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Ecosystems are complex objects, simultaneously combining biotic, abiotic, and human components and processes. Ecologists still
struggle to understand ecosystems, and one main method for achieving an understanding consists in computing potential surfaces
based on physical dynamical systems. We argue in this conceptual paper that the foundations of this analogy between physical and
ecological systems are inappropriate and aim to propose a new method that better reflects the properties of ecosystems, especially
complex, historical nonergodic systems, to which physical concepts are not well suited. As an alternative proposition, we have
developed rigorous possibilistic, process-based models inspired by the discrete-event systems found in computer science and
produced a panel of outputs and tools to analyze the system dynamics under examination. The state space computed by these
kinds of discrete ecosystem models provides a relevant concept for a holistic understanding of the dynamics of an ecosystem and
its abovementioned properties. Taking as a specific example an ecosystem simplified to its process interaction network, we show

here how to proceed and why a state space is more appropriate than a corresponding potential surface.

1. Introduction

Most ecologists would admit that ecosystems are complex,
although some might appear simple. Ecosystems appear to
form emergent structures (e.g., [1, 2]), exhibit nonlinear
properties (e.g., [3, 4]), and be clearly out of equilibrium
(e.g., [5, 6]). Moreover, the fact that most ecosystems today
strongly interact with society and contain several human
groups heightens this feeling of complexity [7, 8]. Yet, most
studies focus on just some components of the ecosystem,
either biotic (e.g., species community), abiotic (e.g., climate,
element cycles), or anthropic (ecosystem services), and a
definitive demonstration of integrated ecosystem complexity
is still lacking. In addition, most analyses focus on com-
plexity at a specific time, often concentrating on patterns
rather than on long-term dynamics [1, 9]. In this conceptual
paper, we propose a detailed methodology for the long-term
study of ecosystem dynamics and for qualifying their
complexity using process-based models.

Ecosystem complexity is derived first and foremost from
the combination of biotic, abiotic, and human components
which also form a tangled web of continuous interactions
[10-12]. Some socioecological systems seem quite simple,
with few components and few processes, but these cases
remain scarce. Theoretical ecologists with a true interest in
the whole (socio)ecosystem, not just some parts of it, have
spent decades debating ecosystem dynamics and their sta-
bility or resilience [3, 13]. Whether a potential function or a
resilience surface [14-17], synthetic and conceptual models
should be able to fit any specific trajectory observed in the
ecosystem under study. The recent nature of ecology as a
discipline and mostly partial and short-term observations
provide us with a limited view of ecosystems. As a result,
such models often focus on short-term dynamics and mainly
on pattern analyses [9, 18, 19]. Models of complexity in
ecology thus remain phenomenological. For this reason,
even partially validated process-based models of ecosystems
offer a promising opportunity to produce understandable,
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robust long-term dynamics. Here, we intend to review the
mainstream models of ecosystem dynamics, to demonstrate
some of their limitations, and finally, to provide a process-
based methodology that will hopefully bypass such
limitations.

When studying or managing an ecosystem, be it tem-
perate or tropical, terrestrial or aquatic, natural or anthropic,
a suggested preliminary step is an exhaustive understanding
of its overall dynamics. Practically speaking, ecologists today
investigate whether or not a specific ecosystem studied is
stable [3, 4], resilient [2, 20], and moreover how far from any
tipping points or catastrophic shifts it lies [21-23]. Physics
has long provided powerful tools for these objectives with
regard to physical systems. For example, physical models
often provide ordinary differential equation (ODE) systems
and summarize the most probable dynamics (and sharp
changes) into phase spaces and potential functions [24, 25].
Such syntheses then enable confident predictions of future
system states, to prevent unwanted states and advise on
expected states.

Despite recent attempts, such synthetic models for
ecosystems are still lacking. Some theoretical models have
been proposed [26-29], but they rarely fit and accurately
calibrate observations, or if so, rarely study more than one
state variable (e.g., biomass and/or annual rainfall). In ad-
dition, such models are probabilistic in essence, whereas
possibilistic models would afford exhaustive exploration of
complex (eco)system dynamics. Here, our first and most
important objective is to provide ecologists with a new
conceptual framework for achieving this goal of exhaustive
computation of any ecosystem dynamics [30, 31], and to
simultaneously illustrate the approach in a complex case
study. Moreover, the mainstream models used today in
ecosystem ecology still suffer from several limitations [32].
Our second objective is to list and debate these chief
limitations.

