definition 2.11 of geometric transition. Proposition 7.3 implies that we

already have a transition on the interior of Pt.

Before proving Proposition 7.3, let us begin with a simple lemma.

Lemma 7.5. For all t ∈ I, the set r|t|(Pt) ⊂ S4 is a 4-polytope.

Proof. It sufficies to show that r|t|(Pt) has non-empty interior. From Table 3, a small

neighbourhood of the point [1 : 0 : 0 : 0 : 0] ∈ S4 is contained in r|t|(Pt) because the first

entry of each vector of Table 3 is negative. �
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r|t|0
+ =

(
−
√

2 : +1 : +1 : +1 : +1
)
, r|t|0

− =
(
−
√

2 : +1 : +1 : +1 : −t|t|
)
,

r|t|1
+ =

(
−
√

2 : +1 : −1 : +1 : −1
)
, r|t|1

− =
(
−
√

2 : +1 : −1 : +1 : +t|t|
)
,

r|t|2
+ =

(
−
√

2 : +1 : −1 : −1 : +1
)
, r|t|2

− =
(
−
√

2 : +1 : −1 : −1 : −t|t|
)
,

r|t|3
+ =

(
−
√

2 : +1 : +1 : −1 : −1
)
, r|t|3

− =
(
−
√

2 : +1 : +1 : −1 : +t|t|
)
,

r|t|4
+ =

(
−
√

2 : −1 : +1 : −1 : +1
)
, r|t|4

− =
(
−
√

2 : −1 : +1 : −1 : −t|t|
)
,

r|t|5
+ =

(
−
√

2 : −1 : +1 : +1 : −1
)
, r|t|5

− =
(
−
√

2 : −1 : +1 : +1 : +t|t|
)
,

r|t|6
+ =

(
−
√

2 : −1 : −1 : +1 : +1
)
, r|t|6

− =
(
−
√

2 : −1 : −1 : +1 : −t|t|
)
,

r|t|7
+ =

(
−
√

2 : −1 : −1 : −1 : −1
)
, r|t|7

− =
(
−
√

2 : −1 : −1 : −1 : +t|t|
)
,

r|t|A =
(
−1 : +

√
2 : 0 : 0 : 0

)
, r|t|B =

(
−1 : 0 : +

√
2 : 0 : 0

)
,

r|t|C =
(
−1 : 0 : 0 : +

√
2 : 0

)
, r|t|D =

(
−1 : 0 : 0 : −

√
2 : 0

)
,

r|t|E =
(
−1 : 0 : −

√
2 : 0 : 0

)
, r|t|F =

(
−1 : −

√
2 : 0 : 0 : 0

)
.

Table 3. The half-spaces in S4 defining r|t|(Pt), by a direct application of Lemma 4.1

to Table 2.

As in [KS10, MR18], we now descibe the symmetries of the polytope Pt and of its rescaled

r|t|(Pt) which are useful to reduce the number of computations. We refer to [KS10, Section

4] and [MR18, Section 3.2] for details in the hyperbolic case.

Let us introduce three auxiliary half-spaces L, M and N , defined in Equation (8). Ob-

serve that they are all left invariant by r|t|.

L = (0 : −1 : +1 : 0 : 0) ,

M = (0 : 0 : −1 : +1 : 0) ,

N = (0 : 0 : −1 : −1 : 0) .

(8)

The following projective involutions of S4

rL : [x0 : x1 : x2 : x3 : x4] 7−→ [x0 : x2 : x1 : x3 : x4],

rM : [x0 : x1 : x2 : x3 : x4] 7−→ [x0 : x1 : x3 : x2 : x4],

rN : [x0 : x1 : x2 : x3 : x4] 7−→ [x0 : x1 : −x3 : −x2 : x4],

R : [x0 : x1 : x2 : x3 : x4] 7−→ [x0 : x1 : x2 : −x3 : −x4]

commute with r|t|, preserve the hyperplane H3, and all belong to Isom(H4), GHP4 and

Isom(AdS4). As the notation suggests, rL, rM and rN are reflections along the hyperplanes

∂L, ∂M and ∂N , respectively. The map R, instead, is a rotation (called “roll symmetry”

in [KS10]). The group 〈rL, rM , rN 〉 < Aut(S4) is isomorphic to the symmetric group S4 on

4 elements.

Lemma 7.6. The maps rL, rM , rN and R preserve Pt and r|t|(Pt) for all t ∈ I. Moreover,

the set

Qt = 0+ ∩ 0− ∩ 3+ ∩ 3− ∩A ∩L ∩M ∩N ⊂ S4
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is a fundamental domain for the action of the group 〈rL, rM , rN 〉 < Aut(S4) on Pt. More-

over, r|t|(Qt) is a fundamental domain for the action of the group 〈rL, rM , rN 〉 < Aut(S4)

on r|t|(Pt).

Proof. This is already proved for t ∈ I+ in [KS10, Section 4] and [MR18, Section 3.2]. To

conclude, it suffices to observe that the action of 〈rL, rM , rN 〉 on the set of vectors in Table

2 does not depend on t ∈ I. The second statement follows as a consequence, using that r|t|
commutes with rL, rM and rN . �

Lemma 7.7. For all t ∈ I−, the sets Pt and r|t|(Pt) are contained in the affine chart A4.

