Constructing discrete harmonic functions in wedges - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Constructing discrete harmonic functions in wedges

Résumé

We propose a systematic construction of signed harmonic functions for discrete Laplacian operators with Dirichlet conditions in the quarter plane. In particular, we prove that the set of harmonic functions is an algebra generated by a single element, which conjecturally corresponds to the unique positive harmonic function.
Fichier principal
Vignette du fichier
Harmonic_functions_for_big_jumps_2D_walks.pdf (967.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02987609 , version 1 (04-11-2020)
hal-02987609 , version 2 (18-01-2023)

Identifiants

  • HAL Id : hal-02987609 , version 1

Citer

Viet Hung Hoang, Kilian Raschel, Pierre Tarrago. Constructing discrete harmonic functions in wedges. 2020. ⟨hal-02987609v1⟩
143 Consultations
219 Téléchargements

Partager

More