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Control of a Wave Equation with a Dynamic Boundary Condition

Nicolas Vanspranghe, Francesco Ferrante, Christophe Prieur

Abstract— The general problem of this paper is the anal-
ysis of wave propagation in a bounded medium where the
uncontrolled boundary obeys a coupled differential equation.
More precisely, we study a one-dimensional wave equation
with a nonlinear second-order dynamic boundary condition
and a Neuman-type boundary control acting on the other
extremity. A generic class of nonlinear collocated feedback laws
is considered. Hadamard well-posedness is established for the
closed-loop system, with initial data lying in the natural energy
space of the problem. Moreover, we investigate an example of
stabilization through a proportional controller.

I. INTRODUCTION

The aim of this paper is to study a wave equation in a
bounded one-dimensional medium supplied with a dynamic
(or kinetic) boundary condition at one end. The system is ac-
tuated via a Neuman-type control at the other end. Dynamic
boundary conditions involve second-order time derivative
and are typically obtained in physical models for which the
momentum of the boundary cannot be neglected. A prime
example is an infinite-dimensional model for the propagation
of mechanical vibrations along drilling rods. In that case, the
control is the torque applied to one extremity, and the kinetic
boundary condition is given by the behavior of the rock-tip
contact, which is subject to nonlinear friction. In particular,
stick-slip phenomena can occur at the rock-tip interface and
generate unwanted vibrations that might jeopardize the plant.
A mechanical analysis of the rock-tip dynamics is given in
[7]. The problem of stabilization and regulation of the veloc-
ity at the rock-tip contact has sparked interest in the control
commmunity, see e.g. [10]. In engineering applications, the
goal is to minimize the stick-slip vibrations through a suitable
control. Various boundary control strategies are proposed to
address this problem in [8], including backstepping design
– see also [9]. In [4], an observer-based boundary control
design is proposed. In [13], stabilization and regulation using
a proportional integral boundary controller is investigated.
In [12] and [1], a similar problem is considered, but with a
boundary anti-damping only involving first-order derivatives.
However, the aforementioned papers deal with linearized
models. We should also mention [3] and [6] where different
classes of boundary nonlinearities for distributed parameter
systems are considered.

Let us introduce the specific dynamical model under study
in this paper. Let L > 0 and Ω , (0, L) ⊂ R. We deal with
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the following control system:
∂ttu− ∂xxu = 0 on Ω× R+,

∂ttu(0, t)− ∂xu(0, t) = F (∂tu(0, t)) for all t,
∂xu(L, t) = U(t) for all t,

(1)

where F is a scalar function that models the nonlinear
boundary friction, and U(t) is the control input.

Our first goal is to prove the well-posedness of the control
system (1) supplied with the following collocated feedback:

U(t) = −g(∂tu(L, t)), (2)

where g is a continuous nondecreasing scalar function.
The output considered here is the velocity at the boundary
where the actuator lies, meaning that an observer is not
required to implement the controller. Note that this class of
feedback laws includes nonlinearities of interest in control
applications, such as saturations or deadzones – see e.g. [5].

In this paper, we prove that, under appropriate assump-
tions, closing the loop in (1) with (2) leads to a well-
posed dynamical system. A precise variational formulation
of the problem is given and the regularity of the solutions
is rigorously investigated. The underlying control problem
is the stabilization of a possibly non-dissipative boundary
by an action on the other boundary. We prove that, under
suitable conditions, exponential stability can be achieved
using a proportional controler. To the best of our knowledge,
the stabilization of such system in the presence of nonlinear
boundary anti-damping has not been investigated so far.

This paper is organized as follows. Section II introduces
the variational formulation of control system (1) and contains
the first main result, namely the well-posedness of the closed-
loop dynamics. Section III introduces the natural energy
associated with (1) and states an exponential stability result
under appropriate assumptions on the nonlinear map F . This
is the second main contribution. Section IV contains some
illustrative numerical results. Section V gives the proof of
the well-posedness result. Section VI contains concluding
remarks.