Proof. Since the maps rL, rM , rN , r|t| ∈ Aut(S4) preserve the affine chart A4, it sufficies to

show that r|t|(Qt) ⊂ A4. By looking at Table 3 and Equation (8), r|t|(Qt) is defined by the

following inequalities:

−
√

2x0 + x1 + x2 + x3 + x4 ≤ 0, −
√

2x0 + x1 + x2 − x3 − x4 ≤ 0, (9)

−
√

2x0 + x1 + x2 + x3 + t2x4 ≤ 0, −
√

2x0 + x1 + x2 − x3 − t2x4 ≤ 0, (10)

−x0 +
√

2x1 ≤ 0, −x1 + x2 ≤ 0, −x2 + x3 ≤ 0, −x2 − x3 ≤ 0. (11)

Suppose by contradiction that x0 ≤ 0. By (11), we would also have x1, x2, x3 ≤ 0. Together

with the last inequality of (11), this gives x2 = x3 = 0. By the second inequality of (11),

we have also x1 = 0. By the first inequality of (11), we have also x0 = 0. Substituting

x0 = x1 = x2 = x3 = 0 in (9), we have also x4 = 0, and this is absurd. �

We will thus be free to use the affine coordinates y1, . . . , y4 of A4, where yi = xi/x0. Let

us now analyse the vertices of Pt.

Lemma 7.8. For all t ∈ I, the polytope r|t|(Pt) has 46 vertices, of which 12 belong to ∂X4
t

and 34 belong to X4
t .

Proof. This is already proven in [MR18, Proposition 3.16] for t ∈ I+, by applying toQt ⊂ H4

Vinberg’s theory of acute-angled hyperbolic polytopes [Vin85] and then by letting the group

〈rL, rM , rN 〉 act. We cannot do the same for t ∈ I− ∪ {0}, being now in the AdS (or HP)

setting, so in this case we proceed as follows.

(1) For every k = 4, 5, 6, 7, 8 and every set {H1, . . . ,Hk} of bounding hyperplanes of

r|t|(Qt), we consider the linear system in A4 defining
⋂
i ∂Hi.

(2) Every time such linear system has a unique solution, we check if the solution belongs

to r|t|(Qt).
(3) We collect all such points, which are the 13 vertices of r|t|(Qt).
(4) We check that one vertex belongs to ∂X4

t , while the remaing 12 belong to X4
t .

(5) We select the vertices of r|t|(Qt) which are vertices of Pt.
(6) We let the group 〈rL, rM , rN 〉 act on these latter points, to finally find all the vertices

of r|t|(Pt).
The final output is reported in Table 4. Although this procedure is very simple, the number

of computations is terribly big, so we omit the complete proof. The details can be checked

through a computer (see [RSb, Appendix A]). �

Note that the previous lemma implies that r|t|(Pt) ⊂ X4
t ∩A4 when t ∈ I+ ∪{0}, since in

that case X4
t ⊂ A4 is convex. We cannot directly conclude in the same way when t ∈ I−, as

X4
t ∩ A4 is not convex when t < 0.
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V0+3+0−3−AL =
(√

2
2 ,

√
2

2 , 0, 0
)
,

V0+0−AM =
(√

2
2 ,

√
2

4 ,
√

2
4 , 0

)
,

V0+0−LM =
(√

2
3 ,

√
2

3 ,
√

2
3 , 0

)
,

V0+3−AN =
(√

2
2 ,

√
2

4 (t2 + 1), −
√

2
4 (t2 + 1),

√
2

4

)
,

V0+3−LN =
(√

2 t
2+1
t2+3 ,

√
2 t

2+1
t2+3 , −

√
2 t

2+1
t2+3 ,

2
√

2
t2+3

)
,

V0+AMN =
(√

2
2 , 0, 0,

√
2

2

)
,

V0+LMN =
(
0, 0, 0,

√
2
)
,

V3+0−AM =
(√

2
2 ,

√
2

4 (t2 + 1),
√

2
4 (t2 + 1), −

√
2

2

)
,

V3+0−LM =
(√

2 t
2+1
t2+3 ,

√
2 t

2+1
t2+3 ,

√
2 t

2+1
t2+3 , −

2
√

2
t2+3

)
,

V3+3−AN =
(√

2
2 ,

√
2

4 , −
√

2
4 , 0

)
,

V3+3−LN =
(√

2
3 ,

√
2

3 , −
√

2
3 , 0

)
,

V3+AMN =
(√

2
2 , 0, 0, −

√
2

2

)
,

V3+LMN =
(
0, 0, 0, −

√
2
)
.

Table 4. The vertices of r|t|(Qt) in affine coordinates.

Lemma 7.9. For all t ∈ I, we have

r|t|(Qt) ∩ ∂X4
t = {[2 :

√
2 :
√

2 : 0 : 0]}.

Proof. This is already proven in [MR18] when t ∈ I+. So, let us assume that t ∈ I− ∪ {0}.
In affine coordinates, (9) and (11) read as:

−
√

2 + y1 + y2 + y3 + y4 ≤ 0, −
√

2 + y1 + y2 − y3 − y4 ≤ 0,

−y2 ≤ y3 ≤ y2 ≤ y1 ≤
√

2
2 .

By summing the first two equations and using the third, we get y1 = y2 =
√

2/2. This

implies y3 + y4 = 0. Now, the affine coordinates of a point in ∂X4
t satisfy

y2
1 + y2

2 + y2
3 − t2y2

4 = 1.

This implies y2
3 − t2y2

4 = 0. Together with y3 + y4 = 0, we get y3 = y4 = 0 since t2 6= 1.

This concludes the proof. �

We are finally ready to prove Proposition 7.3.

