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THE WEAKNESS OF THE PIGEONHOLE PRINCIPLE UNDER

HYPERARITHMETICAL REDUCTIONS

BENOIT MONIN AND LUDOVIC PATEY

Abstract. The infinite pigeonhole principle for 2-partitions (RT1
2) asserts the existence, for

every set A, of an infinite subset of A or of its complement. In this paper, we study the infinite
pigeonhole principle from a computability-theoretic viewpoint. We prove in particular that
RT1

2 admits strong cone avoidance for arithmetical and hyperarithmetical reductions. We also
prove the existence, for every ∆0

n set, of an infinite lown subset of it or its complement. This
answers a question of Wang. For this, we design a new notion of forcing which generalizes the
first and second-jump control of Cholak, Jockusch and Slaman.

1. Introduction

In this paper, we study the infinite pigeonhole principle (RT1
k) from a computability-theoretic

viewpoint. The infinite pigeonhole principle asserts that every finite partition of ω admits an
infinite part. More formally, RT1

k is the problem whose instances are colorings f : ω → k. An
RT1

k-solution to f is an infinite set H ⊆ ω such that |f [H]| = 1. The general question we aim
to address is the following:

Question 1.1. Does every instance of RT1
k admit a “weak” solution?

We consider various notions of weakness, among which the inability to bound a fixed non-zero
degree for the ∆0

n, arithmetical and hyperarithmetical reduction. This property is known as
strong cone avoidance. With respect to ∆0

n and arithmetical reductions, our main theorems are:

Theorem 1.2 (Main theorem 1) Fix n ≥ 0. Let B be non ∅(n)-computable. Every set A has

an infinite subset H ⊆ A or H ⊆ A such that B is not H(n)-computable.

Theorem 1.3 (Main theorem 2) Let B be non arithmetical. Every set A has an infinite subset
H ⊆ A or H ⊆ A such that B is not arithmetical in H.

We also study restrictions of the infinite pigeonhole principle to ∆0
n instances. With that

respect, our main theorem is:

Theorem 1.4 (Main theorem 3) Fix n ≥ 0. Every ∅(n+1)
-computable set A has an infinite

subset H ⊆ A or H ⊆ A of lown+2 degree.

Finally our main theorem with respect to hyperarithmetic reductions is:

Theorem 1.5 (Main theorem 4) Let B be non hyperarithmetical. Every set A has an infinite
subset H ⊆ A or H ⊆ A such that B is not hyperarithmetical in H, in particular with ωH1 = ωck1 .

Our motivation comes from reverse mathematics. Reverse mathematics is a foundational
program which aims to find the weakest axioms needed to prove ordinary theorems. The early
reverse mathematics showed the existence of an empirical structural phenomenon, in that most
theorems are provably equivalent to one among five main systems of axioms, linearly ordered
by the logical implication. See Simpson’s book [25] for a reference on reverse mathematics.
However, some natural statements escape this structural phenomenon, the most famous one
being Ramsey’s theorem for pairs (RT2

2). Given a set X, let [X]n denote the set of unordered
n-tuples over X. Ramsey’s theorem for n-tuples and k-colors (RTnk) asserts the existence, for
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every coloring f : [ω]n → k, of an infinite set H ⊆ ω such that |f [ω]n| = 1. In particular, RT1
k

is the infinite pigeonhole principle.
Ramsey’s theorem for pairs and two colors received a lot of attention from the computability

community as it was historically the first example of statement escaping the structural phe-
nomenon of reverse mathematics. The study of RT2

k revealed a deep connection between the
computability-theoretic features of RT2

k and the combinatorial features of RT1
k. More precisely,

almost every proof of a statement of the form “Every computable instance of RT2
k admits a

weak solution” can be obtained by a proof of the statement “every (arbitrary) instance of
RT1

k admits a weak solution”, with the help of very weak computability-theoretic notion called
cohesiveness. This is in particular the case for cone avoidance [24, 6], PA avoidance [12],
constant-bound trace avoidance [13], preservation of hyperimmunity [20], and preservation of
non-c.e. definitions [31, 19], among others. In many cases, the combinatorial features of RT1

k

and the computability-theoretic features of RT2
k can be proven to be equivalent. See Cholak

and Patey [3, Theorem 1.5] for an equivalence in the case of cone avoidance. It therefore seems
essential to obtain a good understanding of the infinite pigeonhole principle in order to bet-
ter understand why Ramsey’s theorem for pairs escapes the structural phenomenon of reverse
mathematics.

1.1. Strong cone avoidance

Given a partial order ≤r on 2ω and a set X, we let degr(X) = {Y : X ≡r Y } be the degree
of X, where X ≡r Y if X ≤r Y and Y ≤r X. We are in particular interested in the case where
≤r is among the ∆0

n reduction ≤n, the arithmetical reduction ≤arith and the hyperarithmetical
reduction≤hyp. Given a mathematical problem P formulated in terms of instances and solutions,
it is natural to ask which sets are P-encodable. Here, we say that a set X is P-encodable if there
is an instance I of P such that for every P-solution Y to I, X ≤r Y . Some problems are very
weak with respect to the order ≤r, and satisfy the following property:

Definition 1.6 (Strong cone avoidance). A problem P admits strong cone avoidance for ≤r if
for every pair of sets Z and C such that C 6≤r Z, every instance X of P admits a solution Y
such that C 6≤r Z ⊕ Y .

Dzhafarov and Jockusch [6] proved that RT1
2 admits strong cone avoidance of the Turing

reduction. Their theorem has practical applications, and yield a simpler proof of Seetapun’s
theorem [24]. We prove a similar result for ∆0

n and arithmetical reductions.

Theorem (Reformulation of Main theorem 1 (Theorem 1.2)) RT1
2 admits strong cone avoidance

for ∆0
n reductions.

Theorem (Reformulation of Main theorem 2 (Theorem 1.3)) RT1
2 admits strong cone avoidance

for arithmetical reductions.

We finally prove in the last section strong cone avoidance for hyperarithmetical reductions,
the main difficulty being to show that a non-computable ordinal is never RT1

2-encodable. This
gives us the following theorem:

Theorem (Reformulation of Main theorem 4 (Theorem 1.5)) RT1
2 admits strong cone avoidance

for hyperarithmetical reductions.

These theorems show the combinatorial weakness of the pigeonhole principle with respect
RT1

2-encodability. To prove this, we designed a new notion of forcing with an iterated jump
control generalizing the first and second jump control of Cholak, Jockusch and Slaman [2].

1.2. Lowness and hierarchies

The computability-theoretic study of the pigeonhole principle is also motivated by questions
on the strictness of hierarchies in reverse mathematics. Some consequences of Ramsey’s theorem
form hierarchies of statements, parameterized by the size of the colored tuples. A first example
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is Ramsey’s theorem itself. Indeed, RTn+1
k implies RTnk for every n, k ≥ 1. By the work of

Jockusch [9], this hierarchy collapses starting from the triples, and by Seetapun [24], Ramsey’s
theorem for pairs is strictly weaker than Ramsey’s theorem for triples. We therefore have

RT1
k < RT2

k < RT3
k = RT4

k = . . .

Some other hierarchies have been considered in reverse mathematics. Friedman [7] introduced
the free set (FSn) and thin set theorems (TSn), while Csima and Mileti [4] introduced and
studied the rainbow Ramsey theorem (RRTnk). These statements are all of the form Pn: “For
every coloring f : [ω]n → ω, there is an infinite set H ⊆ ω such that f�[H]n avoids some set
of forbidden patterns”. The reverse mathematics of these statements were extensively studied
in the literature [1, 4, 11, 16, 17, 19, 21, 28, 29, 30, 31, 32]. In particular, these theorems form
hierarchies which are not known to be strictly increasing.

Question 1.7. Are the hierarchies of the free set, thin set, and rainbow Ramsey theorem strictly
increasing?

Partial results were however obtained. All these statements admit lower bounds of the form
“For every n ≥ 2, there is a computable instance of Pn with no Σ0

n solution”, where Pn denotes
any of RTnk (Jockusch [9]), RRTnk (Csima and Mileti [4]), FSn, or TSn (Cholak, Giusto, Hirst
and Jockusch [1]). From the upper bound viewpoint, all these statements follow from Ramsey’s
theorem. Therefore, by Cholak, Jockusch and Slaman [2], every computable instance of P1

admits a computable solution, and every computable instance of P2 admits a low2 solution.
These results are sufficient to show that P1 < P2 < P3 in reverse mathematics. This upper
bound becomes too coarse for triples. Wang [30] proved that every computable instance of
RRT3

k admits a low3 solution. The following question is still open. A positive answer would also
answer positively Question 1.7.

Question 1.8. Does every computable instance of FSn, TSn, and RRTnk admit a lown solution?

Indeed, suppose Question 1.8 is answered positively for some P ∈ {RRT2,FS,TS}. For every
n, one can iterate a relativization of Question 1.8 to build a model M of Pn containing only
sets of lown degree. In particular, any set inM is Σ0

n+1 , while by the lower bounds mentioned

above, there is a computable instance of Pn+1 with no Σ0
n+1 solution. Thus, Pn+1 fails in M,

hence Pn does not imply Pn+1 over RCA0.
Upper bounds to FSn, TSn, and RRTnk , are usually proven inductively over n [32, 16, 20],

starting with the infinite pigeonhole principle for n = 1. In this paper, we therefore prove the
following theorem, which introduces the machinery that hopefully will serve to answer positively
Question 1.8.

Theorem (Main theorem 3 (Theorem 1.4)) Fix n ≥ 0. Every ∅(n+1)
-computable set A has an

infinite subset H ⊆ A or H ⊆ A of lown+2 degree.

In particular, we fully answer two questions of Wang [30, Questions 6.1 and 6.2], also asked
by the second author [18, Question 5.4]. The cases n = 2 and n = 3 were proven by Cholak,
Jockusch and Slaman [2] and by the authors [15], respectively.

1.3. Definitions and notation

A binary string is an ordered tuple of bits a0, . . . , an−1 ∈ {0, 1}. The empty string is written
ε. A binary sequence (or a real) is an infinite listing of bits a0, a1, . . . . Given s ∈ ω, 2s is the set
of binary strings of length s and 2<s is the set of binary strings of length < s. As well, 2<ω is
the set of binary strings and 2ω is the set of binary sequences. Given a string σ ∈ 2<ω, we use
|σ| to denote its length. Given two strings σ, τ ∈ 2<ω, σ is a prefix of τ (written σ � τ) if there
exists a string ρ ∈ 2<ω such that σ_ρ = τ . Given a sequence X, we write σ ≺ X if σ = X�n
for some n ∈ ω. A binary string σ can be interpreted as a finite set Fσ = {x < |σ| : σ(x) = 1}.
We write σ ⊆ τ for Fσ ⊆ Fτ . We write #σ for the size of Fσ. Given two strings σ and τ , we let
σ ∪ τ be the unique string ρ of length max(|σ|, |τ |) such that Fρ = Fσ ∪ Fτ .
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A binary tree is a set of binary strings T ⊆ 2<ω which is closed downward under the prefix
relation. A path through T is a binary sequence P ∈ 2ω such that every initial segment belongs
to T .

A Turing ideal I is a collection of sets which is closed downward under the Turing reduction
and closed under the effective join, that is, (∀X ∈ I)(∀Y ≤T X)Y ∈ I and (∀X,Y ∈ I)X⊕Y ∈
I, where X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y }. A Scott set is a Turing ideal I such that
every infinite binary tree T ∈ I has a path in I. In other words, a Scott set is the second-
order part of an ω-model of RCA0 +WKL. A Turing ideal M is countable coded by a set X if
M = {Xn : n ∈ ω} with X =

⊕
nXn. A formula is Σ0

1(M) (resp. Π0
1(M)) if it is Σ0

1(X) (resp.
Π0

1(X)) for some X ∈M.
Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈ B)[x < y]. We

write A ⊆∗ B to mean that A − B is finite, that is, (∃n)(∀a ∈ A)(a 6∈ B → a < n). A k-cover
of a set X is a sequence of sets Y0, . . . , Yk−1 such that X ⊆ Y0 ∪ · · · ∪ Yk−1.

2. Preliminary tools

We start by introduce the central tools used in the various forcings to come : the largeness
and partition regular classes. They were introduced by the authors in [15] to design a notion of
forcing controlling the second jump of solutions to the pigeonhole principle. In this paper we
push their use further, with the introduction of M-cohesive and M-minimal largeness classes,
which are necessary for the third jump control and beyond.

2.1. Largeness classes

Definition 2.1. A largeness class is a non-empty collection of sets A ⊆ 2ω such that

(a) If X ∈ A and Y ⊇ X, then Y ∈ A
(b) For every k-cover Y0, . . . , Yk−1 of ω, there is some j < k such that Yj ∈ A.

For example, the collection of all the infinite sets is a largeness class. Moreover, any superclass
of a largeness class is again a largeness class.

Lemma 2.2 Suppose A0 ⊇ A1 ⊇ . . . is a decreasing sequence of largeness classes. Then
⋂
sAs

is a largeness class.

Proof. If X ∈
⋂
sAs and Y ⊇ X, then for every s, since As is a largeness class, Y ∈ As, so

Y ∈
⋂
sAs. Let Y0, . . . , Yk−1 be a k-cover of ω. For every s ∈ ω, there is some j < k such

that Yj ∈ As. By the infinite pigeonhole principle, there is some j < k such that Yj ∈ As for
infinitely many s. Since A0 ⊇ A1 ⊇ is a decreasing sequence, Yj ∈

⋂
sAs. �

Lemma 2.3 Let A be a Σ0
1 class. The sentence “A is a largeness class” is Π0

2.

Proof. Say A = {X : (∃σ � X)ϕ(σ)} where ϕ is a Σ0
1 formula. By compactness, A is a largeness

class iff for every σ and τ such that σ ⊆ τ and ϕ(σ) holds, ϕ(τ) holds, and for every k, there
is some n ∈ ω such that for every σ0 ∪ · · · ∪ σk−1 = {0, . . . , n}, there is some j < k such that
ϕ(σj) holds. �

2.2. Partition regular classes

Definition 2.4. A partition regular class is a collection of sets L ⊆ 2ω such that

(a) L is a largeness class
(b) For every X ∈ L and Y0 ∪ · · · ∪ Yk−1 ⊇ X, there is some j < k such that Yj ∈ L.

In particular, the class of all infinite sets is partition regular.

Lemma 2.5 Suppose A0 ⊇ A1 ⊇ . . . is a decreasing sequence of partition regular classes. Then⋂
sAs is a partition regular class.