Notation: Given a Banach space E, we denote its norm
by ‖·‖E and we use the duality bracket 〈φ, x〉E to write φ(x)
for any x ∈ E and φ ∈ E′, where E′ is the topological dual
of E. If E is also a Hilbert space, its scalar product is written
(·, ·)E . The space of infinitely differentiable functions on Ω
with compact support is denoted by C∞c (Ω). Also, for T > 0,
we denote by W 1,p(0, T ;E) the subspace of Lp(0, T ;E)
composed of (classes of) E-valued functions f such that,
for some g in Lp(0, T ;E), f(t) = f(0) +

∫ t
0
g(s) ds for a.e.

t in (0, T ). Such class f is identified with its continuous



representative and we say that f ′ = g in the sense of E-
valued distributions.

II. VARIATIONAL FORMULATION AND WELL-POSEDNESS

In this section, we establish the framework in which we
analyze system (1), and state our well-posedness result. We
start by introducing the energy spaces associated with (1) as
well as some notation. First, define

H , L2(Ω)× R. (3)

We endow H with the usual product Hilbertian structure.
Define now the following subspace of H:

V ,
{

(u, u(0)) : u ∈ H1(Ω)
}
, (4)

which is equipped with the scalar product inherited from
H1(Ω) × R. As stated in Section V, V is also a Hilbert
space. We also introduce the state space

X , V ×H (5)

endowed with the product Hilbertian structure. For the sake
of clarity, we use parenthesis to denote elements of V or H ,
and brackets to denote elements of X , as in X = [u,v] ∈ X ,
u = (u, u(0)) ∈ V , etc. Now, let us define the bilinear
continuous symmetric form a on V × V by

a(u1,u2) ,
∫

Ω

∂xu1(x)∂xu2(x) dx. (6)

Finally, we denote by δL the linear form mapping u ∈ V
into u(L), which belongs to V ′ since H1(Ω) is continuously
embedded into C(Ω̄) in the one-dimensional case.

Assumption 1. The scalar function F is globally Lipschitz.

We define the nonlinear operator B on H associated with
the first-order boundary pertubation:

∀v = (v, γ) ∈ H, B(v) , (0, F (γ)). (7)

This operator is globally Lipschitz by Assumption 1. Let us
precise the meaning of weak solutions to (1).

Definition 1. A weak solution to (1) on (0, T ) is any u in
L∞(0, T ;V ) ∩W 1,∞(0, T ;H) verifying∫ T

0

− (u′(t),φ′(t))H + a(u(t),φ(t)) dt =∫ T

0

(B(u′(t)),φ(t))H + U(t)〈δL,φ(t)〉V dt

(8)

for all test-functions φ in Cc(0, T ;V ) ∩ C1
c (0, T ;H).

Definition 1 is motivated by simple formal calculations
in which one multiplies the wave equation by some smooth
test-function φ(x, t) and integrates it over Ω × (0, T ) using
integration by parts and the boundary conditions. Note that
Definition 1 makes sense if, say, U belongs to L2(0, T ).
Closing the loop, a hidden regularity property of the solu-
tions is needed to ensure all terms are defined.1

1 In the language of systems theory, one may say that the Neuman input
operator is unbounded with respect to the state space X .

Assumption 2. The function g : R → R is continuous and
nondecreasing.2

We show that the closed-loop system generates a dynam-
ical system on X by defining the operators St for t ≥ 0 as
follows:

∀X = [u0,u1] ∈ X , St(X) , [u(t),u′(t)] ∈ X , (9)

where u is the unique solution associated with initial data
[u0,u1].