Proof of Proposition 7.3. By Lemma 7.7, r|t|(Pt) ⊂ A4. Recall that [1 : 0 : 0 : 0 : 0] ∈
r|t|(Pt) ∩ X4

t . By Lemma 7.9, the intersection r|t|(Pt) ∩ ∂X4
t consists solely of vertices of

r|t|(Pt), hence we have also r|t|(Pt) ⊂ X4
t . Thus, r|t|(Pt) ⊂ X4

t ∩ A4. The combinatorics of

r|t|(Pt) is constant by Lemma 7.8. The proof is complete. �

In contrast with Pt, the polytope Pt is simple [MR18, Proposition 3.12]. Moreover, each

ideal vertex of Pt belongs to exactly 6 facets of Pt [MR18, Proposition 3.16]. (We applied
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Figure 17. A facet F
i+

, i+ ∈ {0+, . . . ,7+}, of the 4-polytope Pt. The white dots
represent ideal vertices, the black edges are right-angled, and the yellow edges have some

other varying dihedral angle. The three red pentagons are ridges of Pt of type R
i+j+

,

and have varying dihedral angle θt or ϕt (see Proposition 7.12). Each of the three

quadrilaterals with one ideal vertex (resp. two ideal vertices) is a ridge of Pt of type

R
i+j− (resp. R

i+X
). The horizontal ideal triangle is the ridge R

i+i− .

Proposition 7.3 to conclude when t ∈ I−.) We adopt the following notation for the faces of

Pt when t 6= 0 (and similarly for the rescaled limit limt→0 r|t|Pt):
• facets: FH = ∂H ∩ Pt,
• ridges: RH1H2

= ∂H1 ∩ ∂H2 ∩ Pt,
• edges: EH1H2H3

= ∂H1 ∩ ∂H2 ∩ ∂H3 ∩ Pt,
• finite vertices: VH1...H4

= ∂H1 ∩ . . . ∩ ∂H4 ∩ Pt,
• ideal vertices: VH1...H6

= ∂H1 ∩ . . . ∩ ∂H6 ∩ Pt,
where H,Hi ⊂ S4 are half-spaces from the list in Table 2.

We conclude the section with a combinatorial description of the facets of the polytope

Pt. This follows by applying Proposition 7.3 to [MR18, Proposition 3.16], where the combi-

natorics was studied for t ∈ I+.

Proposition 7.10. For all t ∈ I, the combinatorics of each of the 22 facets FX , Fi− and

Fi+ of r|t|Pt where i ∈ {0, . . . ,7} and X ∈ {A, . . . ,F }, is described in Figures 12, 15 and

17, respectively.

7.3. Geometry of the polytope. We continue to describe the polytope Pt. Recall Sections

4.2 and 4.8 about hyperplanes and angles in Hn, AdSn and HPn. By applying Lemmas 4.5

and 4.8 to the list of vectors in Tables 2 and 3, we get:

Proposition 7.11. When t ∈ I−, each hyperplane ∂i+ ∩ AdS4 is spacelike, while each hy-

perplane ∂i−∩AdS4 and ∂X∩AdS4 is timelike, for all i ∈ {0, . . . ,7} and X ∈ {A, . . . ,F }.
Similarly when t = 0, the rescaled limits of ∂i+ are non-degenerate hyperplanes in HP4,

while the rescaled limits of ∂i− and ∂X are degenerate hyperplanes.

We will also need the following:

Proposition 7.12. The constant dihedral angles of Pt are right. The non-constant ones

equal θt ∈ [π2 , π) when t ∈ I+, and ϕt ∈ (0,+∞) when t ∈ I−, where

cos θt =
3t2 − 1

1 + t2
and coshϕt =

3t2 + 1

1− t2
.

A ridge is compact if and only if its dihedral angle is non-constant, and such ridges consist

precisely of Ri+j+ for all distinct i+, j+ ∈ {0+, . . . ,7+} such that i ≡ j (mod 2).
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i+j+
k-

X

i+j+

k+

l- j+
i+

k+

l+
i-

i+

j+

j-X

Y

Figure 18. The links of the vertices of Pt (see Proposition 7.13). When t ∈ I+ (resp.

t ∈ I−) the link of an ideal vertex is a Euclidean (resp. Minkowski) right paralleleped,

and the link of a finite vertex is a spherical tetrahedron (resp. de Sitter tetrahedron
with spacelike facets). The black edges are right-angled, and the red edges have varying

dihedral angle.

Proof. This is proven for t ∈ I+ in [MR18, Proposition 3.10]. Such ridges are compact also

when t ∈ I− by Proposition 7.3. By applying Lemma 4.6 to the list of vectors in Table

2, we conclude also for t ∈ I−. (In fact, we have already observed in Remark 7.2 that the

orthogonality between the vectors of Table 2 is maintained when t ∈ (−1, 0) for the bilinear

form of signature −+ + +−.) �

We now describe the links of the vertices of Pt, whose geometric structures have been

described in Section 3 for ideal vertices and Section 5 for finite vertices. These are depicted

in Figures 18, 19 and 20 and described by the following proposition:

Proposition 7.13. The 46 vertices of Pt are divided by the similarity class of their link in:

• 12 ideal vertices of type Vi+i−j+j−XY ,

• 24 finite vertices of type Vi+j+k−X ,

• 8 finite vertices of type Vi+j+k+`− ,

• 2 finite vertices of type Vi+j+k+`+ ,

The link of each ideal vertex is a rectangular parallelepiped (which in a horospherical section

is Euclidean when t ∈ I+, and Minkowski when t ∈ I−), while the link each finite vertex is

a tetrahedron (which is spherical when t ∈ I+, and HS when t ∈ I−). A similar statement

holds for the rescaled limit limt→0 r|t|Pt in the half-pipe setting.

