Versatile and robust synthesis process for the fine control of the chemical composition and core-crystallinity of spherical core-shell Au@Ag nanoparticles - Archive ouverte HAL Access content directly
Journal Articles Nanotechnology Year : 2021

Versatile and robust synthesis process for the fine control of the chemical composition and core-crystallinity of spherical core-shell Au@Ag nanoparticles

Abstract

Au nanoparticles (NPs) characterized by distinct surface chemistry (including dodecanethiol or oleylamine as capping agent), different sizes (~5 and ~10 nm) and crystallinities (polycrystalline or single crystalline), were chosen as seeds to demonstrate the versatility and robustness of our two-step core-shell Au@Ag NP synthesis process. The central component of this strategy is to solubilize the shell precursor (AgNO 3) in oleylamine and to induce the growth of the shell on selected seeds under heating. The shell thickness is thus controlled by the temperature, the annealing time, the [shell precursor] / [seed] concentration ratio, seed size and crystallinity. The shell thickness is thus shown to increase with the reactant concentration and to grow faster on polycrystalline seeds. The crystalline structure and chemical composition were characterized by HRTEM, STEM-HAADF, EELS and Raman spectroscopy. The plasmonic response of Au@Ag core-shell NPs as a function of core size and shell thickness was assessed by spectrophotometry and simulated by calculations based on the discrete dipole approximation (DDA) method. Finally, the nearly monodisperse core-shell Au@Ag NPs were shown to form micrometer-scale facetted 3D fcc-ordered superlattices (SLs) after solvent evaporation and deposition on a solid substrate. These SLs are promising candidates for applications as a tunable surface-enhanced Raman scattering (SERS) platform. 2
Fichier principal
Vignette du fichier
NANO-126922.pdf (1.26 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02994816 , version 1 (08-11-2020)

Identifiers

Cite

Suyeon Lee, Hervé Portalès, Michael Walls, Patricia Beaunier, Nicolas Goubet, et al.. Versatile and robust synthesis process for the fine control of the chemical composition and core-crystallinity of spherical core-shell Au@Ag nanoparticles. Nanotechnology, 2021, 32, pp.095604. ⟨10.1088/1361-6528/abc450⟩. ⟨hal-02994816⟩
106 View
285 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More