Theorem 1 (Hadamard well-posedness). Let [u0,u1] ∈ X .
Under Assumptions 1 and 2, there exists a unique (weak)
solution u ∈ C(R+, V )∩C1(R+, H) to (1) with feedback (2)
and initial data [u0,u1]. The solution u enjoys the following
hidden regularity property: for all T > 0,

u(L, ·) ∈ H1(0, T ) and g(∂tu(L, ·)) ∈ L2(0, T ). (10)

Moreover, we can associate with (1) and control law (2) the
semigroup S = {St}t≥0 of nonlinear continuous operators
on X as defined in (9).

Theorem 1 is proved in Section V. In the following
proposition, we give some additional regularity when the
initial datum is smooth and verifies a compatibility condition.
We write W , [H2(Ω)× R] ∩ V , equipped with the scalar
product inherited from H2(Ω)× R.

Proposition 1 (Strong solutions). Let T > 0. If [u0,u1]
belongs to W ×V and verifies ∂xu0(L) = −g(u1(L)), then,

u ∈ L∞(0, T ;W ), u′ ∈ L∞(0, T ;V ). (11)

Moreover, any weak solution u is the limit of a sequence of
strong solutions [un,u

′
n] in C([0, T ],X ), and ∂tun(L, ·) →

∂tu(L, ·) in L2(0, T ).

Proposition 1 is a byproduct of the proof of Theorem 1
and is used to justify computations performed in Section III.

III. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

Next, we analyze the stability of the closed-loop system
when the feedback is linear. We introduce the energy func-
tional E defined on X by

E(u,v) ,
1

2

[
‖v‖2H + a(u,u)

]
, (12)

which is, in the context of abstract wave equations, the
natural “mechanical” energy. Here, for all u in V and
v = (v, γ) in H ,

E(u,v) =
1

2

∫
Ω

|v(x)|2 + |∂xu(x)|2 dx+
1

2
|γ|2. (13)

For any ρ and µ in H1(Ω), we define a weighted energy
functional (or Lyapunov function candidate):

Γρ,µ(u,v) ,
1

2

∫
Ω

[
v
∂xu

]> [
µ ρ
ρ µ

] [
v
∂xu

]
+

1

2
µ(0)|γ|2.

(14)

2 It is a specificity of the one-dimensional case that no additional growth
assumption on g is required to obtain weak solutions for such feedback.



It follows from the boundedness of the weights ρ and µ that
there exists a constant Mρ,µ > 0 such that

∀[u,v] ∈ X , Γρ,µ(u,v) ≤Mρ,µE(u,v). (15)

A sufficient condition for the converse inequality to hold is
the existence of C1, C2 > 0 such that

µ(x) ≥ C1 and µ(x)2 − ρ(x)2 ≥ C2 (16)

holds for all x in Ω. We also remark that E and Γ are contin-
uous on X . We note that the position does not appear in the
energy functionals and without Poincaré-type inequalities,
one cannot directly infer an estimate of the norm of the
position. Stabilization shall be investigated with respect to
the following invariant set, which is the line composed of
constant solutions:

A , {[θ1, 0] ∈ X : θ ∈ R}, (17)

where 1 , ((x 7→ 1), 1). Observe that A is exactly the subset
of X where the mechanical energy E vanishes. For any [u,v]
in X ,

dist([u,v],A)2 ≤ CE(u,v), (18)

where C is some positive constant. This is a consequence
of the Poincaré-Wirtinger inequality – see [2] for instance.
From now on, we are interested in stabilizing system (1)
using a proportional feedback, i.e.

U(t) = −α∂tu(L, t), (19)

where α is a positive gain to be tuned.

Assumption 3. The function F is q-Lipschitz for some q <
1/2. Also, F (0) = 0.

The condition F (0) = 0 is quite natural when dealing with
friction. Assumption 3 is meant to be in force in the context
of nonlinear anti-damping.3

Theorem 2 (Exponential stability). Under Assumption 3 and
with α = 1, A uniformly and exponentially attracts the
bounded sets of X . More precisely, there exist two positive
constants M and η such that for all solutions u to (1),

E(u(t),u′(t)) ≤ME(u0,u1) exp(−ηt). (20)

Moreover, for each solution u, u(t) converges in V to some
constant function u∞ when t→ +∞.

