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Abstract. CMA-ES is one of the state of the art evolutionary optimiza-
tion methods because of its capacity to adapt covariance to information
geometry. It uses prior information to form a best guess about the distri-
bution of the minimum. We show this can be reformulated as a Bayesian
optimization problem for the sampling of the optimum. Thanks to Normal
Inverse Wishart (NIW) distribution, that is a conjugate prior for the
multi variate normal distribution, we can derive a numerically efficient
algorithm Bayesian CMA-ES that obtains similar performance as the
traditional CMA-ES on multiple benchmarks and provides a new jus-
tification for the CMA-ES updates equations. This novel paradigm for
Bayesian CMA-ES provides a powerful bridge between evolutionary and
Bayesian optimization, showing the profound similarities and connections
between these traditionally opposed methods and opening horizon for
variations and mix strategies on these methods.

Keywords: CMA-ES · Bayesian optimization · Normal inverse Wishart
· conjugate prior

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) [9] and all
its variants are arguably one of the most powerful evolutionary optimization
algorithms, finding many applications in machine learning. It is a state-of-the-art
optimizer for continuous black-box functions as shown by the various benchmarks
of the COmparing Continuous Optimisers (http://coco.gforge.inria.fr) INRIA
platform for ill-posed functions. It has led to a large number of papers and articles
and we refer the interested reader to [9,11,8,2] and the recent publications in
GECCO 2019 [15,7,16].

Briefly, the (µ / λ) CMA-ES is an iterative black box optimization algorithm,
that, at each of its iterations, samples λ candidate solutions according to a
multivariate normal distribution, evaluates these solutions, retains µ candidates
and adjusts the multi variate normal mean and covariance for the next iteration.
Each iteration makes an initial guess or prior for the distribution parameters
(mean and covariance of the multi-variate normal), evaluates the fit function
and updates parameters thanks to the revised guess or posterior. CMA-ES
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has been historically justified using Information Geometry Optimization [14]
and [1]. However, because we make some initial guess about parameters of a
distribution and then revise it, we could revisit CMA-ES with the light of Bayesian
Optimization (BO). The linkage is however not immediate as traditional BO
does not place prior (and posterior) on the optimum but rather on the objective
function. More specifically, if we aim at solving the following optimization problem:

x? = argmin
x∈X

f(x)

where f is called a black-box function (expensive evaluation of f , and potentially
no ability to observe or compute the gradients of f). In this setting, BO treats f
as a random function and places a prior over it. It then improves it at candidate
samples to compute a posterior function than in turns becomes the next prior and
so on until convergence. BO also uses the terminology of surrogate and acquisition
function. It repeatedly builds a probabilistic model for the objective function,
called the surrogate function f̂ , then search efficiently with an acquisition function
for candidate samples to improve our probabilistic model and start again building
a probabilistic model but now at the new points and so on until convergence.
The probabilistic model for the objective function aims at inferring our objective
function with the minimum number of evaluation of the objective function
as it is expensive to evaluate it. The surrogate function is computed thanks
to a probabilistic regression model regression. This surrogate function embeds
uncertainty for the objective function. The probabilistic regression model is
very often using Gaussian process but can also be using random forest or tree
Parzen estimator. This comes at a cost, as the regression step requires solving an
embedded costly optimization to find the regression parameters. In this work,
we propose to change dramatically the point of view while keeping the spirit of
a prior and posterior than in turns becomes the next prior until convergence.
Instead of inferring the objective function thanks to the surrogate function, we
rather aim at inferring the distribution of the optimum, hence the name of
Bayesian Optimization with Optimum Simulation (BOOS).

1.1 Contributions

– In this work, we propose a new paradigm to circumvent this embedded
optimization by directly simulating the distribution of the optimum. This
may seem paradoxical at first sight as the aim of the global optimization
is precisely to find this optimum. How could one simulate the final result
of the optimization? We show it is possible to compute prior and posterior
distributions of the optimum through a multi variate Gaussian distribution
and an appropriate conjugate prior for our retained stochastic optimum, scarce
evaluation of the objective function with a strategy combining exploration
and exploitation thanks to sub-sampling, weighting and re-sampling.