Proof. These facts are proven in [MR18, Proposition 3.16] for t ∈ I+. By applying Propo-

sitions 7.3, 7.11 and 7.12, we conclude also for t ∈ I− and for the rescaled limit. �

As a consequence of Proposition 7.13, we get:

Corollary 7.14. When t ∈ I−, the Anti-de Sitter polytope Pt ⊂ AdS4 has finite volume.

The same holds for the half-pipe polytope limt→0 r|t|(Pt) ⊂ HP4.

Proof. By Proposition 7.1, when t ∈ I+ the hyperbolic polytope Pt has finite volume.

Equivalently, each edge of Pt joins two (finite or ideal) vertices of Pt. By Proposition 7.3,

this last fact also holds in AdS4 when t ∈ I− and in HP4 for the rescaled limit. By truncating

the ends of Pt (resp. limt→0 r|t|(Pt)) with horospheres (see Section 3.1), we have decomposed

the polytope in a compact part plus 12 regions, each isometric to the fundamental domain

of a cusp in an Anti-de Sitter (resp. half-pipe) 4-manifold (see Definition 3.6). Therefore

(see Remark 3.7), the polytope has finite volume. �
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Figure 19. The link of an ideal vertex of Pt, obtained by intersecting Pt with a
horosphere. The further intersection with H3, which is constant in t, is a rectangle

(shaded in the picture). When t → 0, the rectangular parallepiped collapses to this

rectangle.

Figure 20. After rescaling, the geometry of the link of an ideal vertex transitions from

Euclidean (left) to Minkoskian (right), via Galilean geometry (centre). The intersection
with the fixed copy of H3 is shaded. This is an example of the transition explained in

Section 3.2.

7.4. Orbifold transition. Roughly speaking, a (G,X)-orbifold is a space locally modelled

on quotients of X by finite subgroups of G. We refer to [Thu79, Cho04] for the details.

The geometry of Pt gives the complement of the ridges with non-constant dihedral angle

(see Proposition 7.12) a natural structure of orbifold (this is different, but somehow related,

to the concept of “mirror polytope” [Mar17, CLM20]), and this fact will be convenient in

the sequel.

Let us first prove a preliminary lemma. Recall Section 4.5 about reflections and their

limits. For the sake of clarity, we will make explicit the dependence of the half-spaces of

Table 2 in t, by a subscript Ht.

Lemma 7.15. For every half-space H of Table 2, let rH = rH(t) be the reflection in

Isom(H4) for t ∈ I+ and in Isom(AdS4) for t ∈ I− which fixes ∂H. Then r|t|rH(t)r−1
|t|

extends to a C1 path in Aut(S4) for t ∈ I− ∪ {0} ∪ I+.

Observe that Lemma 7.15 does not follow immediately from the convergence of the hyper-

planes r|t|(∂Ht) to a half-pipe hyperplane because, as remarked in Section 4.13, in half-pipe

geometry there is not a uniquely determined reflection in a hyperplane.

Proof. Let us start by the case H = i− ∈ i ∈ {0−, . . . ,7−}. For t ∈ I+, the hyperbolic

reflection ri− (for which we will make explicit the dependence on t) can be written as the

matrix

ri−(t) = id− 2J1αi(t)αi(t)
T , (12)
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where J1 = diag(−1, 1, 1, 1, 1) and

αi(t)
T =

1√
1 + t2

(
−
√

2,±1,±1,±1,±t
)

is obtained from the vector defining i− (see Table 2) by normalising with respect to the

Minkowski product of R1,4. (The signs in the ± symbols are fixed once and forever according

to the choice of i−.) Indeed, one can check (using that αi(t)
TJ1αi(t) = 1) that the expression

of Equation (12) maps J1αi(t) to its opposite, whereas it fixes every v ∈ ∂i−, since v satisfies

αi(t)
T v = 0.

Similarly, when t ∈ I− the AdS reflection can be expressed as

ri−(t) = id− 2J−1αi(t)αi(t)
T , (13)

where J−1 = diag(−1, 1, 1, 1,−1) and

αi(t) =
1√

1− t2
(
−
√

2 : ±1 : ±1 : ±1 : ±t
)
.

Hence we get the expression (for t 6= 0):

r|t|ri−(t)r−1
|t| = id− 2

[
Jsign(t)r|t|αi(t)

] [
r−1
|t| αi(t)

T
]
.

The term in the first square bracket thus reads for both t > 0 and t < 0 as the column

vector:
1√

1 + t|t|

(√
2 : ±1 : ±1 : ±1 : ±1

)
while the second square bracket has the form (horizontal vector):

1√
1 + t|t|

(
−
√

2 : ±1 : ±1 : ±1 : ±t|t|
)
.

Since both extend C1 to t = 0, so does r|t|ri−(t)r−1
|t| .

For H = X ∈ X ∈ {A, . . . ,F }, the path r|t|rXr−1
|t| is actually constant, since X does

not depend on t and it can be easily checked that the hyperbolic and AdS reflections,

expressed as in Equations (12) and (13), coincide and commute with r|t|. Finally, for the

case H = i+ ∈ {0+, . . . ,7+}, when t ∈ I− there is a small difference in the formula of

Equation (12), which now becomes

ri+(t) = id + 2J−1αi(t)αi(t)
T , (14)

due to the fact that the i− are timelike while the i+ are spacelike, and again the rescaled

limit is the same as for t ∈ I+. With this caveat, it can be checked directly that all the

entries in r|t|ri+(t)r−1
|t| are, up to constants, either of the form 1/

√
1 + t|t| or of the form

t|t|/
√

1 + t|t|, and thus the path is C1 in Aut(S4). �

From the proof of Lemma 7.15, we see also that the convergence is not C2.