Proof. We pick a solution u and, for the sake of concision,
we denote by Γu

ρ,µ the function t ∈ R+ 7→ Γρ,µ(u(t),u′(t)),
which is continuous. Take ρ, µ ∈ H1(Ω). Assume temporar-
ily that u is a strong solution. For all τ ≥ 0, denoting by

3Alternatively, if F has a stabilizing effect, e.g. F (0) = 0, F nonincreas-
ing, it can be relaxed to F locally Lipschitz – with appropriate modifications
in the proof of well-posedness.

Qτ the rectangle Ω× (0, τ), we have the following identity:

Γu
ρ,µ(t)

∣∣∣∣τ
0

= −1

2

∫∫
Qτ

[
∂tu
∂xu

]> [
ρ′ µ′

µ′ ρ′

] [
∂tu
∂xu

]
+

1

2

[
ρ(L)(1 + α2)− 2αµ(L)

] ∫ τ

0

|∂tu(L, t)|2 dt

−ρ(0)

2

∫ τ

0

|∂tu(0, t)|2 + |∂xu(0, t)|2 dt

+µ(0)

∫ τ

0

F (∂tu(0, t))∂tu(0, t) dt.

(21)

Equation (21) is obtained by multiplying the wave equation
∂ttu(x, t) − ∂xxu(x, t) = 0 by φ(x, y) = µ(x)∂tu(x, t) +
ρ(x)∂xu(x, t) ∈ H1(Qτ ), integrating over Qτ , and perform-
ing a few integrations by parts. If ρ and µ are nonnegative,
writing |F (s)| ≤ q|s| where q is the Lipschitz constant in
Assumption 3, we have the following inequality:

Γu
ρ,µ(t)

∣∣∣∣τ
0

≤ −1

2

∫∫
Qτ

[
∂tu
∂xu

]> [
ρ′ µ′

µ′ ρ′

] [
∂tu
∂xu

]
+

1

2

[
ρ(L)(1 + α2)− 2αµ(L)

] ∫ τ

0

|∂tu(L, t)|2 dt

+
1

2
[2qµ(0)− ρ(0)]

∫ τ

0

|∂tu(0, t)|2 dt.

(22)

Take µ(x) = 1. For (16) to hold, it suffices to have ρ(x) ≤
1 − ε for some ε > 0. Now, we derive some sufficient
conditions for the energy to decay exponentially. It suffices
to have ρ(0) ≥ 2q + ε, and ρ′(x) ≥ ε a.e. as well as

ρ(L) ≤ 2α

1 + α2
− ε (23)

for some ε > 0. Since q < 1/2, there exists an increasing
affine function ρ such that ρ(0) > 2q and ρ(L) < 1. Let
α = 1 so that (23) holds. As a result, by Grönwall’s lemma,
we obtain the following: with this particular choice of ρ and
µ, there exists a positive constant (solution independent) η
such that

∀t ≥ 0, Γu
ρ,µ(t) ≤ Γu

ρ,µ(0) exp(−ηt). (24)

By a density-continuity argument, the uniform estimate (24)
holds for weak solutions as well – see Proposition 1. Since
(16) holds, then there exists M > 0 such that (20) is
verified by any solution. As for the second statement of
Theorem 2, let u be a solution. Take an increasing sequence
of nonnegative real numbers tn such that tn → +∞ when
n → +∞. Then {u(tn)}n≥0 is a Cauchy sequence in V .
Indeed, for any m ≥ n, writing the variation of u(t) between
tn and tm, we have

‖u(tm)− u(tn)‖H ≤
∫ tm

tn

‖u′(s)‖H ds

≤M ′
∫ +∞

tn

exp(−ηs/2) ds,

(25)

which converges to 0 when n → +∞; also, we already
know that a(u(t),u(t))→ 0 when t→ +∞, thus ‖u(tm)−
u(tn)‖V can be arbitrarily small. Using a similar argument,



one verifies that the limit does not depend on the sequence
{tn}. Therefore, u(t) converges to some u∞ ∈ V and u∞
is constant by (18).