– We provide theoretical justification for doing it thanks to conjugate prior
analysis. We also relate this approach to natural gradient, emphasizing the
tight link between this modified BO method and gradient descent methods.
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– We stress that this novel paradigm for Bayesian optimization provides a
powerful bridge between Bayesian and evolutionary optimization revealing
the profound resemblances and parallels between these traditionally opposed
methods and opening horizon for variations and mix strategies on these
methods.

– We evaluate our new method on multiple benchmarks and obtain state-of-
the-art performance on stylized experiments

An implementation of BOOS is available at https://github.com/

aisquareconnect/bcmaes

1.2 Related works

Alternative to BO and new way to find surrogate function has led to multiple
works in recent years [13], [12] and [5]. They keep the original BO framework of
creating a surrogate function for the objective function but in a lower dimensional
space. Initially, the dimension problem was tackle by Gaussian matrix projections
and structure learning.

Recently, research has headed towards better subspace thanks to active
subspace theory. Hence, [13] reduces the burden computation of the embedded
optimization for the surrogate thanks to a projection to a lower dimensional
active subspace. They show that the embedded subspace do not deteriorate too
much the Gaussian process model as the model error is tightly bounded thanks
to the property of the active subspace that provides better performance than
traditional Gaussian matrix projections and structure learning.

Similarly, [12] proposes an algorithm (LINEBO) that restricts the problem
to a sequence of iteratively chosen one dimensional sub-problems that can be
solved efficiently and can be seen as active subspace. Likewise, [5] has changed
the method to find a local probabilistic model where the corresponding active
subspace is found via an implicit bandit approach.

However, to our knowledge, no one has ever looked at the idea of sampling
the optimum and not the function itself.

2 Framework

In this section we recall how Bayesian optimization works. Let us define and
objective function f that is defined in a search space X : f : X 7→ R. We want to
find the global minimum of this black box function x∗ = argminx∈X f(x). Based
on the Bayes theorem, Bayesian optimization aims at progressively learning the
objective function f to locate its global minimum by iteratively improving a
probabilistic model that encodes the current knowledge of the objective function
and provides probabilistic indication where to sample next. In traditional Bayes
statistics, given specific samples (x1, ..., xn) and their corresponding objective
function value f(x1), ..., f(xn), the posterior distribution is the conditional distri-
bution of f : P(f |D) given all samples D = (xi, f(xi))i=1...n and is proportional

https://github.com/aisquareconnect/bcmaes
https://github.com/aisquareconnect/bcmaes
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to the prior distribution times the likelihood as follows: P(f |D) ∝ P(D|f)× P(f)
or said differently Posterior ∝ Likelihood × Prior. The posterior encodes all
our knowledge of the objective function. Called the surrogate (of the objective)
function, this prior acts as the best approximation of the objective function given
our current sample knowledge f |D and is used to direct future sampling. The
Bayesian approach incorporates in the surrogate, the uncertainty of the current
knowledge of the objective function which is used for acquiring more samples
thanks to the acquisition function. There are multiple design choices for the
acquisition function (Probability of Improvement (PI), Expected Improvement
(EI), Lower Confidence Bound (LCB), etc). The Acquisition function (often set to
a Gaussian Process regression 1 effectively leverages our belief about the objective
function to sample the area of the search space. We do a Copernican revolution
and aim now at modeling rather the distribution of

x? = argmin
x∈X

f(x)

This may seem a daunting task as the goal of the Bayesian optimization is
precisely to infer x?. How could one start by the end? It looks like a complete
non sense at first sight and unfeasible. This first intuition turns out to be wrong
and misleading.

– First of all, although we do not know x?, we can still make assumptions on
the distribution of x?.