Remark 7.16. The proof of Lemma 7.15 enables us to compute also the limits of r|t|rH(t)r−1
|t| ,

as t→ 0 in the half-pipe group GHP4 . In fact, for the reflections along the hyperplanes i−,

we obtain immediately

lim
t→0

r|t|ri−(t)r−1
|t| =


0

id− 2Jviv
T
i

...

0

. . . ±2vTi . . . 1

 = φ(ri,∓2Jvi) , (15)
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where we put vTi = (−
√

2,±1,±1,±1) (namely, the first four terms of the corresponding

vector in Table 2, and ri = id − 2Jviv
T
i is the reflection in H3 in the plane determined by

vi, for J = diag(−1, 1, 1, 1). The sign in Equation (15) depends on the oddity of i, since it

follows from the sign in the last entry of αi(t), and in fact the correct sign is (−1)i+1. In

the last equality, we applied the isomorphism φ of Lemma 2.8.

For any half-space X ∈ {A, . . . ,F }, the same computation shows easily that

lim
t→0

r|t|rXr−1
|t| = φ(rX , 0) ,

where rX is now interpreted as the reflection in H3 associated to the plane H3 ∩ ∂X.

Finally, for the half-spaces of the form i+ the computation is again similar following

Lemma 7.15. One obtains

lim
t→0

r|t|ri+(t)r−1
|t| =


0

id
...

0

. . . ∓2vTi . . . −1

 = φ(−id,∓2Jvi) ,

where vi is defined as above.

We are ready to describe the natural orbifold structure on a subset of Pt.

Proposition 7.17. The set

P×t = Pt r
⋃
i 6=j

Ri+j+

is isometric to a hyperbolic orbifold when t ∈ I+, and to an Anti-de Sitter orbifold when t ∈
I−. Similarly, the rescaled limit limt→0 r|t|P×t has a natural structure of half-pipe orbifold.

Proof. When t ∈ I+ (resp. t ∈ I−), we associate to each facet FH of Pt the unique hyper-

bolic (resp. AdS) reflection rH that fixes the bounding hyperplane ∂H. By Lemma 7.15,

when t→ 0±, the rescaled reflections limt→0 r|t|rH(t)r−1
|t| converge to a half-pipe reflection.

Note that by Proposition 7.13 P×t does not contain any finite vertex of Pt, hence it only

remains to check the orbifold structure at the edges. Now, note that by Proposition 7.10

each edge of Pt disjoint from each of the ridges Ri+j+ is of type Ei+j−X . Moreover, since

the hyperbolic (resp. AdS) hyperplanes ∂0+, ∂1− and ∂A are pairwise orthogonal for all

t, the corresponding hyperbolic (resp. AdS) reflections commute. So we have

∆t = 〈r0+ , r1− , rA〉 ∼= (Z/2Z)3,

and similarly for the rescaled limit limt→0 r|t|∆tr
−1
|t| .

By symmetry and Proposition 7.12 (and also Proposition 7.11 in the AdS case) the con-

jugacy class of ∆t in Isom(H4) or Isom(AdS4) does not depend on the chosen triple of

reflections ri+ , rj− , rX such that there is an edge Ei+j−X of the polytope.

In this way, P×t (together with the associated reflections) is locally modelled on

H4/∆t
and AdS4/∆t

when t ∈ I+ and t ∈ I−, respectively. Similarly, limt→0 r|t|P×t is locally modelled on

HP4/limt→0 r|t|∆tr
−1
|t|
.

The proof is complete. �

Remark 7.18. By an opportune orbifold version of Definition 2.11, the path t 7→ P×t defines

a geometric transition on an orbifold. Moreover, the transition is C1. Indeed, the holonomy
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Figure 21. The ideal right-angled cuboctahedron C = Pt ∩H3 = P0. A quadrilateral
face with label X ∈ {A, . . . ,F } coincides with FX ∩ H3, while a triangular face with

label i ∈ {0, . . . ,7} coincides with the ridge R
i+i− of Pt.

representation depends C1 on the parameter t as a consequence of Lemma 7.15. The devel-

oping map also depends C1 essentially because the vectors defining the rescaled polytope

r|t|(Pt) depend C1 on t.

Remark 7.19. By Proposition 7.12, the polytope P1/
√

3 is right-angled. In particular, it can

be thought as a hyperbolic 4-orbifold. In contrast with P×t , the orbifold P1/
√

3 is complete

(and clearly P1/
√

3 is the metric completion of P×1/√3
).

Remark 7.20. Let us briefly elucidate the geometric structure of the cusp sections of the

orbifold P×t and of its recaled limit. In Figure 20 we showed a horospherical section of

an ideal vertex of the polytope r|t|(Pt), for t < 0, t = 0, t > 0. The subgroup of the

orbifold fundamental group of P×t preserving a cusp is isomorphic to the Coxeter group Γcube

generated by reflections in the sides of a Euclidean cube — see [RSa] for more details. In

the hyperbolic and AdS case, the restriction of the holonomy representation of the orbifold

P×t to this peripheral subgroup Γcube maps each generator to a Euclidean or Minkowski

reflection in a face of the rectangular parallelepiped (as in Figures 19 and 20).

