The weakness of the pigeonhole principle under hyperarithmetical reductions - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Logic Année : 2021

The weakness of the pigeonhole principle under hyperarithmetical reductions

Résumé

The infinite pigeonhole principle for 2-partitions ($\mathsf{RT}^1_2$) asserts the existence, for every set $A$, of an infinite subset of $A$ or of its complement. In this paper, we study the infinite pigeonhole principle from a computability-theoretic viewpoint. We prove in particular that $\mathsf{RT}^1_2$ admits strong cone avoidance for arithmetical and hyperarithmetical reductions. We also prove the existence, for every $\Delta^0_n$ set, of an infinite low${}_n$ subset of it or its complement. This answers a question of Wang. For this, we design a new notion of forcing which generalizes the first and second-jump control of Cholak, Jockusch and Slaman.
Fichier principal
Vignette du fichier
pigeons-general.pdf (441.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02991292 , version 1 (05-11-2020)

Identifiants

Citer

Benoit Monin, Ludovic Patey. The weakness of the pigeonhole principle under hyperarithmetical reductions. Journal of Mathematical Logic, 2021, 21 (3), pp.2150013, 41. ⟨10.1142/S0219061321500136⟩. ⟨hal-02991292⟩
63 Consultations
116 Téléchargements

Altmetric

Partager

More