Proof. The proof is easy, similar to the one of Lemma 2.2 and left to the reader. �
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Definition 2.6. Let A be a largeness class. Define

L(A) = {X ∈ 2ω : ∀k ∀X0 ∪ · · · ∪Xk−1 ⊇ X ∃i < k Xi ∈ A}

Note that a superset of a partition regular class need not to be partition regular, it is however
always a largeness class. Note also that if U is a Σ0

1(X) class, then by compactness L(U) is a
Π0

2(X) class.

Lemma 2.7 Let A be a largeness class. Then L(A) is the largest partition regular subclass of
A.

Proof. We first prove that L(A) is a partition regular subclass of A. By definition of A being
a largeness class, ω ∈ L(A). Let X ∈ L(A) and X0 ∪ · · · ∪Xk−1 ⊇ X. Suppose for the sake of
absurd that Xi 6∈ L(A) for every i < k. Then for every i < k, there is some ki ∈ ω and some

Y 0
i ∪ · · · ∪Y

ki−1
i ⊇ Xi such that Y j

i 6∈ A for every j < ki. Then {Y j
i : i < k, j < ki} is a cover of

X contradicting X ∈ L(A). Therefore L(A) is a partition regular class. Moreover, L(A) ⊆ A
as witnessed by taking the trivial cover of X by X itself.

We now prove that L(A) is the largest partition regular subclass of A. Indeed, let B be a
partition regular subclass of A. Then for every X ∈ B, every X0 ∪ · · · ∪ Xk−1 ⊇ X, there is
some j < k such that Xj ∈ B ⊆ A. Thus X ∈ L(A), so B ⊆ L(A). �

2.3. M-cohesive classes

We now introduce the notion of M-cohesive largeness classes for a countable Scott set M.
One would ideally need M-minimal largeness classes instead for the upcoming forcing (see
Definition 2.10). Unfortunately these classes are definitionally too complex for us. We use
insteadM-cohesive largeness classes, which are definitionally simpler and can be seen as a way
to “almost” build a minimal largeness class. The key property of these classes lies in Lemma 2.9,
which is later used to show that an M-cohesive largeness class contains a unique M-minimal
largeness class.

Given an infinite set X, we let LX be the Π0
2(X) largeness class of all sets having an infinite

intersection with X.

Definition 2.8. A class A is M-cohesive if for every X ∈M, either A ⊆ LX or A ⊆ LX .

In what follows, fix an effective enumeration UZ0 ,UZ1 , . . . of all the Σ0,Z
1 classes upward-closed

under the superset relation, that is, if X ∈ UZe and Y ⊇ X, then Y ∈ UZe . Fix also a Scott set
M = {X0, X1, . . . } countable coded by a set M . Given a set C ⊆ ω2, we write

UMC =
⋂
〈e,i〉∈C

UXie

Lemma 2.9 Let UMC be an M-cohesive class. Let UMD and VME be such that UMC ∩ UMD and
UMC ∩ UME are both largeness classes. Then UMC ∩ UMD ∩ UME is a largeness class.

Proof. Suppose for contradiction that UMC ∩ UMD ∩ UME is not a largeness class. Then by
Lemma 2.2, there is some finite C1 ⊆ C, D1 ⊆ D and E1 ⊆ E such that UMC1

∩UMD1
∩UME1

is not a

largeness class. Since UMC1
∩UMD1

∩UME1
is Σ0

1(M), the collection C of all sets Y0⊕· · ·⊕Yk−1 such

that Y0 t · · · tYk−1 = ω and for every i < k, Yi 6∈ UMC1
∩UMD1

∩UME1
⊇ UMC ∩UMD ∩UME , is a non-

empty Π0
1(M) class. SinceM is a Scott set, C∩M 6= ∅, so fix such a set Y0⊕· · ·⊕Yk−1 ∈ C∩M.

Since UMC isM-cohesive, there must be some i < k such that UMC ⊆ LYi . In particular, Yi ∈ UMC ,
so Yi 6∈ UMD or Yi 6∈ UME . Suppose Yi 6∈ UMD , as the other case is symmetric. Since Yj ∩ Yi = ∅
for every j 6= i, then Yj 6∈ UMC ⊆ LYi for every j 6= i. It follows that Y0, . . . , Yk−1 witnesses that
UMC ∩ UMD is not a largeness class. Contradiction. �

2.4. M-minimal classes

Definition 2.10. A class A is M-minimal if for every X ∈ M and e ∈ ω, either A ⊆ UXe or
A ∩ UXe is not a largeness class.
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The following is a corollary of lemma 2.9 and informally says that an M-cohesive largeness
class contains a uniqueM-minimal largeness class, which can be build with a greedy algorithm.

Lemma 2.11 Given an M-cohesive largeness class UMC , the collection of sets

〈UMC 〉 =
⋂

e∈ω,X∈M
{UXe : UMC ∩ UXe is a largeness class}

is an M-minimal largeness class contained in UMC .

Proof. We first prove that 〈UMC 〉 is a largeness class. Let e0, e1, . . . and X0, X1, . . . be an
enumeration of all pairs (e,X) ∈ ω ×M such that UMC ∩ UXe is a largeness class. By induction
on n using Lemma 2.9,

⋂
i<n UXiei is a largeness class for every n ∈ ω. Thus, by Lemma 2.2,

〈UMC 〉 =
⋂
i UXiei is a largeness class. By construction 〈UMC 〉 is M-minimal. �

Note that we clearly have 〈UMC 〉 ⊆ UMC . The notation 〈UMC 〉 for an M-cohesive largeness
class will be used all along this document. Note that 〈UMC 〉 = UMD where D is the set of all
〈e, i〉 such that UMC ∩ UXie is a largeness class.

Lemma 2.12 Let UMC be a largeness class. Then L(UMC ) = UMD for some D ⊆ ω2. Furthermore
D is computable from C.

Proof. Let UMC be a largeness class. Note that L(UMC ) ⊆
⋂
〈e,i〉 L(UXie ). By lemma 2.5 the class⋂

〈e,i〉 L(UXie ) is partition regular. By lemma 2.7 we then must have L(UMC ) =
⋂
〈e,i〉 L(UXie ).

Also we have by definition of L(U) for a class U that L(UXie ) is a Π0
2(Xi) class whose indices

are computable uniformly in e.
Thus we have that L(UMC ) = UMD for some D ⊆ ω2. Furthermore D is computable from

C. �

Corollary 2.13 Suppose UMC is an M-minimal largeness class. Then UMC is partition regular.

Proof. Let D be such that UMD = L(UMC ). By Lemma 2.7, UMD ⊆ UMC . By M-minimality of
UMC , UMC ⊆ UMD . It follows that UMC = UMD . Since UMD is partition regular, then so is UMC . �

It follows that if UMC is an M-cohesive largeness class, then the M-minimal class 〈UMC 〉 is a
partition regular class.

2.5. The framework

We now build a sequence of sets {UMn
Cn
}n∈ω which will be used for the forcing in the next

section.

Proposition 2.14 There is a sequence of sets {Mn}n<ω such that:

(1) Mn codes for a countable Scott set Mn

(2) ∅(n)
is uniformly coded by an element of Mn

(3) Each M ′n is uniformly computable in ∅(n+1)

Proof. Let us show the following: there is a functional Φ : 2ω → 2ω such that for any oracle X,
we have that M ′ = Φ(X ′) is such that M = ⊕n∈ωXn codes for a Scott set M with X0 = X.

Fix a uniformly computable enumeration CY0 , CY1 , . . . of all non-empty Π0
1(Y ) classes. Let DX

be the Π0
1(X) class of all

⊕
n Yn such that Y0 = X and for every n = 〈a, b〉 ∈ ω, Yn+1 ∈ C

⊕
j≤b Yj

a .
Note that this Π0

1(X) class is uniform in X and any member of DX is a code of a Scott set
whose first element is X. Using the Low basis theorem [10], there is a Turing functional Φ such
that Φ(X ′) is the jump of a member of DX for any X.

Using this function Φ, it is clear that uniformly in ∅(n+1)
one can compute the jump of a set

Mn coding for a Scott set Mn and containing ∅(n)
as its first element. �
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Let us assume that {Mn}n<ω is a sequence which verifies Proposition 2.14. Recall the
notation 〈UMC 〉 : the unique minimal largeness subclass of an M-cohesive largeness class.

Proposition 2.15 There is a sequence of sets {Cn}n∈ω such that:

(1) UMn
Cn

is an Mn-cohesive largeness class

(2) UMn+1

Cn+1
⊆ 〈UMn

Cn
〉

(3) Each Cn is coded by an element of Mn+1 uniformly in n and Mn+1.

In order to prove Proposition 2.15 we use the two following uniformity lemmas, which will also
be helpful later to continue the sequence of Proposition 2.15 through the computable ordinals
(see Proposition 5.8).

Lemma 2.16 There is a functional Φ : 2ω×ω → 2ω such that for any set M coding for a Scott
set M, for any e such that C = Φe(M

′′) is such that UMC is an M-cohesive largeness class,
D = Φ(M ′′, e) is such that C ⊆ D and UMD = 〈UMC 〉.

Proof. Say M = {X0, X1, . . . } with M =
⊕

iXi. Let {〈et, it〉}t∈ω be an enumeration of ω × ω.
Suppose that at stage t a finite set Dt ⊆ {〈e0, i0〉, . . . , 〈et, it〉} has been defined such that UMDt ∩
UMC is a largeness class and such that for any s ≤ t, 〈es, is〉 /∈ Dt implies that UXises ∩UMDt ∩U

M
C

is not a largeness class.

Then at stage t + 1, we ask M ′′ if U
Xit+1
et+1 ∩ UMDt ∩ U

M
C is a largeness class. If so we define

Dt+1 = Dt ∪ {〈et+1, it+1〉}. Otherwise we define Dt+1 = Dt. Then D = C ∪
⋃
tD

t is uniformly
M ′′-computable and UMD equals 〈UMC 〉. �

Lemma 2.17 There is a functional Φ : 2ω × ω × ω → ω such that for any set M coding for
a Scott set M, for any set N coding for a Scott set N such that M ′ ∈ N with N -index iM ,
for any C ∈ N with N -index iC , such that UMC is a partition regular class, Φ(N, iM , iC) is an
N -index for D ⊇ C such that UMD is an M-cohesive largeness class.

Proof. The functional Φ does the following : It looks for M ′ at index iM inside N . From M ′ it
computes M = ⊕nXn. It then computes with M ′ +C the tree T containing all the elements σ
such that  ⋂

σ(i)=0

2ω −Xi

 ∩
 ⋂
σ(i)=1

Xi

 ∈ ⋂
〈e,j〉∈C�|σ|

UXje

Clearly [T ] is not empty. The functional Φ then finds an N -index for an element Y ∈ [T ].
For σ ≺ Y let Xσ = (

⋂
σ(i)=0(2ω − Xi)) ∩ (

⋂
σ(i)=0Xi). We must have for every σ ≺ Y that

Xσ ∈ UMC . It follows as UMC is partition regular, that for every σ ≺ Y ,  LXσ ∩UMC is a largeness
class. Thus

⋂
σ≺Y  LXσ ∩ UMC is an M-cohesive largeness class. Also M ⊕ Y ⊕ C uniformly

computes a set D such that UMD =
⋂
σ≺Y  LXσ ∩ UMC . The function Φ then returns an N -index

for D. �

Proof of Proposition 2.15. Suppose that stage n we have defined Cn verifying (1)(2) and (3).
Let us define Cn+1.

Note that the set Cn is coded by an element of Mn+1, and thus that Cn is computable in

∅(n+2)
and then computable in M ′′n . Using Lemma 2.16 we define Dn ⊇ Cn to be such that

UMn
Dn

= 〈UMn
Cn
〉 and such that Dn is uniformly M ′′n -computable. We define En+1 to be the

transfer of the Mn-indices constituting Dn into Mn+1-indices, using that Mn is an element of

Mn+1. So we have UMn+1

En+1
= UMn

Dn
.

Note that as En+1 is computable in M ′′n ⊕Mn+1 and thus in ∅((n+1)+1)
. It is then coded by

an element of M(n+1)+1. Note also that UMn+1

En+1
is partition regular as it equals 〈UMn

Cn
〉. Using
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Lemma 2.17 we uniformly find an M(n+1)+1-index of Cn+1 ⊇ En+1 to be such that UMn+1

Cn+1
is

an Mn+1-cohesive largeness class. �

3. Generalized Pigeonhole forcing

The notion of forcing used to build solutions to the pigeonhole principle while controlling the
first jump is a variant of Mathias forcing. In this section, we extend Mathias forcing to a more
general notion of forcing while controlling iterated jumps, that is while tightly controlling the
truth of Σ0

n and Π0
n formulas.

Let M0,M1, . . . ,Mn be countable Scott sets coded by sets M0,M1, . . . ,Mn, respectively,
satisfying (1)(2) and (3) of proposition 2.14. Let C0, C1, C2 be sequence of sets satisfying (1)(2)

and (3) of proposition 2.15, that is, UMn
Cn

is an M-cohesive largeness class, UMn+1

Cn+1
⊆ 〈UMn

Cn
〉

and each Cn is coded by an element of Mn+1.

3.1. The forcing conditions

Definition 3.1. For each n ≥ 0 let Pn be the set of pairs (σ,X) such that

(a) X ∩ {0, . . . , |σ|} = ∅
(b) X ∈ 〈UMn

Cn
〉

Note that X is infinite for (σ,X) ∈ Pn since UMn
Cn

contains only infinite sets. Mathias forcing
builds a single object G by approximations (conditions) which consist in an initial segment σ
of G, and an infinite reservoir of integers. The purpose of the reservoir is to restrict the set
of elements we are allowed to add to the initial segment. The reservoir therefore enriches the
standard Cohen forcing by adding an infinitary negative restrain.

Definition 3.2. The partial order on Pn is defined by (τ, Y ) ≤ (σ,X) if σ � τ , Y ⊆ X and
τ − σ ⊆ X.

Given a collection F ⊆ Pn, we let GF =
⋃
{σ : (σ,X) ∈ F}.

3.2. The forcing question

We now define what we call “the forcing question” : a relation between forcing conditions
p ∈ Pn and Σ0

m+1 formulas for m ≤ n. The goal of the forcing question is to be definitionally
not too complex, while being able to find extensions of conditions forcing formulas or their
negation. The forcing question will also be used in the definition of the forcing relation, which
is why it is introduced first.