7.5. The cuboctahedron. If a bounded Euclidean polytope P ⊂ Rn is vertex-transitive,

i.e. its symmetry group acts transitively on the set of the vertices, then P is inscribed in a

closed ball B. Let us identify Rn with our favourite affine chart An ⊂ Sn of the projective

sphere. Up to similarity, we can put B = Hn ⊂ Sn, so that P = P∩Hn is an ideal hyperbolic

polytope, i.e. all the vertices of P are ideal. The polytope P is unique up to isometry of Hn.

A Euclidean cuboctahedron C ⊂ R3 (see Figure 1) is the convex envelop of the midpoints

of the edges of a regular cube (or, equivalently, of a regular octahedron). The polyhedron C
is vertex-transitive, and has 14 facets, consisting of 6 squares and 8 triangles.

Let now C ⊂ H3 be the ideal hyperbolic cuboctahedron. We shall identify the cuboctahe-

dron C with P0 ⊂ H3 ⊂ H4,AdS4 thanks to the following (see Figure 21):

Proposition 7.21. The set Pt ∩ H3 does not depend on t ∈ I and is isometric to C. Its

6 quadrilateral faces are given by FX ∩ H3 for all X ∈ {A, . . . ,F }, while the 8 triangular

faces are the ridges of Pt of type Ri+i− for all i ∈ {0, . . . ,7}. Moreover, we have

Pt ∩H3 =
⋂
s∈I
Ps = P0.
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Proof. It is straightforward to check that the same proof of [MR18, Proposition 3.19] for

t ∈ I+ ∪ {0} applies also when t ∈ I− (recall the isometric embedding ι : H3 ↪→ X4
t defined

by (3) in Section 2.8). �

A nice feature of the hyperbolic polyhedron C is that it is right-angled. In particular,

there is a unique hyperbolic orbifold H3/Γco
isometric to C, where the discrete group Γco <

Isom(H3) is generated by reflections through the bounding hyperplanes of C. We shall thus

interpret C as an orbifold.

7.6. From polytopes to manifolds. We now build the cone-manifolds of Theorem 1.1.

Let N → C be an orbifold covering for some 3-manifold N ; in other words, we can assume

to have a torsion-free subgroup Γ < Γco and

N = H3/Γ → H3/Γco
= C.

Remark 7.22. The first two points of Theorem 1.1 (that is, when t ∈ I+) were proven

in [MR18, Theorem 1.2] for a particular manifold N such that Γ < Γco is normal and

Γ/Γco
∼= Z/2Z × Z/2Z. Following our arguments, the proof given there can be indeed

extended to every N that orbifold-covers C, as in our hypothesis. Then the main content of

our Theorem 1.1 is extending the deformation to half-pipe and Anti-de Sitter geometry, for

a rather general choice of N (see also the discussion of Remark 7.29 for this point).

The covering N → C induces a tessellation of the hyperbolic 3-manifold N into copies of

C. One can think of N as obtained by pairing the facets of such copies of C through the

maps induced by the identity. The existence (and abundance) of such orbifold-covers from

a manifold to C is a consequence of Selberg’s Lemma (and Malcev’s Theorem).

Now, we pick a copy of Pt for each copy of C in N . Recall that by Propsition 7.21 we

put C = P0 ⊂ Pt. If two copies of C in N are adjacent along a quadrilateral face FX ∩H3,

we glue the corresponding two copies of Pt along the facet FX through the map induced by

the identity. If two copies of C in N are adjacent along a triangular face Ri+i− , we glue the

corresponding two copies of Pt along the facet Fi− through the map induced by the identity.

We call X ′t the resulting space. Note that we have paired all the facets of the copies of Pt,
with the exception of those of type F0+ , . . . ,F7+ .

Finally, let Xt be the space obtained by doubling X ′t along the unpaired facets. We call

also r|t|(Xt) the space obtained similarly to Xt, by taking copies of the rescaled polytope

r|t|(Pt) in place of copies of Pt. We have:

Proposition 7.23. For all t ∈ Ir{0}, the space Xt is homeomorphic to N ×S1. The same

holds for the rescaled r|t|(Xt) for all t ∈ I.

Proof. By the proof of [MR18, Proposition 4.13] and by Proposition 7.3, as t 6= 0 there is a

homeomorphism Pt → C × [−1, 1] which restricts to

P0 → C × {0} (see Figure 21),

F0+ ∪ F2+ ∪ F4+ ∪ F6+ → C × {−1} (see Figure 22),

F1+ ∪ F3+ ∪ F5+ ∪ F7+ → C × {1} (see Figure 22),

FX → Q× [−1, 1] (see Figure 12),

and Fi− → T × [−1, 1] (see Figure 15),

where for each X ∈ {A, . . . ,F } (resp. i− ∈ {0−, . . . ,7−}) there is a quadrilateral (resp.

triangular) face Q ⊂ ∂C (resp. T ⊂ ∂C) of C (recall Proposition 7.21). This extends to a

homeomorphism X ′t → N × [−1, 1]. By doubling, the proof is complete. �
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Figure 22. The union C0 = F
0+ ∪ F2+ ∪ F4+ ∪ F6+ (resp. C1 = F

1+ ∪ F3+ ∪
F

5+ ∪ F7+ ) is an ideal right-angled cuboctahedron, pleated along the 6 red pentagons

R
i+j+

(each with 3 blue edges and 2 yellow edges in the picture). The facets of C0 are

divided as follows: 4 ideal triangles R
i+i− ; 4 ideal triangles, each subdivided by the

pleats as R
i+`− ∪ Rj+`− ∪ Rk+`− ; 6 ideal quadrilaterals, each subdivided by a pleat

as R
i+X

∪R
j+X

. The black edges are edges of the cuboctahedron, while the blue edges

are contained in its facets, and the yellow edges intersect in the barycentre V
0+2+4+6+

(resp.V
1+3+5+7+ ).