– Secondly, adding and modeling uncertainty on f , which is what Bayesian
optimization is doing is, is not directly addressing the goal of finding its
minimum. It is rather using a circonvoluted approach that takes detours to
find the right solution.

– Thirdly, adding uncertainty on the function f itself is adding much more
uncertainty as the functional space of functions f : X 7→ R is way bigger
than the space where lies the minimum X . [4] is indeed famous (with its
diagonal argument) to have shown under the Continuum hypothesis that
the cardinality of the functional space f : R 7→ R is ℵ2 which is infinitely
larger than the one of R that is only ℵ1. Indeed, 2ℵ1 = ℵ2. Saying simply,
if we assume that R can be discretized into 10,00 potential values (this is
a finite approximation of an infinite set), the cardinality of the functions

of f : R 7→ R is 10, 00010,1000 = 104.104 which shows how much bigger on
finite sets (1 followed by 40 thousands zeros compared to 1 followed by 4
zeros for the domain definition!), the functional space is compared to the
domain definition! Hence modeling uncertainty on the functional space is
very ineffective compared to modeling uncertainty on the minimum.

We will show now how we can apprehend having uncertainty on x?.

1 Gaussian Process regression assumes that the distribution of f |D is a Gaussian
process with mean λf |D and variance Σf |D
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2.1 Notations

We will iterate over a number of iterations. At iteration t, we will draw n samples
candidate points for the optimum written as Xt = (xt1, ..., x

t
n) and evaluate the

sample f(xti)i=1,...,n. The straight sample mean and variance are given by :

xt =
1

n

n∑
i=1

xti (1)

σ2
t =

1

n− 1

n∑
i=1

(
xti − xt

) (
xti − xt

)T
(2)

Later in subsection 2.4, we will see how we compute the sample mean and
variance using information about the objective function f .

2.2 Modeling uncertainty on the minimum

Let us assume that x? follows a distribution whose parameters are unknown. Like
in traditional Bayesian optimization, it is worth using a tractable distribution.
We will hence assume that x? follows a multi variate Gaussian distribution. To
represent uncertainty on the parameters of the multi variate Gaussian distribution,
it is also worth using a conjugate prior as this will ease computation. We denote
by π(θ) the distribution on x? parametrized by parameters θ.

Definition 1. A prior distribution π(θ) is said to be a conjugate prior for the if
the posterior distribution π(θ|D) remains in the same distribution family as the
prior.

It is also a well known result (see for instance [3] that a good candidate
for a conjugate prior for the multi variate normal, N (.;µ,Σ), is the normal
inverse Wishart distribution, parametrized by λ0, κ0, ν0, ψ whose formula is

f(µ,Σ|λ0, κ0, ν0, ψ) =N
(
µ
∣∣∣λ0, 1

κ0
Σ
)
W−1(Σ|ψ, ν0), whereW−1 is the inverse

Wishart and N a multi variate normal. Because the update is the optimal one
given the prior information, the Bayesian updates should work well in initial
iterations. Numerical experiments confirm this intuition.

As stated in the definition 1, conjugate prior means that the posterior distribu-
tion is also a normal-inverse-Wishart with updated parameters NIW(λ?0, κ

?
0, v

?
0 , ψ

?)
given by:

λ?0 =
κ0λ0 + nx

κ0 + n
, κ?0 = κ0 + n, v?0 = v0 + n

ψ? = ψ + (n− 1)σ2 +
κ0n

κ0 + n
(x− λ0) (x− λ0)

T
(3)

with x the sample mean: x = 1
n

∑n
i=1 xi and σ2 the sample variance given by

σ2 = 1
n−1

∑n
i=1 (xi − x) (xi − x)

T
. Hence, if we are able to estimate both the

sample mean and variance, we can update the parameters of the prior to get the
posterior. This is the key property to update mean and covariance in BOOS.
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2.3 Simulating the minimum

To simulate the minimum x? and not f is the key of this new Bayesian optimiza-
tion. Let us for the moment assume that we are able to get the right sample mean
and variance (by some oracle). We will come back to this point in subsection 2.4.