Definition 3.3. Let σ ∈ 2<ω. Let (∃x)Φe(G, x) be a Σ0
1 formula. Let σ ?`(∃x)Φ(G, x) holds if

{Y : (∃τ ⊆ Y − {0, . . . , |σ|})(∃x)Φe(σ ∪ τ, x)} ∩ UM0
C0

is a largeness class. Then inductively, given a Σ0
m+1 formula (∃x)Φe(G, x) with free variable x

for 1 ≤ m < ω, we let σ ?`(∃x)Φe(G, x) holds if

{Y : (∃τ ⊆ Y − {0, . . . , |σ|})(∃x)σ ∪ τ ?0¬Φe(G, x)} ∩ UMm
Cm

is a largeness class.
For a condition p = (σ,X) ∈ Pn for some n < ω and a Σ0

m+1 formula (∃x)Φe(G, x) with free
variable x for some m ≤ n, we write p ?`(∃x)Φe(G, x) if σ ?`(∃x)Φe(G, x).

Proposition 3.4 Let σ ∈ 2<ω. Let (∃x)Φe(G, x) be a Σ0
m+1 formula for m ≥ 0

(1) The set
{Y : (∃τ ⊆ Y − {0, . . . , |σ|})(∃x)Φe(σ ∪ τ, x)}

is an upward-closed Σ0
1 open set if m = 0. The set

{Y : (∃τ ⊆ Y − {0, . . . , |σ|})(∃x)σ ∪ τ ?0¬Φe(G, x)}

is an upward-closed Σ0
1(Cm−1 ⊕ ∅(m)

) open set if m > 0.

(2) The relation σ ?`(∃x)Φe(G, x) is Π0
1(Cm ⊕ ∅(m+1)

).
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This is uniform in σ and e.

Proof. This is done by induction on m. We start with m = 0. Let (∃x)Φe(G, x) be a Σ0
1 formula

and σ ∈ 2<ω. It is clear that

U(e, σ) = {Y : (∃τ ⊆ Y − {0, . . . , |σ|})(∃x)Φe(σ ∪ τ, x)}

is an upward closed Σ0
1 class. Then σ ?`(∃x)Φe(G, x) iff U(e, σ)∩UM0

C0
is a largeness class, that

is, iff for every finite set F ⊆ C0, the class U(e, σ) ∩ UM0
F is a largeness class. By Lemma 2.3,

for each F ⊆ C0, the statement is Π0
2(M0) uniformly in F , and thus Π0

1(M ′0) uniformly in F . It

is then Π0
1(∅′) uniformly in F . Thus the whole statement is Π0

1(C0 ⊕ ∅′).
Suppose (1) and (2) are true for m− 1, every Σ0

m formula and every σ. Let σ ∈ 2<ω and let
(∃x)Φe(G, x) be a Σ0

m+1 formula. Let

U(e, σ) = {Y : (∃τ ⊆ Y − {0, . . . , |σ|})(∃x)σ ∪ τ ?0¬Φe(G, x)}

Let us show (1). For each x ∈ ω, the formula ¬Φe(G, x) is Σ0
m uniformly in x and in e. By

induction hypothesis, the relation σ ∪ τ ?0¬Φe(G, x) is Σ0
1(Cm−1 ⊕ ∅(m)

) uniformly in σ ∪ τ in

x and in e. It follows that U(e, σ) is an upward closed Σ0
1(Cm−1 ⊕ ∅(m)

) class.

Let us now show (2). We have σ ?`(∃x)Φe(G, x) iff U(e, σ) ∩ UMm
Cm

is a largeness class. Also

U(e, σ) ∩ UMm
Cm

is a largeness class if for all F ⊆ Cm, the class U(e, σ) ∩ UMm
F is a largeness

class. By Lemma 2.3, it is a Π0
2(Mm) statement uniformly in F and then a Π0

1(M ′m) statement

uniformly in F and then a Π0
1(∅(m+1)

) statement uniformly in F . It follows that the statement

“U(e, σ) ∩ UMm
Cm

is a largeness class” is Π0
1(Cm ⊕ ∅(m+1)

). �

3.3. The forcing relation

The relation ?` is now used to define the forcing relation.

Definition 3.5. Let n ∈ ω. Let p = (σ,X) ∈ Pn. Let (∃x)Φe(G, x) be a Σ0
1 formula. We define

(a) p  (∃x)Φe(G, x) if (∃x)Φe(σ, x)
(b) p  (∀x)Φe(G, x) if (∀τ ⊆ X)(∀x)Φe(σ ∪ τ, x)

Then inductively for 1 ≤ m ≤ n. Let (∃x)Φe(G, x) be a Σm+1 formula. We define

(a) p  (∃x)Φe(G, x) if there is some x ∈ ω such that p  Φe(G, x)
(b) p  (∀x)¬Φe(G, x) if for every τ ⊆ X and every x ∈ ω, σ ∪ τ ?`¬Φe(G, x)

Lemma 3.6 Fix 0 ≤ m ≤ n. Let p ∈ Pn. Let (∃x)Φe(G, x) be a Σ0
m+1 formula. Then

p  (∀x)¬Φe(G, x) iff q ?`¬Φe(G, x) for every x ∈ ω and every q ≤ p.

Proof. Suppose p  (∀x)¬Φe(G, x) with p = (σ,X). By definition of the forcing relation and
forcing extensions it is clear that q ?`¬Φe(G, x) for every x and every q ≤ p. Suppose now
q ?`¬Φe(G, x) for every x and every q ≤ p. Given any τ ⊆ X we have that (σ ∪ τ,X −
{0, . . . , |σ ∪ τ |}) is a valid extension of p for which we have σ ∪ τ ?`¬Φe(G, x) for every x. It
follows that p  (∀x)¬Φe(G, x). �

Lemma 3.7 Fix 0 ≤ m ≤ n. Let (∃x)Φe(G, x) be a Σ0
m+1 formula. Let p, q ∈ Pn be such that

q ≤ p.
(a) If p  (∃x)Φe(G, x) then so does q.
(b) If p  (∀x)¬Φe(G, x) then so does q.

Proof. We proceed by induction on m. It is clear for Σ0
1 formulas. For m > 0 let (∃x)Φe(G, x)

be a Σ0
m+1 formula.

For (a), by definition, there is some x ∈ ω such that p  Φe(G, x). As Φe(G, x) is a Π0
m

formula, by induction hypothesis, q  Φe(G, x) and thus q  (∃x)Φe(G, x).
For (b), by Lemma 3.6, for all x ∈ ω and all r ≤ p, r ?`¬Φe(G, x). Thus if q ≤ p, also for all

x and all r ≤ q, r ?`¬Φe(G, x). It follows still by Lemma 3.6 that q  (∀x)¬Φe(G, x). �
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3.4. The core lemmas

We now show the core lemmas. The first one shows how to find extensions to force formulas,
while the second one is the classic “forcing imply truth” whenever we work with generic enough
filters.

Lemma 3.8 Let p ∈ Pn with p = (σ,X). Let (∃x)Φe(G, x) be a Σ0
m+1 formula for 0 ≤ m ≤ n.

(1) Suppose p ?`(∃x)Φe(G, x). Then there exists q ≤ p with q ∈ Pn such that q 
(∃x)Φ(G, x).

(2) Suppose p ?0(∃x)Φe(G, x). Then there exists q ≤ p with q ∈ Pn such that q 
(∀x)¬Φ(G, x).

Proof. Let p ∈ Pn. We start with m = 0. Suppose p ?`(∃x)Φe(G, x). Let

U(e, σ) = {Y : (∃τ ⊆ Y − {0, . . . , |σ|})(∃x)Φe(σ ∪ τ, x)}
The class U(e, σ) ∩ UM0

C0
is a largeness class. As UM0

C0
is M0-cohesive, then 〈UM0

C0
〉 ⊆ U(e, σ).

As X ∈ 〈UMn
Cn
〉 ⊆ 〈UM0

C0
〉 ⊆ U(e, σ), there is τ ⊆ X such that (∃x)Φe(σ ∪ τ, x) holds. As

〈UMn
Cn
〉 contains only infinite sets and is partition regular, X − {0, . . . , |σ ∪ τ |} ∈ 〈UMn

Cn
〉. Then

(σ ∪ τ,X −{0, . . . , σ ∪ τ}) is a valid extension of (σ,X) such that (σ ∪ τ,X −{0, . . . , |σ ∪ τ |}) 
(∃x)Φe(G, x).

Suppose now p ?0(∃x)Φe(G, x). Then the class U(e, σ) ∩ UM0
C0

is not a largeness class. It

follows that there is a finite set F ⊆ C0 such that U(e, σ) ∩ UM0
F is not a largeness class. For k

let Pk be the Π0
1(Z) class for some Z ∈M0 of covers Y0∪· · ·∪Yk ⊇ ω such that Yi /∈ U(e, σ)∩UM0

F

for each i ≤ k. As U(e, σ) ∩ UM0
F is not a largeness class there must be some k such that Pk is

not empty. Then there are sets Y0 ⊕ · · · ⊕ Yk ∈M0 ∩Pk. As 〈UMn
Cn
〉 is partition regular and as

X ∈ 〈UMn
Cn
〉 we have some i ≤ k such that Yi ∩X ∈ 〈UMn

Cn
〉 ⊆ UM0

C0
. Thus (σ, Yi ∩X) is a valid

extension of (σ,X) for which (σ, Yi ∩X)  (∀x)¬Φ(G, x).
Suppose now m > 0. Suppose p ?`(∃x)Φe(G, x). Let

U(e, σ) = {Y : (∃τ ⊆ Y − {0, . . . , |σ|})(∃x)σ ∪ τ ?0¬Φe(G, x)}
By definition, the class U(e, σ)∩UMm

Cm
is a largeness class. As UMm

Cm
isMm-cohesive and as, by

Proposition 3.4, the set U(e, σ) is a Σ0
1(Y ) for some Y ∈ Mm, then 〈UMm

Cm
〉 ⊆ U(e, σ). As X ∈

〈UMn
Cn
〉 ⊆ 〈UMm

Cm
〉 ⊆ U(e, σ), there is τ ⊆ X such that σ∪τ ?0¬Φe(G, x) for some x. Note that as

〈UMn
Cn
〉 contains only infinite sets and is partition regular we have X−{0, . . . , |σ∪ τ |} ∈ 〈UMn

Cn
〉.

Also (σ ∪ τ,X −{0, . . . , |σ ∪ τ |}) is a valid extension of (σ,X) such that (σ ∪ τ,X −{0, . . . , |σ ∪
τ |}) ?0¬Φe(G, x). Now by induction hypothesis we have some Y ∈Mm with (σ ∪ τ,X ∩ Y ) ≤
(σ,X) and such that (σ ∪ τ,X ∩ Y )  Φe(G, x). It follows that (σ ∪ τ,X ∩ Y )  (∃x)Φe(G, x).

Suppose now p ?0(∃x)Φe(G, x). Then U(e, σ) ∩ UMm
Cm

is not a largeness class. It follows that

there is a finite set F ⊆ C0 such that U(e, σ) ∩ UMm
F is not a largeness class. For k let Pk be

the Π0
1(Z) class for some Z ∈ Mm of covers Y0 ∪ · · · ∪ Yk ⊇ ω such that Yi /∈ U(e, σ) ∩ UMm

F

for each i ≤ k. As U(e, σ) ∩ UMm
F is not a largeness class there must be some k such that

Pk is not empty. There are sets Y0 ⊕ · · · ⊕ Yk ∈ Mm ∩ Pk. As 〈UMn
Cn
〉 is partition regular

and as X ∈ 〈UMn
Cn
〉, there is some i ≤ k such that Yi ∩ X ∈ 〈UMn

Cn
〉 ⊆ UMm

Cm
. It follows that

Yi ∩X /∈ U(e, σ). It means that for every τ ⊆ Yi ∩X and every x ∈ ω, σ ∪ τ ?`¬Φe(G, x). It
follows that (σ, Yi ∩X)  (∀x)¬Φe(G, x). �

We now sow that forcing implies truth. We define first for that the precise level of genericity
that we need.

Definition 3.9. Let F ⊆ Pn be a filter. The set F is m-generic if for every k ≤ m and
every Σ0

k+1 formula (∃x)Φe(G, x) there is a condition p ∈ F such that p  (∃x)Φe(G, x) or
p  (∀x)¬Φe(G, x).

Note that if a filter is n-generic, then it is m-generic for every m < n.
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Lemma 3.10 Let F ⊆ Pn be an n − 1-generic filter. Let p ∈ F . Let (∃x)Φe(G, x) be a Σ0
m+1

class for 0 ≤ m ≤ n.

(a) Suppose p  (∃x)Φe(G, x). Then (∃x)Φe(GF , x) holds.
(b) Suppose p  (∀x)¬Φe(G, x). Then (∀x)¬Φe(GF , x) holds.

Proof. The proof is done by induction on m. Let p ∈ Pn with p = (σ,X). The result is clear
and well-known for m = 0. Suppose now m > 0 and let (∃x)Φe(G, x) be a Σ0

m+1 formula.
Suppose p  (∃x)Φe(G, x). Then there exists x such that p  Φ(G, x). By induction hypothesis
Φ(GF , x) hods and then ∃x Φ(GF , x) holds.

Suppose p  (∀x)¬Φe(G, x). Then by Lemma 3.6 for every x and every q ≤ p, q ?`¬Φe(G, x).
From Lemma 3.8, for every x ∈ ω and every q ≤ p, there is some r ≤ q such that r  ¬Φe(G, x).
It follows that for every x, the set {r ∈ Pn : r  ¬Φe(G, x)} is dense below p. As F is
n − 1-generic and p ∈ F there must be for every x some q ∈ F such that q  ¬Φe(G, x). By
induction hypothesis ¬Φe(GF , x) for every x and then (∀x)¬Φe(GF , x) holds. �

4. Cone avoidance under ∆0
n reductions

We show in this section the first and third theorems of the introduction — Theorem 1.2 and
Theorem 1.4. The proof of Theorem 1.3 will be postponed to the next section, where it will
be achieved together with hyperarithmetic cone avoidance. We fix a set A0 t A1 = ω. We
sometimes write A for A0 (with then ω −A = A1).

Unfortunately the above forcing is definitionally a bit too complex : the forcing question for
Σ0
m+1 statements is Π0

m+2, whereas we would need it to be Σ0
m+1.

For this reason, we need to plug upon the previous forcing another forcing notion, used only
for “the last step” in formula induction. The drawbacks of this other forcing notions is that we
are compelled to build two generic objects : one inside A0 and one inside A1. We then used the
pairing argument first designed by Dzhafarov and Jockusch [6] to show that one of the object
we build is sufficiently generic in the sense of Definition 3.9.