7.7. Transition and cone structures. In this section, we give the promised cone-manifold

structure to the space Xt constructed above and conclude the proof of Theorem 1.1.

For t 6= 0, we put

Σt =
⋃

Pt in Xt

⋃
i 6=j

Ri+j+ ⊂ Xt,

where the union runs over all the copies of Pt in Xt. In other words, Σt ⊂ Xt is the union of

the ridges with non-constant dihedral angle of the copies of Pt in Xt (see Proposition 7.12),

and we have (see Proposition 7.17)

Xt r Σt =
⋃

Pt in Xt

P×t .

The couple (Xt,Σt) is homeomorphic to (N ×S1,Σ) by Proposition 7.23, where Σ ⊂ N ×S1

is a foam by Proposition 7.13. If the covering N → C is finite, the foam Σ is compact by

Proposition 7.12.

Recall from Proposition 7.17 that P×t has a natural structure of orbifold. We have:

Proposition 7.24. The natural map Xt r Σt → P×t is an orbifold covering, and similarly

for the rescaled limits.

Proof. We continue to refer to [Thu79, Cho04] for details about orbifolds and their coverings.

By the proof of Proposition 7.17, it suffices to check that locally, near a k-stratum of the

orbifold P×t , the map Xt r Σt → P×t is modelled on the quotient map R4 → R4/(Z/2Z)4−k .

Here, the i-th factor of (Z/2Z)4−k < (Z/2Z)4 is generated by the reflection ri ∈ O(4) along

the hyperplane {xi = 0} ⊂ R4. Note that by Proposition 7.13, each stratum of the orbifold

P×t is non-compact and has an ideal vertex (in particular, P×t has no 0-strata). This implies

that it suffices to consider the case k = 1 only.

By symmetry (see Lemma 7.6), we can fix a horosection H of the ideal vertex V =

V0+0−3+3−AB of Pt and look at the effect of the gluing on the copies of the link LV = H∩Pt.
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first step second step

Figure 23. The effect of the gluing on the link `v of a vertex v of the link LV (which

is depicted in Figure 18–left) of an ideal vertex V of Pt (see the proof of Proposition
7.24). The two top arrows represent the two steps of the construction of Xt, while the

bottom ones indicate orbifold coverings.

We also know by Proposition 7.13 that the orbifold structure on LV is that of a right

parallelepiped. Again by symmetry, we can fix the vertex v = v0−3+A of LV and look at the

effect of the gluing of the copies of its link `v. We refer to Figure 23. Note that the orbifold

structure on `v is that of a mirror triangle ∆(2, 2, 2) = S2/(Z/2Z)3 .

Recall from Section 7.6 that Xt is built from some copies of Pt in two steps. When we

pair the facets of Pt of type FX and Fi− , we glue four copies of `v around its vertex of type

0−A and get a disc D = S2/Z/2Z with mirror boundary. The reason is that C is right-angled

and N is a hyperbolic manifold, so each edge of its tessellation into copies of C has valence

4. By doubling along the unpaired facets, we double D and get the sphere S2. Thus, the

map Xt r Σt → P×t induces at v the orbifold covering S2 → ∆(2, 2, 2), and therefore it is

locally modelled on R4 → R4/(Z/2Z)3 near the 1-strata of P×t . The proof is complete. �

Remark 7.25. Recalling Remark 7.19, we have also that X1/
√

3 → P1/
√

3 is an orbifold covering.

Recall now Remark 7.18. By lifting to Xt r Σt the geometric structures of the orbifold

P×t , and similarly for the rescaled limits, we immediately get:

Corollary 7.26. The family {XtrΣt}t∈I defines a C1 geometric transition on N ×S1rΣ.

Remark 7.27. Recall Sections 3.1, 3.2 and 3.2 about horospheres and transition. From the

proof of Proposition 7.24 one can recover the geometric transition on each cusp section of

Xt (see Figure 19 and 20). We have a path of (non-singular) Euclidean structures (on the

3-torus or K × S1, where K is the Klein bottle) collapsing to a Euclidean surface (a flat

2-torus or Klein bottle, which is a cusp section of N ), such that by rescaling in the direction

of collapse the path extends to Minkowskian structures, via a transitional Galilean structure.

To conclude the proof of Theorem 1.1, it remains to understand what happens near Σt.

Recall Definition 5.5 of simple hyperbolic, Anti-de Sitter, or half-pipe cone-manifold. Recall

also Proposition 7.12 where the explicit expressions of the dihedral angles θt and ϕt of Pt
are given. We have:

Proposition 7.28. When t ∈ I−, the space Xt is a simple Anti-de Sitter cone-manifold

with spacelike singularity along Σt, whose 2-strata have all the same magnitude βt = −2 ·ϕt.
Similarly, Xt is a simple hyperbolic cone-manifold with cone angles αt = 2·θt when t ∈ I+,

and the rescaled limit limt→0 r|t|Xt is a simple half-pipe cone-manifold.

