Understanding Ecosystem Complexity via Application of a Process-Based State Space rather than a Potential Surface - Archive ouverte HAL
Article Dans Une Revue Complexity Année : 2020

Understanding Ecosystem Complexity via Application of a Process-Based State Space rather than a Potential Surface

Résumé

Ecosystems are complex objects, simultaneously combining biotic, abiotic, and human components and processes. Ecologists still struggle to understand ecosystems, and one main method for achieving an understanding consists in computing potential surfaces based on physical dynamical systems. We argue in this conceptual paper that the foundations of this analogy between physical and ecological systems are inappropriate and aim to propose a new method that better reflects the properties of ecosystems, especially complex, historical nonergodic systems, to which physical concepts are not well suited. As an alternative proposition, we have developed rigorous possibilistic, process-based models inspired by the discrete-event systems found in computer science and produced a panel of outputs and tools to analyze the system dynamics under examination. e state space computed by these kinds of discrete ecosystem models provides a relevant concept for a holistic understanding of the dynamics of an ecosystem and its abovementioned properties. Taking as a specific example an ecosystem simplified to its process interaction network, we show here how to proceed and why a state space is more appropriate than a corresponding potential surface.
Fichier principal
Vignette du fichier
7163920.pdf (4.72 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02974933 , version 1 (22-10-2020)

Identifiants

Citer

Cédric Gaucherel, F. Pommereau, Christelle Hély. Understanding Ecosystem Complexity via Application of a Process-Based State Space rather than a Potential Surface. Complexity, 2020, 2020, pp.1-14. ⟨10.1155/2020/7163920⟩. ⟨hal-02974933⟩
101 Consultations
99 Téléchargements

Altmetric

Partager

More