For this purpose, we recently developed an original type
of models [18, 30], based on the discrete event and qualitative
systems commonly used in theoretical computer sciences
[33-35]. Here, we will illustrate the approach with a qual-
itative Petri net in the case of an insect (termite) colony [36],
which is presumed to mimic an ecosystem undergoing
abrupt qualitative change, and potentially experiencing
strong long-term disturbances. We will show how the
qualitative state space (sometimes called the reachability or
labeled transition space) of the modeled insect colony
provides a relevant synthesis of this ecosystem’s dynamics.
Finally, we will analyze this state space to verify that it is not
subject to the same limitations as identified in other eco-
logical models, and to suggest future directions.

2. State Space of a Qualitative Ecosystem

Here, we propose an original model intended to represent
the overall dynamics of any complex (socio) ecosystem. The
proposition states that it is possible to exhaustively capture
overall ecosystem behavior on the basis of a qualitative,
discrete, and integrated description of its interactions [18].
The interactions within a given ecosystem are all the relevant
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processes involved in the system dynamics, hence the
process-based model. This kind of discrete model has already
proved useful, and interested readers may refer to papers
describing the mathematical details of the method and some
applications [30, 37, 38]. In the present study, we illustrate
such an approach with the specific case of a simplified
theoretical insect colony. This termite colony is assumed to
mimic a typical ecosystem comprising biotic, abiotic, and
anthropogenic-like (the farming termites) components [36],
as well as all their associated (i.e., bioecological, physico-
chemical, and socioeconomic) interactions. The output from
the model consists in a discrete qualitative state space of the
ecosystem, grouping all the states that the ecosystem may
potentially reach from an initial state and thus all its
trajectories.

We chose to model eusocial insect colonies for the
reasons that they experience drastic change (tipping points,
TPs) over time, but any other ecosystem-like models may be
used (Figure 1(a)). We chose to work on Macrotermitinae
termites [36] which, like some ant species, construct large
colonies (up to millions of inhabitants), [39] sometimes
considered as super-organisms with complex functioning.
These termites cultivate fungi in special chambers, build
aerial structures (called mounds) to improve air circulation,
and divide their nests into a royal chamber, fungus cham-
bers, and egg rooms (Figure 1(a)). Given the ability of this
eusocial species to develop food production, termites might
also be considered as mimicking humans (farmers) in
agrosystems.

One way of conceptualizing the ecosystem under in-
vestigation is to represent it as a graph (i.e., network) of
components connected by processes, the interaction net-
work, whatever the interactions (Figure 1(b)). The model is
fully qualitative (Boolean) and allows components to be
present or absent only. The resulting ecosystem graph is then
manipulated using a rigorous model based on a discrete Petri
net to formalize any change in the topology of this graph
(i.e., the neighboring relationships between present com-
ponents). Developed in computer science [31, 35], Petri nets
are commonly used in biology (e.g., [40, 41]) and are
powerful tools for rigorous formalization of changes in
network topologies occurring during system dynamics. Such
Petri nets are radically different from traditional ecological
models based on ODE equations (e.g., [2, 4]) in that they
deal with topological changes in interactions during the
simulation rather than dynamics carried by a fixed topology.
Our approach might be closer in spirit to other attempts,
such as Richard Levins’ “loop analysis” dedicated too linear
systems and its most recent versions of qualitative models
[42].

Discrete-event models provide state space outputs that
can be readily analyzed to highlight relatively stable (or
resilient) dynamics, tipping points, and any other specific
trajectories. Such state spaces show similarities with the
state-and-transition models that have proved useful in
modeling ecological succession [43], except that our state
spaces are deduced from predefined processes instead of
being directly drawn from observations. Hence, such models
are possibilistic models as they exhaustively explore the
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F1GURE 1: Graphic of a termite colony (a) and its simplified interaction network (b). Termites modify their environment and build a mound
with various chambers to host the colony (a). The original ecosystem graph is composed of 12 nodes (Table 1) with five colors representing
their different natures (b, left). Their 15 associated interactions (i.e., processes, Table 2) are shown directionally (b) from component

conditions to realizations.

possible dynamics of the (eco) system, and differ strongly
from traditional probabilistic models in ecology [17, 44]. It
appears crucial to identify all possible trajectories to un-
derstand the overall ecosystem dynamics, rather than fo-
cusing on the most probable trajectories.

In this kind of framework, any ecosystem can be rep-
resented as a graph, in which every material component of
the ecosystem (e.g., a termite population stage, fungi, air, and
water) is represented by a node, with two Boolean states:
“present” (the component is functionally present in the
system and it may impact other components, also denoted as
“+” or On) or “absent” (functionally absent from the system
or “=” or Off). So, any state of the system is defined by the set
of “+” and “-~” nodes (Figure 1(b)). Any physicochemical,
bioecological, and/or possibly socioeconomic process is
translated into a Petri net rule, which describes the condition
to be fulfilled, and the realization to be executed in such a
case. Since the rules modify node states, the entire system
shifts from one state to another through the discrete suc-
cessive application of rules [30]. Rules progressively produce
the state space, which provides the set of all system states
reachable from the initial state and by the defined rules
(Figure 2). This is easily translated and computed by any
Petri net engine [35, 45].