Proof. Let us fix t ∈ I−. We will show that Xt is locally modelled on

D = D(1+ ∩ 3+ ∩ 5+ ∩ 7+)
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first step second step

Figure 24. The effect of the gluing on the link LV of a finite vertex V of Pt (see

the proof of Proposition 7.28). At each line we see the effect on a different class of
vertices (see Figure 18). The two arrows represent the two steps of the construction of

Xt. In the first two columns we have some polyhedra, while in the third column we have

cone-manifolds homeomorphic to S3 (the singular locus is a red graph in S3). These
polyhedra and cone-manifolds are spherical when t ∈ I+, and HS (with spacelike red

locus contained in the de Sitter region) when t ∈ I−. Each of the three cone-manifolds

in the third column is the link of a point in a 2- (top), 1- (centre), and 0-stratum (bottom)
of the cone-manifold Xt.

in the sense of Definition 5.3, where for each bounding hyperplane of the polytope 1+∩3+∩
5+ ∩ 7+ ⊂ S4 we choose the unique AdS reflection that fixes it (recall Section 4.5 about

reflections).

To this purpose, it suffices to look at the effect of the gluing of the copies of Pt on the

link LV of each finite vertex V. By symmetry (Lemma 7.6) and Proposition 7.13, it suffices

to consider the vertices V1+3+0−A, V1+3+5+0− and V1+3+5+7+ only. Recall from Section

7.6 that Xt is built from some copies of Pt in two steps. We refer to Figure 24.

• If V = V1+3+0−A, the same argument in the proof of Proposition 7.24 implies that

at the first step we glue 4 copies of LV around its edge of type 0−A. The resulting

space is a polyhedron in HS3 (see Section 5.5) obtained as the intersection of two

spacelike half-spaces. At the second step this polyhedron is doubled, and we get an

HS cone 3-sphere with singular locus a spacelike unknotted circle in the de Sitter

region. This is the link of a point in a 2-stratum of D (corresponding to ∂1+∩∂3+).

• If V = V1+3+5+0− , at the first step we just double LV along its 0−-face, and then

double the resulting polyhedron, to get an HS cone-sphere with singular locus a

spacelike unknotted theta-graph in the de Sitter region. This is the link of a point

in a 1-stratum of D (corresponding to ∂1+ ∩ ∂3+ ∩ ∂5+).

• If V = V1+3+5+7+ the link LV is doubled, to get an HS cone-sphere with singular

locus a spacelike unknotted complete graph with four vertices in the de Sitter region.

This is the link of a vertex of D (corresponding to ∂1+ ∩ ∂3+ ∩ ∂5+ ∩ 7+).
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In particular, giving Xt the naturally induced stratification, it is locally modelled on D. The

proof for t ∈ I− is complete.

We omit the details for the hyperbolic and half-pipe case, since the proof goes exactly as

in the AdS case with the obvious modifications (see Remark 7.16 regarding the choice of an

HP reflection along each bounding hyperplane for the half-pipe case). �

The cone structure on the links of points of Σt is drawn in Figures 25, 26 and 27. As

mentioned in Remark 5.6, there is indeed a geometric transition from spherical to HS cone

structures, as a singular version of the transition that one can visualise in Figure 10.

By noticing that as t → 0 the cone-manifold Xt collapses to the hyperbolic 3-manifold

N , the proof of Theorem 1.1 is complete. We conclude with a last observation.

Figure 25. The link of a point in a 2-stratum of Σt ⊂ Xt is a cone 3-sphere with

singular locus an unknotted circle (drawn in red). The geometry is spherical when t ∈ I+
(left), and HS when t ∈ I− (right). In the HS case, the two balls (one internal and one

external) are copies of H3 and represent the timelike directions — see Section 5.5.

Figure 26. The link of a point in an edge (i.e. a 1-stratum) of Σt ⊂ Xt, t 6= 0, is a

cone 3-sphere with singular locus an unknotted theta-graph.

Figure 27. The link of a vertex (i.e. a 0-stratum) of Σt ⊂ Xt, t 6= 0, is a cone
3-sphere with singular locus an unknotted complete graph on four vertices.
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Remark 7.29. Theorem 1.1 can be extended as follows. A cuboctahedral manifold is a

hyperbolic 3-manifold N that can be tessellated by some copies of the ideal right-angled

cuboctahedron C. Note that C has octahedral symmetry Isom(C) ∼= Z/2Z ×S4. Note also

that every isometry between two faces of C is the restriction of a symmetry of C. Moreover,

as Figure 21 suggests, we have Isom(Pt) ∼= Isom(C) in such a way that every symmetry of

C = P0 ⊂ Pt (see Proposition 7.21) is the restriction of a symmetry of Pt. (To show this,

the same argument of [RS19, Proposition 2.4] applies, by substituting “upper tetrahedral

facet” with the link of the vertex V1+3+5+7+ .)

Consider now the natural chequerboard colouring of the triangular faces of C, inherited

from that of the octahedron. It is easy to check that a symmetry of C preserves the che-

querboard colouring if and only if its Z/2Z-factor is trivial. Moreover, this holds if and only

if the corresponding symmetry of Pt preserves the half-space {x4 ≥ 0} (and thus fixes the

vertex V1+3+5+7+).

Thanks to this, it is not difficult to conclude that Theorem 1.1 holds for every cubocta-

hedral manifold N with a tessellation such that every pairing map between the copies of C
is induced by a symmetry of C which preserves the chequerboard colouring. More generally,

for every cuboctahedral manifold N one can find a 4-manifold (such that itself or a double

covering is homeomorphic to N×S1) supporting a geometric transition as in the conclusions

of Theorem 1.1.
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