4.1. Another forcing on the top

Definition 4.1. Fix n ≥ 0. Let Qn denote the set of conditions (σ0, σ1, X) such that

(a) σi ⊆ Ai for every i < 2
(b) X ∩ {0, . . . ,maxi |σi|} = ∅
(c) X ∈Mn

(d) X is infinite if n = 0 and X ∈ 〈UMn−1

Cn−1
〉 if n ≥ 1.

A forcing condition (σ0, σ1, X) ∈ Qn is valid for side i if X ∩ Ai ∈ 〈UMn−1

Cn−1
〉 for n > 0 and if

X ∩Ai is infinite for n = 0.

By definition of a Turing ideal M countable coded by a set M , then M can be written as
{Z0, Z1, . . . } with M =

⊕
i Zi. We then say that i is an M -index of Zi. Thanks to the notion

of index, any Qn-condition can be finitely presented as follows. An index of a Qn-condition
c = (σ0, σ1, X) is a tuple (σ0, σ1, a) where a is an Mn-index for X.

Definition 4.2. The partial order on Qn is defined by

(τ0, τ1, Y ) ≤ (σ0, σ1, X)

if for every i < 2, (τ i, Y ) ≤ (σi, X).

Given a condition c = (σ0, σ1, X) and i < 2, we write c[i] = (σi, X). Each Qn-condition c

represents two Pn−1-conditions c[0] and c[1].
We now design a disjunctive forcing question which builds upon the forcing question of Pn

conditions. The difference is that it is only used at the last step of the induction of formulas.

Definition 4.3. Let c = (σ0, σ1, X) ∈ Q0 and let (∃x)Φe0(G, x) and (∃x)Φe1(G, x) be two Σ1

formulas. Define the relation

c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x)
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to hold if for every 2-cover Z0 ∪ Z1 = X, there is some side i < 2, some finite set ρ ⊆ Zi and
some x ∈ ω such that Φei(σ

i ∪ ρ, x) holds.
Let n > 0. Let c = (σ0, σ1, X) ∈ Qn and let (∃x)Φe0(G, x) and (∃x)Φe1(G, x) be two Σ0

n+1

formulas. Define the relation

c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x)

to hold if for every 2-cover Z0 ∪ Z1 = X, there is some side i < 2, some finite set ρ ⊆ Zi and
some x ∈ ω such that σi ∪ ρ ?0¬Φei(G, x) holds.

4.2. The complexity aspects of the Qn forcing

This new forcing question now has the right definitional complexity

Lemma 4.4 Let n ∈ ω. Let c ∈ Qn and let (∃x)Φe0(G, x) and (∃x)Φe1(G, x) be two Σ0
n+1

formulas. The relation

c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x)

is Σ0
1(Y ) for some Y ∈ Mn. Moreover an Mn-index for Y can be found uniformly in an index

for c.

Proof. By compactness, for n = 0 the relation holds if there is a finite set E ⊆ X such that for
every E0 ∪E1 = E, there is some i < 2, some ρ ⊆ Ei and xn ∈ ω such that Φei(σ

i ∪ ρ, x) holds,
which is a Σ0

1(X) event for X ∈M0.
For n > 0 the relation holds if there is a finite set E ⊆ X such that for every E0 ∪ E1 = E,

there is some i < 2, some ρ ⊆ Ei and xn ∈ ω such that σi ∪ ρ ?0¬Φei(G, x) holds. By

Proposition 3.4, this statement is Σ0
1(X ⊕Cn−1 ⊕ ∅(n)

) and then Σ0
1(Y ) for some Y ∈Mn. �

Before we continue, we need to study the effectivness of Lemma 3.8 about the forcing question
for the Pn forcing.

Lemma 4.5 Let n > 0. Let c ∈ Qn with c = (σ0, σ1, X). Let (∃x)Φe(G, x) be a Σ0
m+1 formula

for 0 ≤ m < n. Let p = c[i] for some i < 2 with p = (σ,X).

(1) Suppose p ?`(∃x)Φe(G, x). The forcing condition q ≤ p of Lemma 3.8 which forces
(∃x)Φe(G, x) can always be of the form (σ ∪ τ,X ∩ Y ) for Y ∈ Mm where τ and an

Mm-index for Y can be found uniformly in any PA over ∅(n+1)
. If furthermore c is valid

on side i one can ensure τ ⊆ Ai ∩ X uniformly in A ⊕ P for any P which is PA over

∅(n+1)
.

(2) Suppose p ?0(∃x)Φe(G, x). The forcing condition q ≤ p of Lemma 3.8 which forces
(∀x)¬Φe(G, x) can always be of the form (σ,X ∩ Y ) for Y ∈ Mm where an Mm index

for Y can be found uniformly in any PA over ∅(n+1)
.

Proof. Suppose p ?`(∃x)Φe(G, x). By the proof of Lemma 3.8 there is τ ⊆ X such that
(∃x)Φe(σ∪ τ, x) holds if m = 0 and such that σ∪ τ ?0¬Φe(G, x) for some x if m > 0. Note that

if X ∩ Ai ∈ 〈UMn
Cn
〉, still refering to the proof of Lemma 3.8 we can ensure τ ⊆ X ∩ Ai. Also

finding τ is a Σ0
1(X) event if m = 0 and a Σ0

1(X ⊕ Cm−1 ⊕ ∅m) if m > 0 (resp. a Σ0
1(X ⊕A) if

m = 0 and a Σ0
1(A⊕X ⊕ Cm−1 ⊕ ∅m) if m > 0). As X ∈Mn we can then find τ uniformly in

∅n+1
(resp. in ∅n+1 ⊕A).

Suppose now p ?0(∃x)Φe(G, x). By the proof of Lemma 3.8 there is a finite set F ⊆ Cm

such that U(e, σ) ∩ UM0
F is not a largeness class. Note that finding F is a Σ0

1(∅(m+2)
) event.

It can then be found uniformly in ∅(m+2)
and then uniformly in ∅(n+1)

. Still by the proof of
Lemma 3.8 there must be some k such that Pk is not empty where Pk is the Π0

1(Z) class for

some Z ∈Mm of covers Y0∪· · ·∪Yk ⊇ ω such that Yi /∈ U(e, σ)∩UMm
F for each i ≤ k. Searching

for the first such k is a Σ0
1(∅m+1

) event. Once found, one also compute uniformly in Mm an

index for Y0 ⊕ · · · ⊕ Yk ∈ Mm ∩ Pk. As 〈UMn−1

Cn−1
〉 is partition regular and as X ∈ 〈UMn−1

Cn−1
〉,
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there is some i ≤ k such that Yi ∩ X ∈ 〈UMn−1

Cn−1
〉 ⊆ UMm

Cm
. Finding the right Yi for i ≤ k is a

Π0
1(Cn−1⊕(Yi∩X⊕Mn−1)′) event. As X ∈Mn it can then be found in any PA over ∅(n+1)

. �

We shall now show the extension of Lemma 3.8 for the Qn forcing conditions.

Lemma 4.6 Let n ∈ ω. Let c ∈ Qn and let (∃x)Φe0(G, x) and (∃x)Φe1(G, x) be two Σ0
n+1

formulas.

(a) If c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x), then there is some d ≤ c and some i < 2 such
that

d[i]  (∃x)Φei(G
i, x)

(b) If c ?0(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x), then there is some d ≤ c and some i < 2 such
that

d[i]  (∀x)¬Φei(G
i, x)

Moreover an index of d can be found in A⊕P for any set P which is PA over ∅(n+1)
uniformly

in an index of c, e0 and e1.

Proof. Say c = (σ0, σ1, X). Both (a) and (b) are trivial in the case n = 0. We treat the case
n > 0.

(a) Let Z0 = X ∩ A0 and Z1 = X ∩ A1. Unfolding the definition of the forcing question,
there is some i < 2, some ρ ⊆ Zi and x ∈ ω such that σi ∪ ρ ?0¬Φei(G

i, x). By Lemma 4.5 we
have a set Y ∈Mn such that (σi∪ρ,X ∩Y ) ≤ (σi∪ρ,X) and (σi∪ρ,X ∩Y )  (∃x)Φei(G

i, x).
Note that d = (σi ∪ ρ, σi−1, X ∩ Y ) is a valid extension of c. From Proposition 3.4 finding ρ is

a Σ0
1(A ⊕X ⊕ Cn−1 ⊕ ∅(n)

) event. From Lemma 4.5 one can then find and Mn-index of Y in

any set P which is PA over ∅(n+1)
. Overall an index for d can be found in A⊕ P for any set P

which is PA over ∅(n+1)
, uniformly in an index of c, e0 and e1.

(b) Let D be the Π0
1(Mn) class of all Z0 ⊕ Z1 with Z0 ∪ Z1 = X, such that for every i < 2,

every ρ ⊆ Zi, and every x ∈ ω we have σ ∪ ρ ?`¬Φei(G
i, x). Let Z0 ⊕ Z1 ∈ D such that

Z0 ⊕ Z1 ∈ Mn. Since 〈UMn−1

Cn−1
〉 is a partition regular class containing X, there is some i < 2

such that Zi ∈ 〈UMn−1

Cn−1
〉. Define the Qn-condition d = (σ0, σ1, Zi). Then d[i]  (∀x)¬Φei(G, x).

Finding the right Zi is a Π0
1(Cn−1⊕ (X ⊕Zi⊕Mn−1)′) event. It can the be found uniformly in

any set P which is PA over ∅(n+1)
. This completes the proof of the lemma. �

4.3. The degenerate forcing question

The forcing question will be used with a disjunctive argument. Doing so we will build two
generics, one in A0 and one in A1. Possibly only one of them will force every Σ0

n statement or
their negation. The challenge is to ensure in the same time that the same generic also forces
every Σ0

m statement or their negation for m < n, so that we can then apply Lemma 3.10 saying
that forcing implies truth. It is only possible to do so on side i under the assumption that our
current forcing condition is valid on side i:

Lemma 4.7 Let n ≥ 0. Let c ∈ Qn be valid for side i. Let m < n and let (∃x)Φe(G, x) be

a Σ0
m+1 formula. Then one can find uniformly in A ⊕ P for any P which is PA over ∅(n+1)

, a

condition d ≤ c such that d[i]  (∃x)Φe(G, x) or d[i]  (∀x)¬Φe(G, x)

Proof. We ask if (σi, X) ?`(∃x)Φe(G, x). From Lemma 4.5 if the answer is yes there is a τ ⊆
X ∩Ai and a set Y ∈ Mn such that d = (σi ∪ τ, Y ∩X ∩Ai) ?`(∃x)Φe(G, x). If no then there
is Y ∈Mn such that d = (σi ∪ τ, Y ∩X ∩Ai) ?`(∀x)¬Φe(G, x).

In any case from Lemma 4.5 an index for d can be found uniformly in A⊕P for any P which

is PA over ∅(n+1)
. �

The difficulty is now to make sure that the side i which turns out to be the right one, is also
always a valid one. To do so we need a “degenerate forcing question”.
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Definition 4.8. Let n > 0. Let c ∈ Qn. Let U be Σ0
1(∅(n)

) large open set. Let (∃x)Φe(G, x)
be a Σ0

n+1 formula. We define

c ?`U (∃x)Φe(G, x)

to hold if for every Z0 ∪ Z1 = X, there exists i < 2 such that Zi ∈ U and such that there is
some ρ ⊆ Zi and xn ∈ ω for which σi ∪ ρ ?0¬Φe(G, x) holds.

Lemma 4.9 Let n > 0. Let (σ0, σ1, X) ∈ Qn. Let U ⊇ 〈UMn−1

Cn−1
〉 be Σ0

1(∅(n)
) large open set

such that X ∩Ai−1 /∈ U . Let (∃x)Φe(G, x) be a Σ0
n+1 formula. The statement

c ?`U (∃x)Φe(G, x)

is Σ0
1(Y ) for some Y ∈ Mn. Moreover an Mn-index for Y can be found uniformly in an index

for c.

Proof. The relation holds if there is a finite set E ⊆ X such that for every E0 ∪ E1 = E, there
is some i < 2, some ρ ⊆ Ei and xn ∈ ω such that [Ei] ⊆ U and σi ∪ ρ ?0¬Φei(G, x) holds. By

Proposition 3.4, this statement is Σ0
1(X ⊕Cn−1 ⊕ ∅(n)

) and then Σ0
1(Y ) for some Y ∈Mn. �

Lemma 4.10 Let n > 0. Let (σ0, σ1, X) ∈ Qn. Let U ⊇ 〈UMn−1

Cn−1
〉 be Σ0

1(∅(n)
) large open set

such that X ∩Ai−1 /∈ U . Let (∃x)Φe(G, x) be a Σ0
n+1 formula.

(a) Suppose (σ0, σ1, X) ?`U (∃x)Φe(G, x).

Then there exists d ≤ c such that d[i]  (∃x)Φe(G, x)
(b) Suppose (σ0, σ1, X) ?0U (∃x)Φe(G, x).

Then there exists d ≤ c such that d[i]  (∀x)¬Φe(G, x)

Furthermore an index for d can be found in A ⊕ P for any set P which is PA over ∅(n+1)
,

uniformly in an index for c.

Proof. Say c = (σ0, σ1, X).
(a) Let Z0 = X ∩ A0 and Z1 = X ∩ A1. Unfolding the definition of the forcing question,

there is some j < 2 such that Zj ∈ U and such that for some ρ ⊆ Zj and x ∈ ω we have
σj ∪ ρ ?0¬Φei(G

i, x). By hypothesis Zi−1 /∈ U . Thus i = j and by Lemma 4.5 we have a set
Y ∈ Mn such that (σi ∪ ρ,X ∩ Y ) ≤ (σi ∪ ρ,X) and (σi ∪ ρ,X ∩ Y )  (∃x)Φei(G

i, x). Note
that (σi ∪ ρ, σi−1, X ∩ Y ) is a valid extension of (σ0, σ1, X). From Proposition 3.4 finding ρ is a

Σ0
1(A⊕X ⊕ Cn−1 ⊕ ∅(n)

) event. From Proposition 3.4 finding ρ is a Σ0
1(A⊕X ⊕ Cn−1 ⊕ ∅(n)

)
event. From Lemma 4.5 one can then find and Mn-index of Y in any set P which is PA over

∅(n+1)
. Overall an index for d can be found in A ⊕ P for any set P which is PA over ∅(n+1)

,
uniformly in an index of c, e0 and e1.