IV. NUMERICAL SIMULATIONS

We provide some numerical computations for illustrative
purposes.

Fig. 1. Evolution of the boundary position u(0, t) over time. It obeys a
second-order differential equation coupled with the wave equation.

Fig. 2. Evolution of the mechanical energy E(u(t),u′(t)) over time. The
uncontrolled system would be unstable due to the boundary anti-damping.

We discretize (1) using finite elements over space and
finite differences over time, on the basis of the functional
formulation of the problem. Figures 1 and 2 are obtained with
the following parameters: we take α = 1, F (x) = qx with
q = 0.1 and L = 1. The domain Ω is discretized into 100
points and the time step is set to 0.001. Further computations
suggest that the condition on q derived in Theorem 2 is nearly
sharp as taking q = 0.5 leads to an exponentially unstable
system. Computations also suggest that the proportional
feedback is not robust to (numerical) errors: taking values
of q slightly below 0.5 induces unclear situations where an
exponential decay is not easily identifiable.

V. PROOF OF THE HADAMARD THEOREM

The proof of Theorem 1 relies on nonlinear semigroup
techniques and appropriate energy estimates. We begin this

section with some remarks on the functional settings of the
problem. The following result states some useful properties
of the spaces H and V .

Lemma 1. V is a separable Hilbert space isomorphic to
H1(Ω). Moreover, V is a dense subset of H .

Since ‖u‖2V = ‖u‖2H + a(u,u), we see that V is con-
tinuously embedded into H . We denote H ′ the topological
dual of H . By Riesz representation theorem, we make the
identification H ' H ′. Because V is a dense subset of H , the
latter can be identified as a dense subset of V ′, leading to the
classical injection chain V ↪→ H ' H ′ ↪→ V ′, where each
space is dense and continuously embedded into the following
one. We denote by A the continuous operator from V into
V ′ defined by 〈Au1,u2〉V , a(u1,u2) for all u1,u2 in V .
Next, define an unbounded (nonlinear) operator Ag on X by

D(Ag) , {[u,v] ∈W × V : ∂xu(L) = −g(v(L))}

∀X = [u,v] ∈ D(Ag), Ag(X) , −
[

v
(∂xxu, ∂xu(0))

]
.

(26)
Note that the domain D(Ag) need not be a subspace. We
start with the following first-order abstract Cauchy problem:{

Ẋ(t) +Ag(X(t)) = F(X(t))

X(0) = X0,
(27)

where F is the nonlinear perturbation operator on X defined
by F(X) , [0, B(v)] for all X = [u,v] ∈ X . We see that
F is Lipschitz, since the H-valued mapping B is Lipschitz.
We wish to prove that (27) is a Lipschitz perturbation of an
evolution equation with maximal monotone generator, hence
the following result.

Proposition 2. The unbounded operator Ag+id is maximal
monotone.

Proof. We start with the monotonicity, and then we shall
prove the surjectivity of [Ag + id] + id.

Step 1: Monotonicity. Let X1 = [u1,v1] and X2 =
[u2,u2] in D(Ag). We denote u1−u2 (resp. v1−v2) by u
(resp. v), and also X1 −X2 by X. We have

(Ag(X1)−Ag(X2),X)X = −(u,v)V

− (∂xxu, v)L2(Ω) − ∂xu(0)v(0)
(28)

Recall that (u,v)V = (u,v)H + a(u,v). Moreover, by
integration by parts, we have a(u,v) = −(∂xxu, v)L2(Ω) +
∂xu(L)v(L)− ∂xu(0)v(0). Thus, from (28) we obtain