First of all, theoretically, to simulate the new sample, we should first simulate
the uncertainty on the parameters λt, κt, νt, ψt and given these parameters do
another simulation on N (.|µt, Σt) given λt, κt, νt, ψt. This will require doing
simulations within simulations making this algorithm quite slow. A first trick is
instead to use the mean value (using a mean field approximation) and compute the
conditional expectation given λt, κt, νt, ψt for the multi variate normal parameters:

Proposition 1. We can compute the mean variance approximation of the mean
and covariance of the multi variate normal as follows:

µt = E[µ|λt, κt, νt, ψt] = λt (4)

and Σt = E[Σ|λt, κt, νt, ψt] =
ψt

vt − n− 1
(5)

Proof. See Supplementary 6.1.

Hence instead of doing simulations within simulations, we can just simulate a
multi variate normal whose parameters are µt and Σt. Combining equations (4),
and (3), we obtain the recursive update equations summarized by the proposition
below.

Proposition 2. Using recursion, at iteration t, we can compute the mean vari-
ance approximation of the mean and covariance of the multi variate normal as
follows:

µt =
κ0λ0
κ0 + tn

+
n
∑t−1
j=0 xj

κ0 + tn
, (6)

and Σt =
ψ0

v0 + (t− 1)n− 1

+

∑t−1
j=0

κjn
κj+n

(xj − µj) (xj − µj)T

v0 + (t− 1)n− 1

+
(n− 1)

∑t−1
j=0 σ

2
j

v0 + (t− 1)n− 1
(7)

Proof. See supplementary 6.2.

We can now prove the convergence of this approach as follows.

Proposition 3. Under the assumption that the samples x1, ..., x... are indepen-
dent and identically distributed with finite first fourth centered moments and with
the first two centered moments given by µ∞ and Σ∞, we obtain that the BOOS
scheme converges to the right normal distribution almost surely, that is

µt
a.s.−−→
t→∞

µ∞ (8)

and Σt
a.s.−−→
t→∞

Σ∞ (9)
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where Σ∞ = lim
t→∞

(n−1)
∑t−1

j=0 σ
2
j

v0+(t−1)n−1 .

Proof. See supplementary 6.3

2.4 Using the objective function

All the above schemes assume that we are able to simulate the likelihood and
more precisely compute the sample mean and variance. It is remarkable that
we only need the sample mean and variance according to the likelihood and no
other moments. However, as this is precisely the objective of our optimization
method, we are facing some kind of circularity. We will show how we can break
this circularity and have good guess about the sample mean and variance at
iteration t. At iteration t, we draw sample candidate points, Xt = (xt1, ..., x

t
n) and

evaluate the sample f(xti)i=1,...,n. If we were completely accurate, the minimum
of f should be located in µt with some variance Σt. However, the evaluation of
the function gives us some indication that this not completely accurate and that
we need to revise our initial guess.

For each candidate point we compute its assumed density dti = N (xti, µt, Σt)
where N (., µt, Σt) denotes the p.d.f. of the multi variate normal distribution. We
divide these density by their sum to get weights (wti)i=1..n that are positive and

sum to one as follows: wti =
dti∑n

j=1 d
t
j
. Let us denote by {xt(i),f↑}i=1..n the samples

(xti)i=1..n sorted according to their objective function value in increasing order:
f(xt(1),f↑) ≤ f(xt(2),f↑) ≤ ... ≤ f(xt(n),f↑). Let us denote by {wt(i),w↓}i=1..n the

weights sorted in decreasing order : wt(1),w↓ ≥ w
t
(2),w↓ ≥ ... ≥ w

t
(n),w↓

Hence for n simulated points, we can have a two columns matrix that is
transformed into another two columns matrix: simulataneous sorting in f in
increasing order and w in decreasing order independently.xt1, w

t
1

... ...
xtn, w

t
n

→
xt(1),f↑, w

t
(1),w↓

... ...
xt(n),f↑, w

t
(n),w↓

 (10)

