Control of a Wave Equation with a Dynamic Boundary Condition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Control of a Wave Equation with a Dynamic Boundary Condition

Résumé

The general problem of this paper is the analysis of wave propagation in a bounded medium where the uncontrolled boundary obeys a coupled differential equation. More precisely, we study a one-dimensional wave equation with a nonlinear second-order dynamic boundary condition and a Neuman-type boundary control acting on the other extremity. A generic class of nonlinear collocated feedback laws is considered. Hadamard well-posedness is established for the closed-loop system, with initial data lying in the natural energy space of the problem. Moreover, we investigate an example of stabilization through a proportional controller.
Fichier principal
Vignette du fichier
wave-equation-cdc20-revised.pdf (328.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02987252 , version 1 (03-11-2020)

Identifiants

Citer

Nicolas Vanspranghe, Francesco Ferrante, Christophe Prieur. Control of a Wave Equation with a Dynamic Boundary Condition. CDC 2020 - 59th IEEE Conference on Decision and Control, IEEE, Dec 2020, Jeju Island (virtual), South Korea. pp.652-657, ⟨10.1109/CDC42340.2020.9303767⟩. ⟨hal-02987252⟩
181 Consultations
757 Téléchargements

Altmetric

Partager

More