(Ag(X1)−Ag(X2),X)X = −(u,v)H − ∂xu(L)v(L).
(29)

By definition of D(Ag) and Assumption 2, −∂xu(L)v(L) =
[g(v1(L))− g(v2(L))]v(L) ≥ 0, hence

(Ag(X1)−Ag(X2),X)X ≥ −(u,v)H . (30)

From (29) we then obtain

(Ag(X1)−Ag(X2) + X,X)X

≥ −(u,v)H + ‖u‖2V + ‖v‖2H

≥ −(u,v)H +
1

2
‖u‖2H +

1

2
‖v‖2H ≥ 0,

(31)



which is the desired result.
Step 2: Surjectivity. Take Y = [f1, f2] ∈ X . Let us prove

that there exists X = [u,v] ∈ D(Ag) such that Ag(X) +
2X = Y, i.e.{

(−∂xxu,−∂xu(0)) + 2v = f2 in H,
2u− v = f1 in V.

(32)

Replacing u with (f1 +v)/2 in (32) and using the condition
∂xu(L) = −g(v(L)), we may start by finding v ∈ V such
that for all w ∈ V ,

1

2
a(v,w) +

1

2
g(v(L))w(L) + 2(v,w)H

=− 1

2
a(f1,w) + (f2,w)H .

(33)

Define Θ : V → V ′ by, for all v,w ∈ V ,

〈Θ(v),w〉V , a(v,w) + g(v(L))w(L) + 4(v,w)H , (34)

and also L ∈ V ′ by 〈L,w〉V , a(f1,w) + 2(f2,w)H . Then,
reformulating (33), we seek v ∈ V such that

Θ(v) = L in V ′. (35)

We wish to apply Lemma 3 given in Appendix to Θ.
As a Hilbert space, V is reflexive; it is also separa-
ble – see Lemma 1. For all w1,w2 ∈ V , 〈Θ(w1) −
Θ(w2),w1−w2〉V = a(w1−w2,w1−w2) + [g(w1(L))−
g(w2(L))](w1(L) − w2(L)) + 4‖w1 − w2‖2H ≥ 0, which
proves the monotonicity. Items (2) and (3) are easily verified
using continuity arguments. Finally, let w ∈ V ; we have
〈L,w〉V ′,V ≤ ‖L‖V ′‖w‖V and 〈Θ(w),w〉V ′,V ≥ ‖w‖2V ,
so that 〈Θ(w),w〉V ′,V −〈L,w〉V ′,V → +∞ when ‖w‖V →
+∞, which implies the desired property. We deduce from
Lemma 3 that there exists v ∈ V such that (35) holds. Then,
let u , (f1 + v)/2 ∈ V . For all w ∈ V , we have

a(u,w) + g(v(L))w(L) + 2(v,w)H = (f2,w)H . (36)

Since f2 belongs to L2(Ω), taking φ = (φ, 0) in (36), where
φ is an arbitrary element of C∞c (Ω), allows us to prove that
u ∈ H2(Ω). Now, integrating by parts in (36) gives

∂xu(L)w(L)− ∂xu(0)w(0) + g(v(L))w(L) + 2v(0)w(0)

= f2(0)w(0),
(37)

holding for all w ∈ V . Pick a triangular function ρ such that
ρ(0) = 1 and ρ(L) = 0. Then (ρ, 1) ∈ V . Evaluating (37)
with ρ(x) and then ρ(L−x) yields −∂xu(0)+2v(0) = f2(0)
and ∂xu(L) = −g(v(L)), hence X = (u,v) ∈ D(Ag) and
Ag(X) + 2X = Y, which concludes the proof.

In order to consider any initial datum in the state space
X , we complete Proposition 2 with the following lemma.

Lemma 2. D(Ag) is dense in X .