(b) Let D be the Π0
1(Mn) class of all Z0 ⊕ Z1 with Z0 ∪ Z1 = X, such that for every i < 2,

Zi /∈ U or for every ρ ⊆ Zi, and every x ∈ ω we have σ ∪ ρ ?`¬Φe(G, x). Let Z0 ⊕ Z1 ∈ D
be such that Z0 ⊕ Z1 ∈ Mn. Since 〈UMn−1

Cn−1
〉 is a partition regular class containing X, there

is some i < 2 such that Zi ∈ 〈UMn−1

Cn−1
〉. Since U ⊇ 〈UMn−1

Cn−1
〉 we must have Zi ∈ U and thus

d = (σ0, σ1, Zi) is a Qn extension of (σ0, σ1, X) such that d[i]  (∀x)¬Φei(G, x). Finding the
right Zi is a Π0

1(Cn−1 ⊕ (X ⊕ Zi ⊕Mn−1)′) event. It can the be found uniformly in any set P

which is PA over ∅(n+1)
. This completes the proof of the lemma. �

We are now ready to derive our main theorems

4.4. Preservation of non-Σ0
n definitions

Our first application shows the existence, for every instance of the pigeonhole principle, of a
solution which does not collapse the definition of a non-Σ0

n set into a Σ0
n one. This corresponds

to preservation of one non-Σ0
n definition, following the terminology of Wang who showed that

given A non Σ0
n, any non-empty Π0

1 class contains an element X such that A is not Σ0
n(X) [31].
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Theorem 4.11 Fix n ≥ 0 and let B be a non-Σ0
n+1 set. For every set A, there is an infinite

set G ⊆ A or G ⊆ A such that B is not Σ0
n+1(G).

Proof. We let A0 = A and A1 = A. We work with the Qn forcing. By Wang [31, Theorem 3.6.],
we can also assume that B is not Σ0

1(Mn). We also suppose n > 0, the case n = 0 was proved
by Dzhafarov and Jockusch [6].

The asymmetric case: Suppose first there exists a Qn-condition b = (σ0, σ1, X) which

is invalid for some side i − 1 < 2. Let U ⊆ 〈UMn−1

Cn−1
〉 be a Σ0

1(∅(n)
) largeness class such that

X ∩ Ai /∈ U . Note that every condition c ≤ b must be valid for side i as otherwise we would

have Y ∩ A0 and Y ∩ A1 both not in 〈UMn−1

Cn−1
〉 for some Y ∈ 〈UMn−1

Cn−1
〉 which would contradict

that 〈UMn−1

Cn−1
〉 is partition regular.

We then work below b = (σ0, σ1, X). Given c ≤ b and a Σ0
n+1 statement (∃x)Φe(G, x, y) with

one free variable y, the set {y : c ?`U (∃x)Φe(G, x, y)} is Σ0
1(Mn) from Lemma 4.9. As B is

not Σ0
1(Mn) there exists y ∈ B such that d ?0U (∃x)Φe(G, x, y) or there exists y /∈ B such that

c ?`U (∃x)Φe(G, x, y). In the first case using Lemma 4.10 we find an extension d ≤ c such that

d[i]  (∀x)¬Φe(G, x, y) and in the second case an extension d ≤ c such that d[i]  (∃x)Φe(G, x, y).

Now given c ≤ b and a Σ0
m+1 statement (∃x)Φe(G, x) for m < n we ask if c[i] ?`(∃x)Φe(G, x).

Using Lemma 4.5 if the answer is positive we find an extension d ≤ c such that d[i] 
(∃x)Φe(G, x) and otherwise we find an extension d ≤ c such that d[i]  (∀x)¬Φe(G, x).

In the end we build a n − 1-generic filter F ⊆ Pn−1 such that GF ⊆ Ai with in addition
that some p forces B 6= {y : (∃x)Φe(G, x, y)} for every Σ0

n+1 statement (∃x)Φe(G, x, y).

By Lemma 3.10 we then have that B 6= {y : (∃x)Φe(GF , x, y)} for every Σ0
n+1 statement

(∃x)Φe(G, x, y). Thus B is not Σ0
n+1(GF ).

The symmetric case: Suppose now that every Qn-condition c = (σ0, σ1, X) is valid for both
sides. Given a condition c and two Σ0

n+1 statement (∃x)Φe0(G, x, y), (∃x)Φe1(G, x, y) with one

free variable y, the set {y : c ?`(∃x)Φe0(G, x, y)∨(∃x)Φe1(G, x, y)} is Σ0
1(Mn) from Lemma 4.4.

As B is not Σ0
1(Mn) there exists y ∈ B such that c ?0(∃x)Φe0(G, x, y)∨(∃x)Φe1(G, x, y) or there

exists y /∈ B such that c ?`(∃x)Φe0(G, x, y)∨(∃x)Φe1(G, x, y). In the first case using Lemma 4.6

we find an extension d ≤ c such that d[i]  (∀x)¬Φei(G, x, y) for some i < 2 and in the second

case an extension d ≤ c such that d[i]  (∃x)Φei(G, x, y) for some i < 2.
Now given c and a Σ0

m+1 statement (∃x)Φe(G, x) for m < n we find using Lemma 4.5 an

extension d ≤ c such that d[i]  (∀x)Φe(G, x) or d[i]  (∀x)¬Φe(G, x) for both i = 0 and i = 1.
In the end we have one filter F ⊆ Qn giving two filters F0,F1 ⊆ Pn−1 corresponding to

side 0 and 1, which are both n − 1-generic and such that GF0 ⊆ A0 and GF1 ⊆ A1. Also

for every Σ0
n+1 formulas (∃x)Φe0(G, x, y), (∃x)Φe1(G, x, y) we have d ∈ F such that d[0] forces

B 6= {y : (∃x)Φe0(G, x, y)} or d[1] forces B 6= {y : (∃x)Φe1(G, x, y)}. By a usual pairing
argument, there must be i < 2 such that for every Σ0

n+1 formula (∃x)Φe(G, x, y) we have

d ∈ F such that d[i] forces B 6= {y : (∃x)Φe(G, x, y)}. By Lemma 3.10 we then have that
B 6= {y : (∃x)Φe(GFi , x, y)} for every such formula and then that B is not Σ0

n+1(GF ). �

The following corollary would correspond to strong iterated jump cone avoidance of RT1
2,

following the terminology of Wang [32].

Theorem (Main Theorem 1 (Theorem 1.2)) Fix n ≥ 0. Let B be non ∅(n)-computable. Every

set A has an infinite subset H ⊆ A or H ⊆ A such that B is not H(n)-computable.

Proof. Given a set B which is not ∅(n)-computable, either B or B is not Σ0
n+1. By Theorem 4.11,

for every set A, there is an infinite set H ⊆ A or H ⊆ A such that either B or B is not Σ0
n+1(H),

hence such that B is not H(n)-computable. �
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4.5. Preservation of ∆0
n hyperimmunities

Our second application concerns the ability to prevent solutions from computing fast-growing
functions. Recall the definition of hyperimmunity.

Definition 4.12. A function f dominates a function g if f(x) ≥ g(x) for every x. A function
f is X-hyperimmune if it is not dominated by any X-computable function.

The following lemma is proven by Downey et al. [5, Lemma 3.3].

Lemma 4.13 ([5]) For every k ≤ ω and every Z, for any nondecreasing functions (fi)i<k which
are Z-hyperimmune, there is a G and sets (Ai)i<k such that none of the Ai is Σ0

1(Z ⊕G), but
for any i and any function h dominating fi, Ai is Σ0

1(Z ⊕G⊕ h).

Theorem 4.14 Fix a ∅(n)-hyperimmune function f . For every set A, there is an infinite set
H ⊆ A or H ⊆ A such that f is H(n)-hyperimmune.

Proof. By Lemma 4.13, letting Z = ∅(n), there is a set G and a set B such that B is not
Σ0

1(∅(n)⊕G) but for any function h dominating f , B is Σ0
1(∅(n)⊕G⊕h). By the jump inversion

theorem, there is a set Q such that Q(n) ≡T ∅(n) ⊕ G. In particular, B is not Σ0
1(Q(n)), so

it is not Σ0
n+1(Q). By Theorem 4.11, there is an infinite set H ⊆ H or H ⊆ A such that B

is not Σ0
n+1(H ⊕ Q). In particular B is not Σ0

1((H ⊕ Q)(n)) and therefore not Σ0
1(H(n) ⊕ G).

Suppose for the contradiction that f is dominated by an H(n)-computable function h. Then B
is Σ0

1(∅(n) ⊕G⊕ h), hence B is Σ0
1(H(n) ⊕G). Contradiction. �

4.6. Lown solutions

An effectivization of the forcing construction enables us to obtain lowness results for the
infinite pigeonhole principle. The existence of low2 solutions for ∆0

2 sets, and of low2 cohesive
sets for computable sequences of sets, was proven by Cholak, Jockusch and Slaman [2, sections
4.1 and 4.2]. The existence of low3 cohesive sets for ∆0

2 sequences of sets was proven by Wang [30,
Theorem 3.4]. Wang [30, Questions 6.1 and 6.2] and the second author [18, Question 5.4] asked
whether such results can be generalized for every ∆0

n+1 instances of the pigeonhole and every

∆0
n instances of cohesiveness. We answer positively both questions.

Theorem 4.15 Let n ≥ 0. For every ∅(n+1)
-computable set A and every P PA over ∅(n+1),

there is an infinite set G ⊆ A or G ⊆ A such that G(n+1) ≤T P .

Proof. The case n = 0 is proven by Cholak, Jockusch and Slaman [2, sections 4.1 and 4.2].
Suppose n > 0. Fix P and A, and let A0 = A and A1 = A. We work with the Qn forcing.
We again have two constructions, based on whether every condition have both valid sides or not.

Asymmetric case: Suppose first there exists a Qn-condition b = (σ0, σ1, X) which is invalid

for some side i− 1 < 2. Let U ⊆ 〈UMn−1

Cn−1
〉 be a Σ0

1(∅(n)
) largeness class such that X ∩ Ai /∈ U .

Note that every condition c ≤ b must be valid for side i as otherwise we would have Y ∩A0 and

Y ∩ A1 both not in 〈UMn−1

Cn−1
〉 for some Y ∈ 〈UMn−1

Cn−1
〉 which would contradict that 〈UMn−1

Cn−1
〉 is

partition regular. We then work below b = (σ0, σ1, X).
Given c ≤ b and a Σ0

n+1 statement (∃x)Φe(G, x, y) with one free variable y, we ask if

c ?`U (∃x)Φe(G, x, y). From Lemma 4.9 we obtain the answer uniformly in ∅(n+1)
and thus

uniformly in P . If the answer is yes, from Lemma 4.10 we find uniformly in P an extension
d ≤ c such that d[i]  (∀x)¬Φe(G, x, y) and in the second case an extension d ≤ c such that

d[i]  (∃x)Φe(G, x, y).

Now given c ≤ b and a Σ0
m+1 statement (∃x)Φe(G, x) for m < n we ask if c[i] ?`(∃x)Φe(G, x).

From Proposition 3.4 we obtain the answer uniformly in ∅(n+1)
and thus uniformly in P . Using

Lemma 4.5 if the answer is positive we find uniformly in P an extension d ≤ c such that
d[i]  (∃x)Φe(G, x) and otherwise we find an extension d ≤ c such that d[i]  (∀x)¬Φe(G, x).
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In the end we build effectively in P a n-generic filter F ⊆ Pn−1 such that GF ⊆ Ai. Us-
ing lemma 3.10 and by construction, P can also decide every Σ0

n+1(GF ) statement. Thus

(GF )(n+1) ≤T P .
The symmetric case: Suppose now that every Qn-condition c = (σ0, σ1, X) is valid for

both sides. Given a condition c and two Σ0
n+1 statement (∃x)Φe0(G, x, y), (∃x)Φe1(G, x, y) with

one free variable y, we ask if c ?`(∃x)Φe0(G, x, y)∨(∃x)Φe1(G, x, y). From Lemma 4.4 we obtain

the answer uniformly in ∅(n+1)
and then uniformly in P . Using Lemma 4.6 we find uniformly

in P an extension d ≤ c such that d[i]  (∃x)Φei(G, x, y) or d[i]  (∀x)¬Φei(G, x, y) for some
i < 2.

Now given c and a Σ0
m+1 statement (∃x)Φe(G, x) for m < n we ask if c[0] ?`(∃x)Φe(G, x).

From Proposition 3.4 we obtain the answer uniformly in ∅(n+1)
and thus uniformly in P . Using

Lemma 4.5 if the answer is positive we find uniformly in P an extension d ≤ c such that
d[0]  (∃x)Φe(G, x) and otherwise we find an extension d ≤ c such that d[0]  (∀x)¬Φe(G, x).

We then ask whether d[1] ?`(∃x)Φe(G, x) and find similarly an extension h ≤ d such that

h[1]  (∀x)¬Φe(G, x) or h[1] ?`(∃x)Φe(G, x).
In the end we build effectively in P a filter F ⊆ Qn giving two filters F0,F1 ⊆ Pn−1 corre-

sponding to side 0 and 1, which are both n− 1-generic and such that GF0 ⊆ A0 and GF1 ⊆ A1.
By a pairing argument there must be i < 2 such that Fi is n-generic. Using lemma 3.10 and by
construction, P can decide every Σ0

n+1(GFi) statement. Thus (GFi)
(n+1) ≤T P . �

Theorem (Main theorem 3 (Theorem 1.4)) Fix n ≥ 0. Every ∅(n+1)
-computable set A has an

infinite subset H ⊆ A or H ⊆ A of lown+2 degree.

Proof. By the relativized low basis theorem [10], there is some P PA over ∅(n+1) such that

P ′ ≤T ∅(n+2). By Theorem 4.15, there is an infinite set G ⊆ A or G ⊆ A such that G(n+1) ≤T P .
In particular, G(n+2) ≤T P ′ ≤T ∅(n+2). Thus G is of lown+2 degree. �

5. Arithmetic and Hyperarithmetic cone avoidance

In this section, we extend the jump control of solutions to the pigeonhole principle to or-
dinal iterations of the jump. We then derive a proof of strong cone avoidance for arithmetic
and hyperarithmetic reductions. We prove in the mean time cone avoidance for arithmetical
reductions. The reader already familiar with higher recursion theory may jump directly to sec-
tion 5.1.7 where we give the general strategy which will be used to show hyperarithmetic cone
avoidance.