The Petri net of the termite colony provides a highly
instructive state space [30]. The termite modeling reaches
only 109 states (of 2'* possible states, approx. 2%), so we can
draw the exhaustive state space to visualize it (Figure 2). For
larger systems, analysis can be performed automatically and
without drawing the state space [37]. The state space graph
displayed here is composed of several (colored) structures,

which we will further describe and interpret in ecological
terms: the initial state (numbered 0, and represented by a
hexagon, Figure 2-A), two topological structures usually
called strongly connected components (SCCs, defined as a
set of system states in which every state may be reached from
any other state of the SCC, Figure 2-B and B), and a number
of decisive paths (e.g., irreversible ecosystem trajectories and
tipping points, Figure 2-C), ultimately leading upward to
basins and their associated deadlocks (states from which no
other state is reachable, Figure 2-D and D', squares). Hence,
the state space provides a convenient, precise summary of
the system’s behavior, its dynamic features, and all its
possible qualitative trajectories.

From this state space, it is possible to compute a merged
state space automatically aggregating all the states of the
topological structures mentioned previously (Figure 3(a)).
In this merged space, the SCC properties conveniently
capture the ecosystem’s structural stabilities, that is, the
number of states and the trajectories that qualitatively
connect them (e.g., Figure 2-B). Tipping points are also
visible as the successive rules (Figure 2-C and 3(a)-C)
shifting the system from structural stabilities (e.g., B or B') to
deadlocks (e.g., D or D'), here meticulously identified and
listed [30]. Other possible features (e.g., basins connecting
the previous features) and ecosystem collapses (deadlocks)
may also be computed and displayed on the same state space.
Such topological analysis is usually accomplished on state
spaces with as many as millions of states, in more complex
and/or realistic ecosystem models [37, 38].

From this merged state space, we can then compute a
potential-like surface (Figure 3(b)), referred to hereinafter as
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FI1GURE 2: The full state space (or marking graph) of the termite colony model. The state space comprises 109 states labeled with a pair n/s
where 7 is an identifying number for the marking and s is the number of strongly connected components (SCCs) for the basin or deadlock it
belongs to. The initial state is displayed as a hexagon (A), deadlocks (states leading to a terminal state with no successor) are displayed as
squares (five in total, of which two are in zones D and D', and one (A) is close to the initial state), an example of two tipping points is
displayed as a red segment (C), while other states are displayed as circles. Each SCC or basin is highlighted using a separate color (e.g., SCCs
B and B’ are drawn in orange and green). The edges are directed and labeled with the number of the rule that was applied to perform the

transition (defined in Table 2).

the computed potential surface to distinguish it from other
traditional surfaces used in ecology and elsewhere
[14, 17, 25]. While stabilities may be represented by wells
(e.g., Figure 3(b)-B), tipping points are represented by ridges
connecting these wells (e.g., Figure 3(b)-C), and deadlock
states or sets of states are represented by assigning them a
virtually infinite depth on the computed potential surface
(e.g., Figure 3(b)-D), so that the system can no longer escape
from them. For this purpose, we linked the width, depth, and
location of each topological feature with the number of
states, the number of trajectory steps, and the path con-
nections of each feature. This representation is intended to
consider different components of resilience, namely, lati-
tude, resistance, and precariousness [17]. For example,
structural stability B’ involves 20 states, with a maximum of
three steps required to leave it, and is irreversibly connected
to B (Figure 4(a)). In this way, we built a surface that appears
comparable to the traditional potential-like surfaces: yet, we
highlight in the next section how different it is, once
interpreted on the basis of the concepts supporting the
qualitative discrete-event models used for this computation.

