BCMA-ES: a conjugate prior Bayesian optimization view - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

BCMA-ES: a conjugate prior Bayesian optimization view

Rida Laraki
Jamal Atif

Résumé

CMA-ES is one of the state of the art evolutionary optimization methods because of its capacity to adapt covariance to information geometry. It uses prior information to form a best guess about the distribution of the minimum. We show this can be reformulated as a Bayesian optimization problem for the sampling of the optimum. Thanks to Normal Inverse Wishart (NIW) distribution, that is a conjugate prior for the multi variate normal distribution, we can derive a numerically efficient algorithm Bayesian CMA-ES that obtains similar performance as the traditional CMA-ES on multiple benchmarks and provides a new justification for the CMA-ES updates equations. This novel paradigm for Bayesian CMA-ES provides a powerful bridge between evolutionary and Bayesian optimization, showing the profound similarities and connections between these traditionally opposed methods and opening horizon for variations and mix strategies on these methods.
Fichier principal
Vignette du fichier
long_version.pdf (1.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02977523 , version 1 (25-10-2020)

Identifiants

  • HAL Id : hal-02977523 , version 1

Citer

Eric Benhamou, David Saltiel, Rida Laraki, Jamal Atif. BCMA-ES: a conjugate prior Bayesian optimization view. 2020. ⟨hal-02977523⟩
139 Consultations
135 Téléchargements

Partager

More