5.1. Background on higher recursion theory

5.1.1. Computable ordinals. We let ωck1 denote the first non-computable ordinal. There is a Π1
1

set O1 ⊆ ω such that each o ∈ O1 codes for an ordinal α < ωck1 and each ordinal α < ωck1 has
a unique code in O1. Furthermore given that o ∈ O1, one can computably recognize if o codes
for 0, if o codes for a successor ordinal α+ 1, in which case we can uniformly and computably
produce a code in O1 for α, and if o codes for a limit ordinal supn βn, in which case we can
uniformly and computably produce for each n codes in O1 for βn. See [23] for more details
about O1. In this section, we manipulate each ordinal α < ωck1 via its respective code in O1.
To simplify the reading, we use the notation α instead of the code for α.

5.1.2. The effective Borel sets. We also use codes for effective Borel subsets of ω or of 2ω : For
α < ωck1 a code for a Σ0

α+1 set B =
⋃
n<ω Bn is the code of a function that effectively enumerate

codes for each Π0
α set Bn. A code for a Π0

α+1 set B =
⋂
n<ω Bn is the code of a function that

effectively enumerate codes for each Σ0
α set Bn. For α = supn βn limit a code of a Σ0

α set
B =

⋃
n<ω Bβn is the code of a function that effectively enumerate codes for each Π0

βn
set Bβn

with supn βn = α. The code of a Π0
α set B =

⋂
n<ω Bβn is the code of a function that effectively

enumerate codes for each Σ0
βn

set Bβn with supn βn = α. We also assume the codes for effective
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Borel sets include some information so that we can computably distinguish Π0
α from Σ0

α codes
as well as distinguish if α = 1, if α is successor or if it is limit.

5.1.3. The iterated jumps. We use such codes to iterate the jump through the ordinals:

(1) ∅(0)
= ∅

(2) ∅(α+1)
= (∅(α)

)′

(3) ∅(supn αn)
= ⊕n∈ω∅(αn)

Note that for n < ω the set ∅(n)
is Σ0

n and complete for Σ0
n questions. Above the first limit

ordinal the situation is slightly different : ∅(ω)
is ∆0

ω and not Σ0
ω. Also given α ≥ ω we have

that ∅(α+1)
is Σ0

α and complete for Σ0
α questions.

Proposition 5.1 Let n ∈ ω.

(1) Let m > 0. The set {X : n ∈ X(m)} is a Σ0
m class.

(2) Let α be limit. The set {X : n ∈ X(α)} is a ∆0
β class for some β < α.

(3) Let α = β + 1 with β ≥ ω. The set {X : n ∈ X(α)} is a Σ0
β class.

Proof. The set {X : n ∈ X ′} is clearly Σ0
1. Let m > 1. the set {X : n ∈ X(m)} equals⋃

{σ : Φn(σ,n)↓}

⋂
{i : σ(i)=0}

{X : i /∈ X(m−1)} ∩
⋂

{i : σ(i)=1}

{X : i ∈ X(m−1)}

This is by induction a Σ0
m set.

Let α be limit. Let p1, p2 be projections of the pairing function, that is, x = 〈p1(x), p2(x)〉.
Then {X : n ∈ X(α)} equals {X : p1(n) ∈ X(p2(n))}, which is a ∆0

β set for β < α.

Let α = β + 1. The set {X : n ∈ X(β+1)} equals⋃
{σ : Φn(σ,n)↓}

⋂
{i : σ(i)=0}

{X : i /∈ X(β)} ∩
⋂

{i : σ(i)=1}

{X : i ∈ X(β)}

This is by induction a Σ0
β class. �

Proposition 5.2 Let Φ be a functional. Let n, i ∈ ω.

(1) Let m > 0. The set {X : ∃t Φ(X(m), n)[t] ↓= i} is a Σ0
m+1 class.

(2) Let α ≥ ω. The set {X : ∃t Φ(X(α), n)[t] ↓= i} is a Σ0
α class.

Proof. Trivial using Proposition 5.1 �

5.1.4. Π1
1 and Σ1

1 sets of integers. We previously mentioned a Π1
1 set O1 of unique notations

for ordinals. This set is included in Kleene’s O, the set of all the constructible codes for the
computable ordinals. Given an ordinal α < ωck1 , let O<α denote the elements of O which code
for an ordinal strictly smaller than α. Each O<α is ∆1

1 uniformly in α (it actually is always
a Σ0

α+1 set [14]). It is well-known that O is a Π1
1-complete set [23], that is, for any Π1

1 set
B ⊆ ω there is a computable function f : ω → ω such that n ∈ B ↔ f(n) ∈ O. Let us define
Bα = {n : f(n) ∈ O<α}. In particular, each Bα is ∆1

1 uniformly in α and B =
⋃
α<ωck1

Bα. In

particular B is a Σ0
ωck1

set. Note that contrary to Σ0
α sets for α < ωck1 , the Σ0

ωck1
are not described

with a computable code, but rather with a Π1
1 set of codes for all the Π0

α that constitutes the
Σ0
ωck1

set B. With a little hack, we can even make sure that at most one new element appears

in each Bα. For this reason, we often see Π1
1 sets as enumerable along the computable ordinals.

By complementation a Σ1
1 set B ⊆ ω can be seen as co-enumerable along the computable

ordinals and we have B =
⋂
α<ωck1

Bα where each Bα is ∆1
1 uniformly in α. We also say in this

case that B is Π0
ωck1

.
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5.1.5. Σ1
1-boundedness. A central theorem when working with Σ1

1 and Π1
1 sets is Σ1

1-boundedness:

Theorem 5.3 (Σ1
1-boundedness [26]) Let B be a Σ1

1 set of codes for ordinals, then the supremum
of the ordinals coded by elements of B is strictly smaller than ωck1 .

We mostly here use the following corollary:

Corollary 5.4 Let f : ω → ωck1 be a total Π1
1 function. Then supn f(n) = α < ωck1 .

Note that f : ω → ωck1 means the range of f is a subset of O1. The corollary comes from the
fact that if f is total, then it becomes ∆1

1 and its range is then a Σ1
1 set of codes for ordinals.

As an example we apply here Σ1
1-boundedness to show a simple fact that will be needed later :

adding an ω-bounded quantifier to a Σ0
ωck1

or a Π0
ωck1

set does not change its complexity.

Lemma 5.5 Every Σ0
ωck1 +1

set of integers is Π0
ωck1

.

Proof. Let B be Σ0
ωck1 +1

, that is, B =
⋃
n∈ω

⋂
α∈ωck1

Bn,α where each Bn,α is Σ0
α uniformly in α.

Then B is Π0
ωck1

via the following equality :
⋃
n∈ω

⋂
α∈ωck1

Bn,α =
⋂
α∈ωck1

⋃
n∈ω

⋂
β∈αBn,β. �

It is clear that if m is in the leftmost set it is also in the rightmost set. The reader should
have no trouble to apply Σ1

1-boundedness to show that if m is not in the leftmost set, then it is
not in the rightmost one.

5.1.6. Π1
1 and Σ1

1 sets of reals. Given X ∈ 2ω we let OX be the set of X-constructible codes
for X-computable ordinals. We let ωX1 ≥ ωck1 be the smallest non X-computable ordinal. For
α < ωX1 , we let OX<α be the elements of OX coding for an ordinal strictly smaller than α.

One can show that a set B ⊆ 2ω is Π1
1 iff there exists some e ∈ ω such that B = {X : e ∈ OX},

that is, B is the set of elements relative to which e codes for an X-computable ordinal. In
particular, B =

⋃
α<ω1

{X : e ∈ OX<α}. Note that the union may go up to ω1, indeed, Π1
1 sets

of reals are not necessarily Borel.
A Π1

1 set of particular interest is the set of element X such that ωX1 > ωck1 . The set is Borel,
but not effectively. One can even prove that it contains no non-empty Σ1

1 subset : this is known
as the Gandy Basis theorem (see Sacks [23, III.1.5]):

Theorem 5.6 (Gandy Basis theorem) Let B ⊆ 2ω be a non-empty Σ1
1 set. Then there exists

X ∈ B such that ωX1 = ωck1 .

5.1.7. The general strategy to show hyperarithmetic cone avoidance. Let Z be non ∆1
1. Our goal

is to build a generic G ⊆ A or G ⊆ ω −A such that Z is not ∆1
1(G). This is done in two steps:

first show that Z is not G(α)-computable for any α < ωck1 and second show that ωG1 = ωck1 , so

in particular we cannot have that Z is G(α)-computable for ωck1 ≤ α < ωG1 .
The first part is simply an iteration of the forcing through the computable ordinals, and

raises no particular issue. This is done in Section 5.3.
The second part is a little bit trickier but still follows a canonical technique, which has often

been used, up to some cosmetic changes in its presentation, to show this kind of preservation
theorem (see for instance [8], [22] or [27]) : Suppose ωG1 > ωck1 , in particular there is an element
e ∈ OG which codes for ωck1 , that is e is the code of a functional with ∀n Φe(G,n) ↓∈ OG

<ωck1

with supn |Φe(G,n)| = ωck1 where |Φe(G,n)| is the ordinal coded by Φe(G,n). All we have to do
is to show that such a code e does not exist. Given e we show that one of the following holds:

(1) ∃n ∀α < ωck1 Φe(G,n) /∈ OG<α
(2) ∃α < ωck1 ∀n Φe(G,n) ∈ OG<α

Each set {X : Φe(X,n) /∈ OX<α} is ∆1
1 uniformly in α. It follows that the set {X : ∃n ∀α <

ωck1 Φe(X,n) /∈ OX<α} is a Σ0
ωck1 +1

set of reals. Contrary to Σ0
ωck1 +1

sets of integers, such sets
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cannot be simplified. We are then required to extend our forcing questions in order to control
the truth of Σ0

ωck1 +1
-statements. This is what will be done in Section 5.4.

5.2. Preliminaries

We now design a notion of forcing for controlling the α-jump of solutions to the pigeonhole
principle. Unlike the notion of forcing for controlling finite iterations of the jump, this notion
is non-disjunctive and initially fixes the side of the instance A from which we will construct a
solution. This is at the cost of a forcing question whose definitional complexity is higher than
the question it asks.

Proposition 5.7 There is a sequence of sets {Mα}α<ωck1 such that:

(1) Mα codes for a countable Scott set Mα

(2) ∅(α)
is uniformly coded by an element of Mα

(3) Each M ′α is uniformly computable in ∅(α+1)

Proof. In the proof of Proposition 5.7 we show how to build a functional Φ : 2ω → 2ω such that
for any oracle X, we have that M ′ = Φ(X ′) is such that M = ⊕n∈ωXn codes for a Scott setM
with X0 = X.

We simply use here this functionnal with any ∅(α+1)
for α < ωck1 . �

Note ∅(β)
is computable in ∅(α)

for β < α in a uniform way : there is a unique computable

function f(∅(α)
, α, β) which outputs ∅(β)

for every β < α. Also Proposition 5.7 implies that Mβ

is computable in ∅(α)
for β < α and similarly, the computation is uniform in β, α.

We now turn to an extention of proposition 2.15 to the computable ordinals, for which we
reuse lemma 2.16 and lemma 2.17.

Proposition 5.8 There is a sequence of sets {Cα}α<ωck1 such that:

(1) UMα
Cα

is an Mα-cohesive largeness class

(2) β < α implies UMα
Cα
⊆ 〈UMβ

Cβ
〉

(3) Each Cα is coded by an element of Mα+1 uniformly in α and Mα+1.

Proof. Let Xα
i be the element of Mα of code i, so that each Mα = ⊕iXα

i . Let us argue that

there is a computable function f : ωck1 ×ωck1 ×ω such that whenever β < α, then Xβ
i = Xα

f(α,β,i):

Given an ordinal α the function f considers the Mα-code of ∅(α)
(which is uniformly coded in

Mα) and uses it produce an Mα-code of Mβ = ⊕iXβ
i (as Mβ is computable in ∅(α)

, uniformly

in β, α) and then returns an Mα-code of Xβ
i . Given α < β and C ⊆ ω2, we then let g(α, β, C) =

{〈e, f(α, β, i)〉 : 〈e, i〉 ∈ C}. In particular, UMα

g(α,β,C) = UMβ

C .

Suppose that stage α we have defined by induction sets Cβ for each β < α, verifying (1)(2)
and (3). Let us proceed and define Cα.

Suppose first that α = β + 1 is successor. Note that the set Cβ is coded by an element of

Mβ+1 uniformly in β, and thus that Cβ is uniformly computable in ∅(β+2)
and then uniformly

computable in M ′′β . Using Lemma 2.16 we define Dβ ⊇ Cβ to be such that UMβ

Dβ
= 〈UMβ

Cβ
〉 and

such that Dβ is uniformly M ′′β -computable. We define Eα to be g(α, β,Dβ), so that UMα
Eα

=

UMβ

Dβ
. Note that as Eα is uniformly computable in M ′′β and thus in ∅(α+1)

, it is uniformly

coded by an element of Mα+1. Note also that UMα
Eα

is partition regular as it equals 〈UMβ

Cβ
〉.

Using Lemma 2.17 we uniformly find an Mα+1-index of Cα ⊇ Eα to be such that UMα
Cα

is an
Mα-cohesive largeness class.

At limit stage α = supn βn, each set Cβn is coded by an element ofMβn+1 uniformly in βn and

that Mβn+1 is uniformly computable in ∅(α)
. It follows that

⋃
nCβn is uniformly computable
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in ∅(α)
. We define Dα to be

⋃
n g(α, βn, Cβn). Note that Dα is uniformly computable in ∅(α)

and thus coded by an element of Mα uniformly in α. Note also that UMα
Dα

=
⋂
n∈ω U

Mβn
Cβn

=⋂
n∈ω〈U

Mβn
Cβn
〉. As an intersection of partition regular class, UMα

Dα
is partition regular. Using

Lemma 2.17 there is a set Cα ⊇ Dα such that UMα
Cα

is Mα-cohesive and such that Cα is
uniformly coded by an element of Mα+1. �

5.3. The forcing

From now on, fix sequences {Mα}α<ωck1 and {Cα}α<ωck1 which verify Proposition 5.7 and

Proposition 5.8, respectively. Assume also that we have a class S ⊆
⋂
β<ωck1

UMβ

Cβ
which is

partition regular and that will be detailed later.
Let A0 ∪A1 = ω. Note that there must be i < 2 such that Ai ∈ S. Let then A = Ai for some

i such that Ai ∈ S.

Definition 5.9. Let Pωck1 be the set of conditions (σ,X) such that:

(1) σ ⊆ A
(2) X ⊆ A
(3) X ∩ {0, . . . , |σ|} = ∅.
(4) X ∈ S

Given two conditions (σ,X), (τ, Y ) ∈ Pωck1 we let (σ,X) ≤ (τ, Y ) be the usual Mathias extension,

that is, σ � τ , X ⊆ Y and σ − τ ⊆ Y .