The state space concept provides an easy way to identify
structural stabilities, tipping points, and hysteresis. We stress
that such topological features do not correspond perfectly to

the so-called dynamics (i.e., with these names) in ODE
models, as the system here shifts sharply from one set of
discrete qualitative states to other discrete qualitative states
and could theoretically stay indefinitely in each of them.
When the system remains stuck in a specific structural
stability (e.g., B and B in Figure 2), all the states of such a
stability are by definition connected through specific paths.
The modeled ecosystem shifts from one state to the others
through differentiated trajectories and then potentially
comes back to the same state (Figure 4(a), blue and green
arrows). These trajectories are numerous, with highly dis-
tinctive paths in terms of ecosystem composition (the
present components) or other properties. For example, it is
possible to plot such hysteresis as a function relating the
number of ecosystem components present to the number of
steps required to reach the states (Figures 4(b) and 4(c)).
Many other properties are available and often quanti-
fiable in the state space. It is relevant to use these trajectories
to characterize the structural stability (e.g., B’ in Figure 4(a)),
for example, by assigning it a “depth” defined by the
maximum number of discrete steps required to reach the
stability boundary and ultimately leave it (state colors) and
representing the resistance [17]. The state space gathers as
much information on transitions as on states, as it is possible
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FIGURE 3: From the merged state space (a), it is possible to draw a tentative potential-like surface (b). In the merged version (a) of the full
termite state space (Figure 2), each SCC and basin has been reduced to a single node and redundant paths have been removed. Nodes
representing SCCs or basins (i.e., aggregate states) are noted (s) (circles) and labeled with the components present in all their states. From
this reduction of the state space, specific paths leading to the main ecosystem collapses (squares), and highlighting the sharp transitions
between them, can be more easily identified. For the potential surface (b), each structural stability (SCC, e.g., B and B') has been represented
as a well with a width corresponding to its number of states and a depth corresponding to the maximum number of steps for escaping it. The
deadlocks (e.g., D and D’) are bottomless wells and are connected to other topological features with a continuous surface and sometimes
through tipping points (C) (red arrow). We explain in the main text why such a representation is fallacious, though.
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F1GuRre 4: Illustration of the hysteresis found in the termite ecosystem state space (a), highlighting two specific trajectories (b). The structural
stability displayed is B’ (Figures 2 and 3), composed of 20 states (a) labeled with a pair n/s where 7 is an identifying number and s is the
number of discrete steps needed to exit the B’ stability (from 0 for states defining the boundary to 3 for the maximum number of steps to
reach the boundary). The edges are directed and labeled with the number of the rule that was applied to perform the transition (Table 2). One
specific cycling trajectory has been chosen in the B’ stability (a) (blue and green arrows), and this hysteresis is highlighted in the plane
(number of present components versus discrete steps, b left). A second trajectory is displayed in the same plane (b right) to highlight the fact

that many trajectories in the state space may exhibit hysteresis.

to analyze which process (interaction) is responsible for
which transition between states or sets of states. For ex-
ample, the ecosystem shifts drastically from stability B’
toward deadlock D’ through a TP (Figure 3(a)-C, red arrow).
It is possible to compute a similarity index between all pairs
of states or topological features to estimate the TP magni-
tude. For example, a Jaccard index based on the present and

absent components would quantify the similarity between
successive states. As an illustration, we computed this
similarity index in a more complex wetland socioecosystem
modeled in the same way (Figure 5(a)) [38] and automat-
ically identified TPs such as the transitions entering dead-
locks n/s 0 and 3 that were highly different from those seen
previously (Figure 5(b), the two first columns of the matrix).
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FiGure 5: Example of a more realistic socioecosystem analyzed using a discrete qualitative model, viewed by its merged state space (a) and its
tipping points (b). The state space of this wetland socioecosystem (a), a temporary marsh with pastoralism [38], should be read downward,
from the initial state (pink hexagonal node on top) to the terminal structural stability (red bottom node). Different stabilities (colors and
identifiers) are connected through processes (i.e., edges as directional arrows) mimicking qualitative transitions between distinct states of the
socioecosystem being modeled. The similarity between these successive states (in terms of present components) may be quantified using a
Jaccard index (b) (hot colors) and plotted in a connectivity matrix grouping together all the structural stabilities reached by the ecosystem.
Transitions exhibiting the lowest Jaccard index values between highly different states clearly identify the ecosystem’s tipping points (b) (left

column).

3. Comparison of the State Space with the
Potential Surface

A process-based model such as the present model of a termite
ecosystem may provide some insights in ecology. In recent years,
a growing body of studies in ecology has promoted the con-
ceptual view of (socio)ecosystem functioning that we refer to
here as the potential surface (Figure 4(a)). Although it has
sometimes been called by other names, the principle remains the
same: this metaphor suggests considering any ecosystem as a ball
rolling down onto a hypothetical landscape made up of a surface
in a higher dimension space [15, 17]. This (hyper)surface
concept is borrowed from physics, where many systems have
been shown to change according to a potential parameterized by
intrinsic (e.g., state variables) and extrinsic variables (e.g., en-
vironmental conditions) [24, 25]. There is no doubt that this
concept is a convenient one for use in ecology too [44, 46]. This
conceptual model is phenomenological, in that it potentially
describes patterns in observation and is not based on knowledge
of the underlying mechanisms. Metaphors are often slippery and
it remains to be demonstrated that the potential as a concept is
appropriate to ecosystem dynamics and to environmental
processes (e.g., climatology [21, 22, 47]) in general. This section
lists five possible criticisms of the potential metaphor.

