Exploring Phosphine Electronic Effects on Molybdenum Complexes: A Combined Photoelectron Spectroscopy and Energy Decomposition Analysis Study - Archive ouverte HAL
Article Dans Une Revue Journal of Physical Chemistry A Année : 2020

Exploring Phosphine Electronic Effects on Molybdenum Complexes: A Combined Photoelectron Spectroscopy and Energy Decomposition Analysis Study

Résumé

In organometallic chemistry, and especially in the catalysis area, accessing the finest tuning of a catalytic reaction pathway requires a detailed knowledge of the steric and electronic influence of the ligands bound to the metal center. Usually, the M-L bond between a ligand and a metal is depicted by the Dewar-Chatt-Duncanson model involving two opposite interactions, a σ-donor and a π-acceptor effect of the ligand. The experimental evaluation of these effects is essential and complementary to in-depth theoretical approaches that are able to provide a detailed description of the M-L bond. In this work, we present a study of LMo(CO)5 complexes with L being various tertiary phosphines ligands by means of mass-selected high-resolution photoelectron spectroscopy (PES) performed with synchrotron radiation, DFT and energy decomposition analyses (EDA) combined with the natural orbitals for chemical valence (NOCV) analysis. These methods enable a separated access of the σ-donor and π-acceptor effects of ligands by probing either the electronic configuration of the complex (PES) or the interaction of the ligand with the metal (EDA). Three series of PX3 ligands with various electronic influence are investigated: the strong donating alkyl substituents (PMe3, PEt3 and PiPr3), the intermediate PPhxMe(3-x) (x = 0-3) set and the PPhxPyrl(3-x) set (x = 0-3 with Pyrl being the strong electron withdrawing pyrrolyl group C4H4N). For each complex, their adiabatic and vertical ionization energies (IEs) could be determined with a 0.03 eV precision. Experiment and theory show an excellent agreement, either for the IEs determination or for the electronic effect analysis. The ability to interpret the spectra is shown to depend on the character of the ligand. “Innocent” ligands provide the spectra the most straightforward to analyze whereas the “non-innocent” ligands (which are ionized prior to the metal center) render the analysis more difficult due to an increased number of molecular orbitals in the energy range considered. A very good linear correlation is finally found between the measured adiabatic ionization energies and the interaction energy term obtained by EDA for each of these two types of ligands which opens interesting perspective for the prediction of ligand characters.
Fichier principal
Vignette du fichier
SOLEIL_JPCA_final.pdf (1.73 Mo) Télécharger le fichier
SOLEIL_JPCA_SI_final.pdf (4.68 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02997117 , version 1 (09-11-2020)
hal-02997117 , version 2 (10-02-2021)

Identifiants

Citer

Héloïse Dossmann, David Gatineau, Hervé Clavier, Antony Memboeuf, Denis Lesage, et al.. Exploring Phosphine Electronic Effects on Molybdenum Complexes: A Combined Photoelectron Spectroscopy and Energy Decomposition Analysis Study. Journal of Physical Chemistry A, 2020, 124 (42), pp.8753-8765. ⟨10.1021/acs.jpca.0c06746⟩. ⟨hal-02997117v2⟩

Relations

390 Consultations
450 Téléchargements

Altmetric

Partager

More