We can now compute the empirical mean xt as follows:

xt =

n∑
i=1

wt(i),w↓ · x
t
(i),f↑ (11)

For the sample variance at iteration t, we do a similar strategy

σt =

n∑
i=1

wt(i),w↓ ·
(
xt(i),f↑ − xt

)(
xt(i),f↑ − xt

)T
(12)

Compared to standard CMA -ES that weights sample candidate with a logarithmic
decrease, we here use the distribution at each step to overweight best candidates.

3 Link with CMA ES

It is striking that it provides very similar formulae to the standard CMA-ES
update. Recall that these updates given for the mean mt and covariance Ct can
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be written as follows:

µt+1 = µt + cm

(
xλ,µt − µt

)
Σt+1 = (1− c1 − cµ + cs)︸ ︷︷ ︸

discount factor

Σt + c1 pcp
T
c︸︷︷︸

rank one matrix

+ cµ

µ∑
i=1

wi
xi:λ −mk

σk

(
xi:λ −mt

σt

)T
︸ ︷︷ ︸

rank min(µ,n−1) matrix

(13)

where xλ,µt =
∑µ
i=1 wi xi:λ is the CMA-ES sample mean and the notations

µt = mt, wi, cm, xi:λ, Σt = Ct, c1, cµ, cs, etc... are given for instance in [6]. Our
scheme using normal-inverse Wishart update 3 leads to very similar equations:

µt+1 = µt + wµt (xt − µt) ,

Σt+1 = wΣ,1t︸ ︷︷ ︸
discount factor

Σt + wΣ,2t (xt − µt) (xt − µt)T︸ ︷︷ ︸
rank one matrix

+ wΣ,3t σt︸︷︷︸
rank (n-1) matrix

where wµt =
n

κt + n
,

wΣ,1t =
vt − n− 1

vt − 1
,

wΣ,2t =
κtn

(κt + n)(vt − 1)
,

wΣ,3t =
n− 1

vt − 1

(14)

where the sample mean and variance are given in equations (11) and (12)

Proof. See supplementary 6.4

4 Experiments

We compare Bayesian CMA-ES (BCMA-ES) to standard CMA-ES on four 2-
dimensional traditional functions: Sphere (also known as the Cone), Rastrigin,
Schwefel 1 and 2 (see for instance [10] for their definition). Because of the
importance of the seed in these two algorithms, we take the average convergence
and a confidence interval over 30 function evaluations and multiple starting
points.

This is shown in the various figures 1, 2, 3 and 4. The standard CMA-ES used
is the one provided in the open source python package cma and displayed in blue,
while BCMA-ES is in red. Full details of the implementation of the experiment is
provided in supplementary materials with python source code.

What we can notice is that Bayesian CMA-ES achieves initially faster con-
vergence. As we increase the number of iterations, standard CMA-ES performs
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better and better and start performing faster convergence for around 30 itera-
tions. We will need to investigate why this is the case and if we could adapt the
computation of our sample mean and variance as given by equations (11) and
(12) to benefit from the performance of standard CMA-ES. This would lead to a
mixed strategy that uses initially Bayesian CMA-ES and then standard CMA-ES
sample mean and variance equations.
We can summarize the different results for our four functions to see the impact
of the starting points and achieve an initial faster convergence. The results are
shown in table 1.