3.1. Vertical Force. One critical assumption of the potential
analogy concerns the gravitational force that constrains
movements on the surface. For the system to be located

above a certain elevation assumes the energy is higher than
below that elevation due to the scalar field in which the
system is immersed. Does such a force exist in ecosystems?
And if yes, what is the nature of this force? Indeed, if the
potential surface is such an easy-to-handle metaphor, it is
undoubtedly due to the restoring torque that drives the ball
along to the potential surface [15]. In physical systems, any
potential is the origination of a force and is directly linked to
energy [11, 48]. This force is often gravity but may also be
associated with electrical or chemical potentials. In eco-
logical systems, to our knowledge, no force or energy has
been identified or analyzed, even when living systems tend to
maintain their activity, for example, by homeostasis [49]. It
is even harder to imagine what the nature of this force or
these processes might be, considering that ecosystems are
simultaneously physical and biological (and anthropogenic)
objects.

A simple thought experiment might help in under-
standing what is at play in this force, if anything. Take a
simplified ecosystem such as vegetation in arid areas. In the
absence of rainfall (the environmental conditions, say
rainfall R), there is no vegetation (the state variable, biomass
B) present, even on fertile soil. The absence of such variables
(B, R) = (0, 0) may be, and usually is, considered a stable state
[28], even with a system showing stochastic noise. In other
words, the potential surface concept would plot the eco-
system as a ball that has “fallen deep into” a well [44]. Now,
let us push the system toward slightly wetter conditions and
the emergence of vegetation. How would ecologists think the



ecosystem would behave? Would the system stay in this
(putative stable) state with very little vegetation and rainfall?
Will it gradually increase the biomass, form vegetation
patterns, and start storing as much water as possible? Or will
it simply revert to the previous state, with no vegetation and
no more water?

The potential surface provides one (the?) answer. Due to
the metaphoric gravitational force in the landscape, it is
assumed that the ball representing the ecosystem will in-
evitably fall down to the stable state (B, R)=(0, 0). This
assumption that the vertical dimension plays a critical role
(and that such a force does exist) remains to be demon-
strated in ecology. This is a necessity, even if most ecologists
today feel that this is the behavior at play. Some studies have
already examined ecosystems in semiarid conditions or in
controlled, poor environments [50]. So far, though, to our
knowledge, there has been no definitive demonstration of
attracting or repulsing behavior in the vicinity of stable
states. The truth is that probably no ecologist knows the
answer. The state space, as illustrated in the termite eco-
system (Figures 1 and 2), indicates whether the system can
shift from one state to another, according to the set of
processes driving the system. In our opinion, there is no
driving force for the ecosystem other than these identified
processes.

3.2. Reversible Isotropic Surface. Similarly, we may wonder
about the inner nature of the other (horizontal) dimensions
of the potential. In particular, are the ecosystem variables or
the environmental conditions isotropic? Focusing on the
state variable (often plotted along the x-axis), is it as easy to
leave a stable state (i.e., a well, with central symmetry)
leftward as it is to leave it rightward? This question is linked
to the previous limitation and challenges and the possible
attraction and repulsion of distinct potential zones, an area
of critical study in physical systems (e.g., climatology
[21, 47]). For example, let us assume that desert, savanna,
and forest are alternative stable states (still a matter of
debate); when leaving the savanna states, likely located
between the other two, will it be “easier” for the system to
reach the desert states than the forest states? Theoretically,
the potential assumes perfect symmetry between both di-
rections [17, 44], which our process-based model does not
[30].

In other words, the potential surface assumes there are
isotropic directions and reversible movements on it. More
generally, the reversibility of each trajectory of the ecosystem
can be questioned. This observation remains valid whatever
the shape of the potential, possibly allowing for the hysteresis
already observed in ecology [16, 32]. More radically, we may
wonder whether movement on the potential surface is
possible everywhere. In the case of simplified ecosystems
with only one state variable, it may be assumed that the
system can gain or lose biomass equally as easily. In the case
of more realistic ecosystems, though, precisely those we are
endeavoring to understand, it may be that regaining biomass
is no longer possible, whatever the predator- or climate-
related causes. In brief, the reversibility of the potential
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surface needs to be demonstrated too. Here again, the state
space of the termite ecosystem, the assumed model defini-
tion, demonstrates whether the system may reach a deadlock
or exhibit irreversible dynamics (e.g., between B and B/,
Figure 2).