We now define an abstract forcing question for Σ0
α sets, which is merely an extension of the

forcing question of the Pn forcing for Σ0
n+1 sets : when α < ω, the definition below is merely a

reformulation of Definition 3.3 with the use of effective Borel sets instead of formulas.

Definition 5.10. Let σ ∈ 2<ω. Given a Σ0
1 class U , let σ ?`U hold if

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} [σ ∪ τ ] ⊆ U} ∩ UM0
C0

is a largeness class. Then inductively, given a Σ0
m class B =

⋃
n<ω Bn with 1 < m < ω, we let

σ ?`B hold if

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn} ∩ UMm−1

Cm−1

is a largeness class. Then inductively, given a Σ0
α class B =

⋃
n<ω Bβn with ω ≤ α < ωck1 , we

define σ ?`B if

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bβn} ∩ U
Mα
Cα

is a largeness class.
For a condition p = (σ,X) ∈ Pωck1 and an effectively Borel set B, we write p ?`B if σ ?`B.

We shall now study the effectivity of the relation ?`. To do so we introduce the following
notation.

Definition 5.11. Let σ ∈ 2<ω. Given a Σ0
1 class B, we write U(B, σ) for the open set:

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} [σ ∪ τ ] ⊆ B}
Given a Σ0

α class B =
⋃
n<ω Bβn for 1 < α < ωck1 we write U(B, σ) for the open set:

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bβn}

Proposition 3.4 settled the complexity of the relation ?` by showing that it is Π0
1(Cm−1⊕∅(m)

)
for a Σ0

m class. We extend here the proposition for Σ0
α classes. Note that in the following one

might have the false impression that we loose one jump compare to proposition 3.4. This is due

to the fact that for α ≥ ω the Σ0
α-complete set is ∅(α+1)

and not ∅(α)
.

Proposition 5.12 Let σ ∈ 2<ω.

(1) Let B be a Σ0
m class for 0 < m < ω
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(a) The set U(B, σ) is an upward-closed Σ0
1(Cm−2 ⊕ ∅(m−1)

) open set if m > 1 and an
upward-closed Σ0

1 open set if m = 1.

(b) The relation σ ?`B is Π0
1(Cm−1 ⊕ ∅(m)

).
(2) Let B be a Σ0

α class for α ≥ ω.

(a) The set U(B, σ) is an upward closed Σ0
1(Cα−1⊕ ∅(α)

) open set if α is successor and

an upward closed Σ0
1(∅(α)

) open set if α is limit.

(b) The relation σ ?`B is Π0
1(Cα ⊕ ∅(α+1)

).

This is uniform in σ and a code for the class B.

Proof. (1) was already proved in Proposition 3.4. We then only prove (2). This is done by
induction on the effective Borel codes. Let ω ≤ α < ωck1 . Suppose (a) and (b) are true for any
ω ≤ β < α. Let σ ∈ 2<ω and let B =

⋃
n<ω Bβn be a Σ0

α class. Let

U(B, σ) = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bβn}

Let us show (a). Suppose first α is limit. For each n ∈ ω, the class 2ω − Bβn is a Σ0
βn

class
uniformly in σ∪ τ and in a code for Bβn . By induction hypothesis, or by proposition 3.4 in case

α = ω, the relation σ ∪ τ ?0 2ω − Bβn is, in any case, Σ0
1(∅(βn+2)

) and thus Σ0
1(∅(α)

). It follows

that U(B, σ) is an upward-closed Σ0
1(∅(α)

) open set.
Suppose now α ≥ ω with α = β+1. For each n we have that 2ω−Bβn is a Σ0

β class uniformly

in n. By induction hypothesis, the relation σ ∪ τ ?0 2ω −Bβn is Σ0
1(Cβ ⊕ ∅(β+1)

). It follows that

U(B, σ) is an upward closed Σ0
1(Cα−1 ⊕ ∅(α)

) class.

Let us now show (b). Suppose α ≥ ω successor or limit. Then U(B, σ) ∩ UMα
Cα

is a largeness

class if for all F ⊆ Cα, the class U(B, σ) ∩ UMα
F is a largeness class. It is a Π0

2(Mα) statement

uniformly in F and then a Π0
1(M ′α) statement uniformly in F and then a Π0

1(∅(α+1)
) statement

uniformly in F . It follows that the statement U(B, σ) ∩ UMα
Cα

is a largeness class is Π0
1(Cα ⊕

∅(α+1)
). �

We finally extend the forcing relation of Definition 3.5 to the transfinite.

Definition 5.13. Let (σ,X) ∈ Pωck1 . Let U be a Σ0
1 class. We define

(σ,X)  U ↔ [σ] ⊆ U
(σ,X)  2ω − U ↔ ∀τ ⊆ X [σ ∪ τ ] * U

Then inductively for Σ0
α classes B =

⋃
n<ω Bβn , we define:

(σ,X)  B ↔ ∃n (σ,X)  Bβn
(σ,X)  2ω − B ↔ ∀n ∀τ ⊆ X σ ∪ τ ?` 2ω − Bβn

Note that the relation  does not change compare to the arithmetical case : the definition
goes through exactly the same way in the transfinite. It is the same for the relation ?`. For
these reasons the following lemmas and propositions and theorems are all proved exactly the

same way as for the arithmetical case, only now our set S is included in
⋂
β<ωck1

UMβ

Cβ
and not

just in
⋂
m<ω U

Mm
Cm

.

Lemma 5.14 Let p ∈ Pωck1 . Let B =
⋂
n<ω Bβn be a Π0

α class. Then p 
⋂
n<ω Bβn iff for every

n ∈ ω and every q ≤ p, q ?`Bβn .

Proof. Same as Lemma 3.6. �

Proposition 5.15 Let p ∈ Pωck1 . Let B be an effectively Borel set. If p  B and q ≤ p then

q  B.

Proof. Same as Lemma 3.7. �
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Proposition 5.16 Let p ∈ Pωck1 . Let B =
⋃
n<ω Bβn be a Σ0

α class for 0 < α < ωck1 .

(1) Suppose p ?`B. Then there exists q ≤ p such that q  B.
(2) Suppose p ?0B. Then there exists q ≤ p such that q  2ω − B.

Proof. Same as Lemma 3.8. �

Definition 5.17. Let F ⊆ Pωck1 be a sufficiently generic filter. Then there is a unique set

GF ∈ 2ω such that for every (σ,X) ∈ F we have σ ≺ GF .

Theorem 5.18 Let F ⊆ Pωck1 be a generic enough filter. Let p ∈ F . Let Bα =
⋃
n<ω Bβn be

a Σ0
α class for 0 < α < ωck1 . Suppose p  Bα. Then GF ∈ Bα. Suppose p  2ω − Bα. Then

GF ∈ 2ω − Bα.

Proof. Same as Lemma 3.10. �

We now have all the necessary parts to show arithmetic strong cone avoidance, and more
generally α cone avoidance for a limit ordinal α.

Theorem 5.19 Let α ≤ ωck1 be a limit ordinal. Suppose Z is not ∆0
1(∅(β)

) for every β < α.

Let F be a sufficiently generic filter. Then for every β < α, Z is not ∆0
1(G

(β)
F ).

Proof. Let Φ be a functional and β < α. Let Bn = {X : Φ(X(β), n) ↓}. We want to show that

Z 6= {n : G
(β)
F ∈ Bn}. From Proposition 5.2, Bn is a Σ0

β+1 set for each n ∈ ω (Σ0
β if β ≥ ω and

Σ0
β+1 if β < ω).

Let p ∈ Pωck1 be a condition. From Proposition 5.12, the set {n : p ?`Bn} is Π0
1(∅(β+3)

).

As Z is not Π0
1(∅(β+3)

), then there is some n ∈ Z such that p ?0Bn or some n /∈ Z such that
p ?`Bn. In the first case, there is an extension q ≤ p such that q  2ω −Bn for some n ∈ Z. In
the second case, there is an extension q ≤ p such that q  Bn for some n /∈ Z. By Theorem 5.18,

in the first case Φ(G
(β)
F , n) ↑ holds for some n ∈ Z, and in the second case, Φ(G

(β)
F , n) ↓ holds

for some n /∈ Z.
If F is sufficiently generic, this is true for any β < α and any functional Φ. It follows that

for any ordinal β the set Z is not Σ0
1(G

(β)
F ) and thus not ∆0

1(G
(β)
F ). �

This shows in particular cone avoidance for arithmetic degrees.

Theorem (Main theorem 2 (Theorem 1.3)) Let B be non arithmetical. Every set A has an
infinite subset H ⊆ A or H ⊆ A such that B is not arithmetical in H.

Proof. A direct corollary of the above theorem with α = ω. �

In order to show cone avoidance for hyperarithmetic degrees, one should additionally argue

that if F is sufficiently generic, then ωGF1 = ωck1 . The remainder of this section is devoted to
the proof of this fact.

5.4. Preservation of hyperarithmetic reductions

We now prove that the infinite pigeonhole principle admits strong cone avoidance for hyper-
arithmetic reductions.

Definition 5.20. A largeness class A is Γ-minimal, where Γ is a class of complexity, if for every
Γ-open set U we have A ∩ U large implies A ⊆ U .

Proposition 5.21 The class
⋂
α<ωck1

UMα
Cα

is ∆1
1-minimal.
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Proof. For every α < ωck1 we have that ∅(α) ∈ Mα and
⋂
α<ωck1

UMα
Cα
⊆ 〈Mα〉 where 〈Mα〉 is

Mα-minimal. As ∅(α) ∈ Mα we also have that 〈Mα〉 is minimal for Σ0
1(∅(α)

) open sets. It

follows that
⋂
α<ωck1

UMα
Cα

is ∆1
1-minimal. �

Proposition 5.22 There is a set C ∈
⋂
α<ωck1

UMα
Cα

such that C is ∆1
1-cohesive and ωC1 = ωck1

Proof. Let us argue that for any upward closed partition regular class
⋂
n<ω Un where each Un

is open, not necessarily effectively of uniformly, there is a ∆1
1-cohesive C in

⋂
n<ω Un. This is

done by Mathias forcing with conditions (σ,X) such that X ∩{0, . . . , |σ|} = ∅ and such that X
is ∆1

1 with X ∈
⋂
n<ω Un. Given a condition (σ,X) and n we can force the generic to be in Un

as follows : As X ∈ Un we must have that σ ∪X ∈ Un because Un is upward closed. Thus there
must be τ ⊆ X ∩ {0, . . . , |σ|} such that [σ ∪ τ ] ⊆ Un. As

⋂
n<ω Un contains only infinite set we

must have X − {0, . . . , σ ∪ τ} ∈
⋂
n<ω Un. Thus (σ ∪ τ,X − {0, . . . , σ ∪ τ}) is a valid extension.

Let now Y be ∆1
1. We can force the generic to be included in Y or ω − Y up to finitely many

elements as follow : We have X ∩ Y ∈
⋂
n<ω Un or X ∩ (ω − Y ) ∈

⋂
n<ω Un. Then (σ,X ∩ Y )

or (σ,X ∩ (ω − Y )) is a valid extension.

We have that the set
⋂
α<ωck1

UMα
Cα

is a Σ1
1 class which is also upward closed and partition

regular. We also have that the class of ∆1
1-cohesive sets is a Σ1

1 class. By the previous argument
their intersection is non-empty. By the Σ1

1-basis theorem it must contains C with ωC1 = ωck1 . �

Lemma 5.23 Suppose C is ∆1
1-cohesive with C ∈

⋂
α<ωck1

UMα
Cα

. Let U be a ∆1
1 open set. If

LC ∩ U is a largeness class, then
⋂
α<ωck1

UMα
Cα
⊆ U

Proof. Suppose LC ∩ U is a largeness class. Let us show that U ∩
⋂
α<ωck1

UMα
Cα

is a largeness

class. Suppose first for contradiction that it is not. Then there is a ∆1
1 cover Y0∪· · ·∪Yk−1 ⊇ ω

together with a ∆1
1 open largeness class V ⊇

⋂
α<ωck1

UMα
Cα

such that Yi /∈ U ∩V for every i < k.

As each Yi is ∆1
1, there is some i < k such that C ⊆∗ Yi. Note also that since C ∈

⋂
α<ωck1

UMα
Cα

,

then C ∈ L(V) and thus LC ∩V is a largeness class. It follows that Yj ∈ LC ∩V for some j < k.
As j 6= i implies |Yj ∩ C| < ∞, then Yi ∈ LC ∩ V and thus Yi ∈ V. As LC ∩ U is a largeness
class then by a similar argument, Yi ∈ LC ∩ U and thus Yi ∈ U . It follows that Yi ∈ U ∩ V,
contradicting our hypothesis. Thus U ∩

⋂
α<ωck1

UMα
Cα

is a largeness class.

Now from Proposition 5.21 we have that
⋂
α<ωck1

UMα
Cα

is minimal for ∆1
1 open sets, then⋂

α<ωck1
UMα
Cα
⊆ U . �

Definition 5.24. Let B =
⋃
α<ωck1

Bα be a Σ0
ωck1

class. Let p = (σ,X) ∈ Pωck1 . We define p ?`B
if the set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃α < ωck1 σ ∪ τ ?0 2ω − Bα} ∩ LC
is a largeness class.

Given a Σ0
ωck1

class B =
⋃
α<ωck1

Bα the following set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃α < ωck1 σ ∪ τ ?0 2ω − Bα}
is a Π1

1 open set, that is an open set
⋃
σ∈B[σ] where B =

⋃
α<ωck1

Bα is a Π1
1 set of strings. We

also suppose that each Bα is ∅(α)
-computable and that {Bα}α<ωck1 is increasing. Given such

sets we write Uα for the ∆1
1 open set

⋃
σ∈Bα [σ].

Proposition 5.25 Let U be an upward-closed Π1
1 open set. The class U ∩ LC is a largeness

class iff there exists some α < ωck1 such that Uα ∩ LC is a largeness class.