Fig. 1. Convergence for the Rastrigin function with a starting point at [-20,-20]
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Fig. 2. Convergence for the Sphere function with a starting point at [5,5]

Fig. 3. Convergence for the Schwefel 1 function with a starting point at [-400,-400]
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Fig. 4. Convergence for the Schwefel 2 function with a starting point at [20,20]

For each functions, we started at a point that is not very close to the optimum.
We are particularly interested in measuring the robustness of the optimization
algorithm should we start far away from the optimum. To have meaningful
graphics, the convergence is plotted in standard logarithmic scale. The thin
confindence interval indicates that the two algorithms are experimentally not
very sensitive to the random seed. The x axis represents the iterations in our
two algorithms while the y axis the difference between the value of the objective
function in the optimum and the value of the objective function estimated at
our best candidates in log term. We have provided in supplementary materials
other comparison plots for different starting points: see section 7. This shows that
the results remain the same regardless of the starting points and that Bayesian
CMA-ES is in general quite robust to a starting point far away from the optimum.
All the results are however summarized in table 1.

5 Conclusion

Here, we have revisited CMA-ES and provide a Bayesian version of it. Taking
a conjugate prior, we find the optimal update for the mean and variance. We
proivde ways to incorporate objective function feedback to compute sample mean
and variance. Numerical experiments show that this new version is competitive to
standard CMA-ES on traditional functions such as Sphere, Schwefel 1, Rastrigin
and Schwefel 2. The initial faster convergence is due to the Bayesian optimal
posterior update. Further work should examine why CMA-ES continues increasing
the rate of variance contraction while BCMA-ES does not achieve it.
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Table 1. Comparison results for multiple starting points

function starting point cma error bcma error cma error / bcma error

Rastrigin [-20 -20] 135.72 48.39 35.7%
[-10 -10] 31.31 12.35 39.4%
[-5 -5] 11.49 4.81 41.9%
[5 5] 10.60 5.23 49.3%

[10 10] 30.31 13.19 43.5%
[20 20] 131.38 52.11 39.7%

Sphere [-20 -20] 116.60 40.54 34.8%
[-10 -10] 20.78 6.92 33.3%
[-5 -5] 3.36 1.24 36.9%
[5 5] 3.09 1.35 43.6%

[10 10] 20.02 7.62 38.1%
[20 20] 115.64 43.97 38.0%

Schwefel1 [-400 -400] 618.67 409.05 66.1%
[-200 -200] 704.56 388.25 55.1%
[-100 -100] 614.77 312.35 50.8%
[100 100] 734.49 256.62 34.9%
[200 200] 434.48 365.37 84.1%
[400 400] 16.11 5.68 35.3%

Schwefel2 [-20 -20] 63.11 23.18 36.7%
[-10 -10] 12.85 4.58 35.6%
[-5 -5] 2.68 1.14 42.5%
[5 5] 2.33 1.15 49.2%

[10 10] 12.15 4.76 39.2%
[20 20] 60.96 24.52 40.2%
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6 Supplementary materials for BCMA-ES: a conjugate
prior Bayesian optimization view

6.1 proof of proposition 1

Recall that under the normal inverse Wishart distribution, the mean µ follows a
normal distribution whose parameters are λt and 1

κt
Σ. Hence we, have

µt = E[µ|λt, κt, νt, ψt]

= E[N (.|λt,
1

κt
Σ)] = λt (15)

Likewise, under the normal inverse Wishart distribution, the variance Σ follows
an inverse Wishart distribution whose parameters are ψt, νt with an expectation
given by ψt

vt−n−1 . Hence, we have

Σt = E[Σ|λt, κt, νt, ψt]

= E[W−1(.|ψt, νt)] =
ψt

vt − n− 1
(16)

which concludes the proof. ut

6.2 proof of proposition 2

Using recursion, it is trivial to prove that

κt = κ0 + tn, (17)

κtλt = κ0λ0 + n

t−1∑
j=0

xj (18)

which provides the first expression for µt.
Likewise, to get the mean variance approximation of the covariance Σt, we can
notice that

νt = ν0 + tn, (19)

ψt = ψ0

+

t−1∑
j=0

κjn

κj + n
(xj − λj) (xj − λj)T

+(n− 1)

t−1∑
j=0

σ2
j (20)

which concludes the proof by noticing that λj = µj . ut

6.3 proof of proposition 3

The samples x1, ..., xn are independent and identically distributed random vector
with finite first two centered moments µ∞ and Σ∞. Using the strong law of large
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numbers, we have

n
∑t−1
j=0 xj

κ0 + tn
=

tn

κ0 + tn

∑tn
j=1 xi

tn

a.s.−−→
t→∞

µ∞ (21)

We also have
κ0λ0
κ0 + tn

a.s.−−→
t→∞

0 (22)

which shows the first result.