3.3. Surface Stability over Time. It is worthy of note that
biologists in the past used the concept of potential surface
too. The best known example is probably the epigenetic (or
fitness) landscape proposed by Waddington (Figure 6(b))
[51]. This landscape suggests that the phenotypic traits of an
organism are the result of a combination of genes. The
metaphor was powerful and has been widely used up until
now. Yet, a growing body of biologists today believes there is
a major flaw with this potential surface: it is changing (i.e.,
not frozen). Even when genes are responsible for the traits
examined, it has been observed that this landscape is highly
variable, changing over time in successive experiments
[52-54]. In brief, the potential surface cannot be plotted
once and for all.

We recall a critical assumption behind the potential
concept used in physics: a physical system modeled as a
dynamic system should be (is) ergodic. The ergodicity of a
system states that it exhibits the same statistical behavior
when averaged over time, in space or in any other system
dimensions (i.e., in its phase space, e.g., [55]). In other
words, a system that evolves over a long period tends to
“forget” its initial state, statistically speaking. Some ecolo-
gists have serious doubts that ecosystems are ergodic
[10, 56, 57]. Conversely, most ecologists think that eco-
systems have history that strongly constrains their fate
[18, 58-61]. Here again, the ecosystems we talk about are not
simplified as prey-predator systems as they are sometimes
discussed. Real ecosystems are thermodynamically open and
have many components that are subject to evolution. To our
knowledge, this ergodic property has never been demon-
strated in ecology. The state space approach presented here
does not assume ecosystem ergodicity in the dynamics
studied (Figure 2), but it is possible to adapt the model for
evolutionary and ever-changing dynamics, a perspective our
team is already exploring.

3.4. The Punctual Ball and the Thin Surface. As a fruitful
metaphor, the potential surface and its related concepts
simplify reality so as to improve our understanding. It be-
comes embarrassing, however, when such simplifications
provide an incorrect idea of reality. Can an ecosystem really
be conceptualized as a punctual ball? An ecosystem is such a
complex object comprising a large number of components
and processes that it is easy to imagine that some parts of it
would indeed follow a potential—its physical part, say—
while another part would not [11, 57]. The reason that the
whole system should exhibit a punctual location in the state
space has to be explored; and why not several locations
simultaneously? In addition, the system would likely exhibit
stochastic behavior, rather than showing the system as a ball
moving into a cloud of uncertain locations in this space
(Figure 6(c)).
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Ecosystem state

(@) ()

Vegetation biomass (range)

(c)

FiGUure 6: Examples of various synthetic representations of system dynamics, including a potential-like surface (a) [16], the epigenetic
surface (b) [51], and the drape concept (c) inspired from [32]. Although these representations of dynamic systems appear comparable, they
differ substantially in respect of their assumptions and conception of the (eco)system under investigation.

Additionally, this observation questions whether or not  ecology, we may reasonably question whether processes
the (hyper)surface of the potential should have a thickness (a ~ follow mean field behavior, and this is often justified by the
hypervolume) (Figure 6(c)). In physics, the system must  huge number of components involved in the system. As in
exactly follow the potential in a mean-field approximation,  biology (Figure 6(b)), ecological processes exhibit a high
even if noise often blurs the measures and the plot [48]. In  variance which makes systems more unpredictable and may
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mean they show no average behavior (or that they explore
rare trajectories too). The state space proposes that the
ecosystem indeed follows some trajectories, but the ever-
changing state compositions in this space deny the uniform
and constant image of the ball (Figures 6(a) and 6(b)). The
system inevitably follows the state space, however, as it
contains all possible states and, according to the processes
involved, it should not leave this computed shape
(Figure 6(c)).

3.5. Surface Definition and Disturbances. The definition of the
potential surface itself challenges ecologists. How should it be
built? Which variables should be used? Ecosystem complexity
suggests that many state variables should be used, whereas most
ecological surfaces built so far use a single (one-dimensional)
variable (e.g., [29, 44]). Yet, deserts, savannas, and forests are
often assumed to belong to the same potential surface. This
simplification is questionable, considering that even savannas
and forests have radically different species compositions and
climatic and soil conditions (e.g., [11, 12, 62]). To what extent
should we merge different biomes (broad types of ecosystems)
into the same potential? It is predictable that boreal forests
would not belong to “the same” potential surface as tropical
forests, as they are controlled by radically different conditions,
essentially by temperatures and rainfall, respectively [63, 64].
There is a clear need to define potential functions with more
(state) variables.