Proof. Suppose Uα ∩ LC is a largeness class. Then clearly U ∩ LC is a largeness class. Suppose
now that U ∩ LC is a largeness class. For each n let UCn be the Σ0

1(C) open set such that
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LC =
⋂
n UCn . We have

∀n ∀k ∃α ∀Y0 ∪ · · · ∪ Yk−1 ∃i < k ∃σ ⊆ Yi [σ] ⊆ Uα ∩ UCn
Note that given k and α the predicate Pn,kα ≡ ∀Y0∪· · ·∪Yk−1 ∃i < k ∃σ ⊆ Yi [σ] ⊆ Uα∩UCn is

Σ0
1(C⊕∅(α+1)

) uniformly in n, k and α. Thus the function f : ω2 → ωck1 which to n, k associates

the smallest α such that Pn,kα is true is a total Π1
1(C) function. By Σ1

1-boundedness we have
β = supn,k f(n, k) < ωC1 = ωck1 . It follows that

∀n ∀k ∀Y0 ∪ · · · ∪ Yk−1 ∃i < k ∃σ ⊆ Yi [σ] ⊆ Uβ ∩ UCn
Also Uβ ⊆ U is such that Uβ ∩ LC is a largeness class. �

Corollary 5.26 Let B =
⋃
α<ωck1

Bα be a Σ0
ωck1

class. Let (σ,X) ∈ Pωck1 . The relation p ?`B is

Σ0
ωck1

(C)

Proof. The relation p ?`B is equivalent to

∃α < ωck1 {Y : ∃τ ⊆ Y − {0, . . . , |σ|} σ ∪ τ ?0 2ω − Bα} ∩ LC
is a largeness class �

Corollary 5.27 The class
⋂
α<ωck1

UMα
Cα

is minimal for Π1
1 open sets U such that U ∩ LC is a

largeness class.

Proof. Given a Π1
1-open set U such that U ∩LC , there must be α < ωck1 such that Uα ∩LC is a

largeness class. By Lemma 5.23 it must be that
⋂
α<ωck1

UMα
Cα
⊆ Uα. �

Definition 5.28. Let B =
⋂
α<ωck1

Bα be a Π0
ωck1

class. Let p = (σ,X) ∈ Pωck1 . We define p  B
if for every τ ⊆ X − {0, . . . , |σ|} and for every α < ωck1 we have σ ∪ τ ?`Bα

Proposition 5.29 Let B =
⋂
α<ωck1

Bα be a Π0
ωck1

class. Let F be sufficiently generic with

p ∈ F . If p  B, then GF ∈ B.

Proof. Using Proposition 5.16, for every α and every q ≤ p, there is some r ≤ q such that
r  Bα. Thus for every α the set {r : r  Bα} is dense below p. It follows from Theorem 5.18
that if F is sufficiently generic, GF ∈ B. �

Definition 5.30. Let B =
⋃
n∈ω Bn be a Σ0

ωck1 +1
class where each Π0

ωck1
set Bn =

⋂
α<ωck1

Bn,α.

We define p ?`B if the set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn} ∩ LC
is a largeness class.

Given a Σ0
ωck1 +1

class B =
⋃
n∈ω Bn with Bn =

⋂
α<ωck1

Bn,α, the following set

U = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn}
is a Σ1

1(C) open set, that is an open set U =
⋃
σ∈B[σ] where B =

⋂
α<ωck1

Bα is a Σ1
1(C) set

of strings. We furthermore assume that {Bα}α<ωck1 is decreasing. We then write Uα for the

∆1
1(C)-open set

⋃
σ∈Bα [σ].

Computability theorists have a strong habits of working with enumerable open sets. With that
respect, Σ1

1-open sets, that is, co-enumerable along the computable ordinals, are strange objects
to consider. Note that given such an open set we have U ⊆

⋂
α<ωck1

Uα, but not necessarily

equality. However the elements X of
⋂
α<ωck1

Uα − U are all such that ωX1 > ωck1 . It is in

particular a meager and nullset.
Let us detail a little bit the set B =

⋂
α<ωck1

Bα that we can consider so that U =
⋃
σ∈B[σ].

To ease the notation we introduce the following definition, in the same spirit as U(B, σ) defined
above:
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Definition 5.31. Let B be a Σ0
α class. We define V(B, σ) to be the set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} σ ∪ τ ?0B}

Given a Σ0
ωck1 +1

class B =
⋃
n∈ω Bn with Bn =

⋂
α<ωck1

Bn,α, given

U = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn}

we have by Corollary 5.26 that U equals:

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n ∀α < ωck1 V(2ω − Bn,α, σ ∪ τ) ∩ LC is not a largeness class}

Let

B = {τ : ∃n ∀α < ωck1 V(2ω − Bn,α, σ ∪ τ) ∩ LC is not a largeness class}
Let

Bα = {τ : ∃n ∀β < α V(2ω − Bn,β, σ ∪ τ) ∩ LC is not a largeness class}
By Σ1

1-boundedness we have that B =
⋂
αBα. We also have U =

⋃
σ∈B[σ].

We now show the core lemma that will be used to show ωGF1 = ωck1 for F a sufficiently generic
filter:

Lemma 5.32 Let B =
⋂
α<ωck1

Bα be a Σ1
1(C) set of strings where each Bα is ∆1

1(C) uniformly in

α and where β < α implies Bα ⊆ Bβ. Let U =
⋃
σ∈B[σ] be a Σ1

1(C) upward closed open set with

Uα =
⋃
σ∈Bα [σ] be a ∆1

1(C) upward closed open set. We have U ⊆
⋂
α<ωck1

Uα. Furthermore,

U ∩ LC is a largeness class iff for every α < ωck1 , Uα ∩ LC is a largeness class.

Proof. It is clear that U ⊆
⋂
α<ωck1

Uα. Also it is clear that if U ∩ LC is a largeness class, then

also
⋂
α<ωck1

Uα ∩ LC is a largeness class.

Suppose U ∩ LC is not a largeness class. Then there is a cover Y0 ∪ · · · ∪ Yk−1 ⊇ ω with
Yi /∈ U ∩LC for every i < k. There must be a Σ0

1(C) open set V such that Yi /∈ U ∩ V for every
i ≤ k.

Let f : ω → ωck1 be the function which on n finds a cover σ0 ∪ · · · ∪ σk ⊇ {0, . . . , n} and
α such that for i < k and every τ � σi we have [τ ] ⊆ V implies τ /∈ Bα. As U ∩ V is not a
largeness class, f is a total Π1

1(C) function. By Σ1
1-boundedness, β = supn f(n) < ωC1 = ωck1 .

By compactness, there is a cover Y0 ∪ · · · ∪ Yk−1 such that for every i < k if Yi ∈ V then for
every τ ≺ Yi, τ /∈ Bβ and thus Yi /∈ Uβ.

It follows that Uβ ∩ LC is not a largeness class. �

Corollary 5.33 LC contains a unique largeness subclass, which is minimal for both Π1
1 and

Σ1
1(C)-open sets U .

Proof. Suppose U0,U1 are two Σ1
1(C) open sets with Ui =

⋃
σ∈Bi [σ] and Ui,α =

⋃
σ∈Bi,α [σ]. for

i < 2. Suppose also U0 ∩ LC and U1 ∩ LC are largeness classes. By Lemma 5.32 it follows that⋂
α<ωck1

U0,α ∩ LC and
⋂
α<ωck1

U1,α ∩ LC are largeness classes. By Lemma 5.23 it follows that⋂
α<ωck1

UMα
Cα
⊆

⋂
α<ωck1

U0,α and
⋂
α<ωck1

UMα
Cα
⊆

⋂
α<ωck1

U1,α.

Thus
⋂
α<ωck1

U0,α ∩
⋂
α<ωck1

U1,α =
⋂
α<ωck1

(U0,α ∩ U1,α) is a largeness class and thus by

Lemma 5.32 we have that U0 ∩ U1 is a largeness class.
It follow that the intersection I of every Σ1

1(C) open set U such that U ∩ LC is a largeness

class, is a largeness class. Furthermore as UMα
Cα
∩LC is a largeness class for every α, the class I

must be included in
⋂
α<ωck1

UMα
Cα

. Also from Corollary 5.27 the class
⋂
α<ωck1

UMα
Cα

is minimal

for Π1
1-open sets U such that U ∩ LC is a largeness class. It follows that the class I ∩ LC is

minimal for Σ1
1(C) and Π1

1 open sets. �

We can now detail the class S involved in the definition of Pωck1 : Let S be the unique

largeness class included in LC which is minimal for Σ1
1(C) and Π1

1 open sets. Note that S must
be partition regular.
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Lemma 5.34 Consider a Σ0
ωck1 +1

class B =
⋃
n∈ω Bn with Π0

ωck1
set Bn =

⋂
α∈ωck1

Bn,α. Let

p = (σ,X) ∈ Pωck1 . Suppose σ ?`B. Then there is a condition q ≤ p together with some n such

that q 
⋂
α<ωck1

Bn,α

Proof. Let
U = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn}

The class U is a Σ1
1(C)-open set and U ∩LC is a largeness class. As S is minimal for Σ1

1(C)-open
sets, S ⊆ U . As X ∈ S ⊆ U . Then there is some τ ⊆ X − {0, . . . , |σ|} and some n such that
σ ∪ τ ?0 2ω − Bn. Let now

V = {Y : ∃ρ ⊆ Y − {0, . . . , |σ ∪ τ |} ∃α σ ∪ τ ∪ ρ ?0Bn,α}
As σ ∪ τ ?0

⋃
α∈ωck1

2ω − Bn,α then V ∩ LC is not a largeness class. Thus there is a cover

Y0 ∪ · · · ∪ Yk−1 = ω such that Yi /∈ V ∩ LC for every i < k. As V ∩ LC is upward-closed,
X ∩ Yi /∈ V ∩ LC for every i < k. As S ⊆ LC is partition regular, there is some i < k such that
X ∩ Yi ∈ S ⊆ LC . Therefore we must have X ∩ Yi /∈ V and thus

∀ρ ⊆ X ∩ Yi − {0, . . . , |σ ∪ τ |} ∀α σ ∪ τ ∪ ρ ?`Bn,α
Thus (σ ∪ τ,X ∩ Yi) is an extension of (σ,X) such that:

(σ ∪ τ,X ∩ Yi) 
⋂

α<ωck1

Bn,α

�

Lemma 5.35 Consider a Σ0
ωck1 +1

class B =
⋃
n∈ω Bn with Π0

ωck1
set Bn =

⋂
α<ωck1

Bn,α. Let

p = (σ,X) ∈ Pωck1 . Suppose σ ?0B. Then there is a condition q ≤ p together with some β < ωck1
such that q 

⋂
n∈ω

⋃
α<β 2ω − Bn,α

Proof. Let
U = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn}

The class U is a Σ1
1(C)-open set and U ∩LC is not a largeness class. Let us recall Definition 5.31

together with the notation coming after it: V(B, σ) is the set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} σ ∪ τ ?0B}
Together with

B = {τ : ∃n ∀α < ωck1 V(Bn,α, σ ∪ τ) ∩ LC is not a largeness class}
with B =

⋂
α<ωck1

Bα such that

Bα = {τ : ∃n ∀β < α V(Bn,β, σ ∪ τ) ∩ LC is not a largeness class}
and with U =

⋃
σ∈B[σ].

Using Lemma 5.32, there is some α < ωck1 such that the set

Uα = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n ∀β < α V(Bn,β, σ ∪ τ) ∩ LC is not a largeness class}
is such that Uα ∩ LC is not a largeness class. Thus there is a cover Y0 ∪ · · · ∪ Yk−1 ⊇ ω such

that Yi /∈ Uα ∩ LC for every i < k. As Uα ∩ LC is upward-closed, then also X ∩ Yi /∈ Uα ∩ LC
for every i < k. As X ∈ S ⊆ LC and as S is partition regular, there is some i < k such that
X ∩ Yi ∈ S ⊆ LC . It follows that X ∩ Yi /∈ Uα and thus that:

∀τ ⊆ X ∩ Yi − {0, . . . , |σ|} ∀n ∃β < α V(Bn,β, σ ∪ τ) ∩ LC is a largeness class

Let {βm}m∈ω be such that supm βm = α. Let τ ⊆ Y − {0, . . . , |σ|} and n ∈ ω. We have for
some m that V(Bn,βm , σ ∪ τ) ∩ LC is a largeness class. Then the set

{Y : ∃ρ ⊆ Y − {0, . . . , |σ|} ∃m σ ∪ τ ∪ ρ ?0Bn,βm} ∩ LC
is a largeness class and then

{Y : ∃ρ ⊆ Y − {0, . . . , |σ|} ∃m σ ∪ τ ∪ ρ ?0Bn,βm} ∩ U
Mα
Cα
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is a largeness class and thus that σ ∪ τ ?`
⋃
m 2ω −Bn,βm . As this is true for every n and every

τ ⊆ Y − {0, . . . , |σ|} it follows that (σ,X ∩ Yi) is an extension of (σ,X) such that

(σ,X ∩ Yi) 
⋂
n∈ω

⋃
β<α

2ω − Bn,β

�

We now show that if F ⊆ Pωck1 is sufficiently generic, then ωGF1 = ωck1 . We use the following

fact : If ωG1 > ωck1 , then in particular some G-computable ordinal must code for ωck1 , that is,
there must be a G-computable function Φ such that for every n, Φ(G,n) codes, relative to G,
for an ordinal smaller than ωck1 and with supn |Φ(G,n)| = ωck1 . We show that this never happens
by forcing that for every functional Φ either for some n, Φ(G,n) does not code for an ordinal
smaller than ωck1 , or there is an ordinal α < ωck1 such that Φ(G,n) always codes for some ordinal
smaller than α.

Given G and α let OGα be the set of G-codes for ordinals smaller than α. For α < ωck1 , the
class {G : n ∈ OGα } is ∆1

1 uniformly in α and n.

Theorem 5.36 Suppose F ⊆ Pωck1 is sufficiently generic. Then ωGF1 = ωck1

Proof. Let p ∈ Pωck1 be a condition. Given a functional Φ : 2ω × ω → ω, let

B = {X : ∃n ∀α < ωck1 Φ(X,n) /∈ OXα }
Suppose p ?`B. Then from Lemma 5.34, there is an extension q ≤ p and some n such that

q  {X : ∀α < ωck1 Φ(X,n) /∈ OXα }
It follows from Proposition 5.29 that if F is sufficiently generic for every α < ωck1 , Φ(GF , n) /∈
OGFα . Suppose now p ?0B. Then from Lemma 5.35, there is an extension q ≤ p and some
α < ωck1 such that

q  {X : ∀n Φ(X,n) ∈ OXα }
It follows from Theorem 5.18 that if F is sufficiently generic, supn Φ(GF , n) ≤ α. �

We can finally deduce our final theorem

Theorem (Main theorem 4 (Theorem 1.5)) Let B be non hyperarithmetical. Every set A has
an infinite subset H ⊆ A or H ⊆ A such that B is not hyperarithmetical in H, in particular
with ωH1 = ωck1 .

Proof. By combining Theorem 5.36 together with Theorem 5.19 �
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