We can finally prove the Hadamard theorem. Considering
the evolution equation 27 with a sequence of approximate
initial data in D(Ag) provides strong solutions that converge
in C([0, T ],X ). Then, one has to prove that the limit is a
weak solution. For that purpose, using a multiplier method,

we retrieve a standard hidden regularity property of the wave
equation.

Proof of Theorem 1. We split the proof into four steps.
Step 1: Approximate solutions. Since D(Ag) is dense

in X , we can pick a sequence of vectors X0
n = [u0

n,u
1
n] ∈

D(Ag) that converges to [u0,u1] in X . For each n ≥ 0,
there exists a (unique) strong solution Xn ∈W 1,∞(R+,X )
to the following reformulation of (27):{

Ẋ(t) +Ag(X(t)) + X(t) = F(X(t)) + X(t)

X(0) = X0
n.

(38)

Indeed, Proposition 2 states that Ag + id is maximal mono-
tone, and F+id is still Lipschitz. Existence is given by [11,
Corollary 4.1]. For all n ≥ 0, Xn = [un,u

′
n] verifies4

u′′n(t)− (∂xxun(t), ∂xun(0, t)) = B(u′n(t)) in H, (39)

in the sense of strong differentiation, for a.e. t > 0, with Xn

taking values in D(Ag). We pick w in V and take the scalar
product of (40) with w. With an integration by parts, and
using the definition of D(Ag), we obtain

(u′′n(t),w)H + a(un(t),w) = (B(u′n(t)),w)H

−g(∂tun(L, t))w(L)
(40)

for a.e. t > 0, which means that, w being arbitrary,

u′′n(t) +Aun(t) = B(u′n(t))− g(∂tun(L, t))δL in V ′

(41)
for a.e. t > 0. Let T > 0. Since un ∈ L∞(0, T ;V ) ∩
W 1,∞(0, T ;H) and u′n ∈ W 1,2(0, T ;V ′), a standard time-
regularization argument – omitted here – allows us to infer
from 41 that the distributional identity (8) holds for all φ ∈
C([0, T ], V ) ∩ C1([0, T ], H), meaning that un is indeed a
weak solution to (1) in the sense of Definition 1, with initial
data [u0

n,v
0
n]. Besides, as a consequence of [11, Corollary

4.1], Xn takes values in D(Ag) and ‖Ag(Xn)‖X is bounded
on [0, T ], meaning that

un ∈ L∞(0, T ;W ), u′n ∈ L∞(0, T ;V ); (42)

also, ∂tun(0, ·) is absolutely continuous and ∂ttun(0, t) −
∂xun(0, t) = F (∂tun(0, t)) Thus, un(0, ·) belongs to
H2(0, T ) with the desired weak derivatives. It can be in-
ferred from the distributional identity (8) and the additional
regularity given by (42) that un(x, t) belongs to H2(QT )
and verifies the wave equation on QT .

Step 2: Uniform convergence. The convergence of the
sequence {Xn} in C([0, T ],X ) for any T > 0 follows from
the standard monotonicity argument. We denote its limit by
X = [u,u′]. Coming back to the sequence of approximate
strong solutions, for all (m,n) in N2, we write wmn , um−
un. We also write w0

mn , wmn(0) and w1
mn , w′mn(0).

Multiplying the wave equation by x∂xwmn(x, t) ∈ H1(Qτ ),

4One should verify that the second coordinate is indeed the weak
derivative of the first coordinate.



we obtain, after several integrations by parts, the following
boundary estimate:∫ τ

0

|g(∂tum(L, t))− g(∂tun(L, t))|2 + |∂twmn(L, t)|2 dt

=
2

L

∫
Ω

x∂twmn(x, t)∂xwmn(x, t) dx

∣∣∣∣τ
0

+
1

L

∫∫
Qτ

|∂twmn|2 + |∂xwmn|2,

(43)
From (43), using Cauchy-Schwarz and Young inequalities,
and the Lipschitz property of B, we obtain the following:∫ τ