One example may illustrate this fallacy. Empirical studies
of the potential surface assume that the system spends more
time in stable states, and less time in unstable ones. For
example, some ecologists estimate the potential surface
based on this central assumption to identify the multimodal
stabilities of vegetation [20, 44]. There are many examples of
systems in which this assumption is revealed to be wrong.
One such example is the simplistic pendulum system. In a
pendulum oscillation, the stable state is at the bottom (the
lowest elevation), while this is also the location at which the
system has the greatest speed and, thus, at which it spends
the shortest resident time. In brief, it is in no way recom-
mended that the stable and unstable states of any system be
identified on the basis of the time it spends in various states.

Furthermore, environmental conditions supposedly
controlling some dimensions of the potential are not sys-
tematically external to the ecosystem. This issue has long
been debated in ecology and is basically linked to the or-
ganismic conception of ecosystems [36, 65]. Tansley initially
proposed the word “ecosystem” to replace the word
“community,” and the debate lasted long about the inner
coherency of this object. When a ball falls from the tower of
Pisa, gravity is considered external to the ball being studied.
In the case of many ecosystems, what does excluding dis-
turbance from the system allow? With climate forcing, the
disturbance appears to be quite obviously external, spatially
and temporally, but in the case of a forest fire, an invasive
species, or an intrinsic human pressure, this assumption is
much less obvious [21, 32]. Can we be sure no feedback can
settle between disturbances and the ecosystems studied, as is
usually assumed [14, 16]? The resulting surface would likely
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differ strongly depending on the status of the disturbance.
Construction of the discrete, qualitative ecosystem model
presented here suggests including all the processes at play in
the ecosystem (Tables 1 and 2, Figure 1), be they internal or
external, and computing the resulting dynamics. Hence,
there is no need to confer a specific status on external
disturbances.

4. Discussion and Recommendations

We can now compare the traditional potential from physics
commonly and empirically used in ecology (Figure 6(a))
with this potential surface computed on the basis of the state
space of a process-based model of a complex ecosystem
(Figure 3(b)). Keeping in mind the limitations listed pre-
viously, the comparison reveals some striking observations:

(a) On our computed potential surface, there is no
gravitational force pushing the system downward.
Only the (modeled) processes at play are capable of
moving the system from one state to the next, in the
state space. In particular, climbing up the surface
appears as easy as falling down (Figure 3(b)). This
metaphoric  vertical  force now  appears
inappropriate.

(b) The potential surface is not isotropic and shows
strongly irreversible paths as interpreted from the
merged state space. When the system shifts from one
structural stability, that is, from one stable area (e.g.,
well B, Figure 3(a)) to the neighboring stability (well
B’), any return is forbidden. It is even possible to plot
trajectories and hysteresis within each structural
stability (Figure 4).

(c) The computed potential surface has no reason to be
stable over time. Indeed, the state space is provided
here for a specific ecosystem (termite colony)
composition (Figure 1(b)), but any new arrival in or
departure from the system components, and its
associated processes, would strongly modify the
resulting state space (Figure 2).

(d) The potential surface has been computed here on the
basis of discrete events, then transformed with an
assumption of continuity between states, and dis-
played in an arbitrary space (Figure 2). Many other
representations and coordinates for each state could
have been used, however, and consequently would
have strongly modified the potential surface repre-
sentation (Figure 3(b)). In particular, consideration
of the thick surface would have disqualified this
potential surface [32], instead of the discrete qual-
itative state space (Figure 3(a)).

(e) A large number of variables of various natures have
been used to constrain this state space and its as-
sociated potential surface (Figure 1(b)). In addition,
perturbations and even disturbances are internal to
the system and contribute strongly to the surface
definition. This is not the case for traditional po-
tentials [17, 44].



Complexity

11

TaBLE 1: Node categories, names, abbreviations, and descriptions of the termite colony ecosystem modeled using the discrete qualitative

model (see Figure 1, adapted from [30]).

Name Initially Family Description Comment
Rp Present Inhabitants Reproductives The queen, the king, the eggs, and the nymphs
Wk Absent Inhabitants Workers All termites able to work: the larvae, workers, and pseudo-workers
Sd Absent Inhabitants Soldiers The termite soldiers
Te Absent Inhabitants Termitomyces The fungus cultivated by the termites
Ec Absent Structures Egg chambers All egg chambers plus the royal chamber
Fg Absent Structures Fungal gardens All the gardens in which the fungus is grown
Md Absent Structures Mound The upper structure of the colony
wd Absent Resources Wood The wood stored inside the colony
Ai Absent Resources Air of the nest The air inside the colony
S Present Environment Soil The soil around the termite nest
At Present Environment Atmosphere The air around the termite nest
Ac Present Competitors Ant competitors All the ant species in competition with the termites
TaBLE 2: List of the rules for modeling termite ecosystem functioning and development.
Rule Comment
1) Wk*, Tet — Wd, ai” The workers and the fungi are consuming wood and air
(2) Fg — Te™ The fungi need the fungal gardens in order to survive
(3) WK, SI'—Wd", Te*, Fg",  The workers are foraging in the soil for wood and fungus; from the soil, the workers are building the
Ec*, Md* fungal gardens, the egg chambers, and the mount