Concerning the second result, we need to look at the variable σ2
t , that has

its first two centered moments finite by assumption. Again using the strong law

of large numbers, we have
(1−1/n)

∑t−1
j=0 σ

2
j

t converges almost surely to a finite
quantity that we denote Σ∞. Hence

(n− 1)
∑t−1
j=0 σ

2
j

v0 + (t− 1)n− 1

a.s.−−→
t→∞

Σ∞ (23)

We also have
ψ0

v0 + (t− 1)n− 1

a.s.−−→
t→∞

0 (24)

To conclude we need to study the following term:
κtn

κt + n
(xt − µt) (xt − µt)T = n

κ0 + tn

κ0 + tn+ n
(xt − µt) (xt − µt)T

a.s.−−→
t→∞

0 (25)

as xt − µt
a.s.−−→
t→∞

0, which concludes the proof. ut

6.4 proof of proposition 14

Under proposition 1, we have

µt+1 = λt+1 = λt +
n

κt + n
((xt − λt)

= µt +
n

κt + n
(xt − µt) (26)

Likewise, we have

Σt+1 =
ψt+1

vt+1 − n− 1

=
1

vt − 1
(ψt +

κtn

κt + n
(xt − λt) (xt − λt)T +(n− 1)σ2

t )

=
1

vt − 1

(
(vt − n− 1)Σt +

κtn

κt + n
(xt − µt) (xt − µt)T

+(n− 1)σ2
t

)
(27)

ut
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7 Other convergence comparisons for different starting
points

Fig. 5. Convergence for the Sphere function with a starting point at [-20,-20]

Fig. 6. Convergence for the Sphere function with a starting point at [-10,-10]



BCMA-ES: a conjugate prior Bayesian optimization view 17

Fig. 7. Convergence for the Sphere function with a starting point at [-5,-5]

Fig. 8. Convergence for the Sphere function with a starting point at [5,5]
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Fig. 9. Convergence for the Sphere function with a starting point at [10,10]

Fig. 10. Convergence for the Sphere function with a starting point at [20,20]
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Fig. 11. Convergence for the schwefel1 function with a starting point at [-400,-400]

Fig. 12. Convergence for the schwefel1 function with a starting point at [-200,-200]
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Fig. 13. Convergence for the schwefel1 function with a starting point at [-100,-100]

Fig. 14. Convergence for the schwefel1 function with a starting point at [100,100]
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Fig. 15. Convergence for the schwefel1 function with a starting point at [200,200]

Fig. 16. Convergence for the schwefel1 function with a starting point at [400,400]
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Fig. 17. Convergence for the schwefel2 function with a starting point at [-20,-20]

Fig. 18. Convergence for the schwefel2 function with a starting point at [-10,-10]
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Fig. 19. Convergence for the schwefel2 function with a starting point at [-5,-5]

Fig. 20. Convergence for the schwefel2 function with a starting point at [5,5]
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Fig. 21. Convergence for the schwefel2 function with a starting point at [10,10]

Fig. 22. Convergence for the schwefel2 function with a starting point at [20,20]
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Fig. 23. Convergence for the rastrigin function with a starting point at [-20,-20]

Fig. 24. Convergence for the rastrigin function with a starting point at [-10,-10]
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Fig. 25. Convergence for the rastrigin function with a starting point at [-5,-5]

Fig. 26. Convergence for the rastrigin function with a starting point at [5,5]
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Fig. 27. Convergence for the rastrigin function with a starting point at [10,10]

Fig. 28. Convergence for the rastrigin function with a starting point at [20,20]
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