0

|g(∂tum(L, t))− g(∂tun(L, t))|2 + |∂twmn(L, t)|2 dt

≤M sup
t∈[0,τ ]

[
‖wmn‖2V + ‖wmn‖2H

]
,

(44)
for all τ ∈ [0, T ] and some M > 0. As a consequence,
{∂tun(L, ·)} and {g(∂tun(L, ·))} are Cauchy sequences
in L2(0, T ). Since un(L, ·) converges (in particular) in
L2(0, T ), it follows that {un(L, ·)} is a Cauchy sequence in
H1(0, T ), meaning that u(L, ·) belongs in fact to H1(0, T ),
which is the desired hidden regularity property. By continuity
of g and unicity of the limit, g(∂tun(L, ·)) converges to
g(∂tu(L, ·)) in L2(0, T ) – one has to consider a subsequence
converging for a.e. t ∈ (0, T ).

Step 3: Existence of weak solutions. Each un verifies
the distributional identity (8) for all test-functions φ in
Cc(0, T ;V )∩ C1

c (0, T ;H). We pick φ and we let n→ +∞.
As [un,u

′
n] converges to [u,u′] in C([0, T ],X ), ∂tun(L, ·)

converges to ∂tu(L, ·) in L2(0, T ), and g(∂tun(L, ·)) con-
verges to g(∂tu(L, ·)) in L2(0, T ), we obtain that u verifies
(8) as well and is therefore a weak solution to (1).

Step 4: Unicity and Hadamard continuity. Let w ,
u1−u2, where u1 and u2 are two arbitrary weak solutions.
The following energy identity holds:

Ew(t)

∣∣∣∣τ
0

=

∫ τ

0

(B(u′1(t))−B(u′2(t)),w′(t))H

−[g(∂tu1(L, t))− g(∂tu2(L, t))]∂tw(L, t) dt

(45)

for any 0 ≤ τ . It is obtained by multipling the wave equation
by ∂tw(x, t) and integrating over Qτ . From there, using the
fact that g is nondecreasing and B is Lipschitz, since we
also have ‖w(t)‖2H |τ0 ≤ 2

∫ τ
0
‖w‖H‖w′‖H , we can apply the

standard Grönwall argument to obtain unicity and continuity
with respect to initial conditions, proving that the operators
St introduced in (9) are well-defined and continuous. At this
point, Proposition 1 is also proved.

VI. CONCLUSION AND PERSPECTIVES

In this paper, the well-posedness of a wave equation
with a nonlinear dynamic boundary condition and nonlinear
Neuman-type feedback is proved, in a variational framework.
Using a proportional feedback law, exponential stabilization
is achieved under suitable assumptions.

In the linear case, an infinite-dimensional frequency-
domain approach would be interesting to tackle the stabiliza-
tion problem and obtain sharp conditions. Besides, adding an
integral action to the feedback law should be considered.
Also, the experimental device of [8] simulating drilling
dynamics may be used to test the model in real experiments.
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APPENDIX

We use the following existence result, which is an ap-
plication of the Galerkin method and the Brouwer fixed-
point theorem in finite dimension – see [11, Lemma 2.1 and
Theorem 2.1] for the proof.

Lemma 3. Let E be a separable reflexive Banach space
and f ∈ E′. Assume Θ : E → E′ verifies the following
assumptions:

1) Θ is monotone i.e. 〈Θ(x1) − Θ(x2), x1 − x2〉E ≥ 0
for all x1, x2 ∈ E;

2) Θ is bounded i.e. S ⊂ E bounded implies Θ(S)
bounded in E′;

3) For all x1, x2 ∈ E, the scalar function t 7→ 〈Θ(x1 +
tx2), x2〉E′,E is continuous.

If for some ρ > 0, ‖x‖E > ρ implies 〈Θ(x), x〉E′,E >
〈f, x〉E′,E , then there exists x ∈ E such that Θ(x) = f .
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