(4) Wd™— Wk, Te~

(5) Rp™, SI" — Ec*

(6) Rp", Ec" — Wk*

(7) WK*, Wd* — Sd*, Rp*

(8) Md*, At" — Ai*

(9) Wk —> Fg, Sd~

(10) Wk, Rp” — Ec”
(11) Sd* — Ac”

(12) Ac™, Sd™— Wk, Rp~
(13) Ai” — Rp™, Wk, Te~

The workers and the fungus need to eat wood to survive
For the soil, the queen and the king can also build egg rooms
In the egg chambers, the queen and the king are producing eggs that are becoming workers
Eating wood, the larvae are metamorphosing into soldiers and/or nymphaea
The air of the nest is being refreshed by passing through the mound and exchanging with the

atmosphere

The soldiers cannot survive without the workers to feed them, and the fungal gardens need

maintenance by the workers

The egg chambers need maintenance by the workers or the reproductives; otherwise they collapse
The soldiers are killing ant competitors intruding into the colony
Without the soldiers, the ant competitors are invading the colony and killing the workers and the

reproductives

The reproductives, the workers, and the fungus need to breathe the air of the nest to survive

The conditions of application, realizations, and detailed explanations are given for each rule. The rule arrows indicate the transformation (rewriting) of the
network at the next step [30]. Discrete systems are used to exhaustively characterize the dynamics of an integrated ecosystem (Methods in Ecology and

Evolution, 00: 1-13 [30]).

For all these reasons, we think that empirical potentials
appear to be inaccurate approximations of process-based
ecosystem state spaces. Conversely, the state space seems to
be a convenient substitute for the traditional potential
[18, 30]. It has still to be tested in contrasted case studies to
evaluate its interpreting power [37, 38]. The discrete event
model family used in computer science and in biology
[31, 41] appears to provide an interesting avenue for un-
derstanding ecosystem dynamics. These process-based
models were developed to understand systems made up of
discrete components in interaction. Some of them were
initially dedicated to resource allocation or signaling net-
works [35, 40] and others to linguistic or landscape modeling
[33, 66, 67] and plant growth [34, 68]. Such models may be
combined with networks representing the constitutive en-
tities (the nodes) and their processes (the edges), for ex-
ample, to model rural landscapes [67] or ecosystems [18].
Another central advantage they offer is that they allow for
rigorous formalization of the dynamics studied, as well as an
understanding of system behavior in all its dimensions. They

are also intuitive, highly adaptable (e.g., with quantitative
and multivalued versions), and easy to manipulate using
existing software [45]. In addition, such state spaces appear
conceptually similar to state-and-transition models devel-
oped to manage rangelands, well known for exhibiting
multiple states and successional dynamics [43]. Ultimately,
they provide interpretations of (socio)ecological entities
which, when rigorously formalized, are no longer meta-
phoric [37, 38, 56).

There can be no doubt that ecosystems are complex,
despite a few of them remaining simple. Ecosystem pro-
cesses are notoriously noisy and difficult to measure, while
the biological components of ecosystems often add a strong
variance to the overall behavior. Despite this challenge,
ecologists need to continue collecting data on ecosystems to
improve the understanding of such systems and, ultimately,
their management. But where does ecological complexity
reside? Is it in the ecosystem state or in the ecosystem
dynamics? Ecologists are commonly inclined to scrutinize a
snapshot of the ecosystem (the pattern) instead of its long-
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term (process) dynamics. For example, it is inappropriate to
study traditional ecosystem potential on the basis of isolated
states (Figure 6) rather than the trajectories connecting them
(Figure 4). Ecosystems are historical objects experiencing
abrupt changes with probable nonergodic behaviors
[18, 55, 56]. Most ecosystem studies have been performed
over relatively short timescales, typically over one or two
human generations. We still know very little about the long-
term behavior of ecosystems, i.e., over several generations of
the slowest component, despite increasing efforts in his-
torical ecology and paleoecology (e.g., [69, 70]). The usual
variables under long-term study often concern vegetation
and climate, but rarely fauna, soils, and/or human com-
ponents. An understanding of long-term ecosystem be-
haviors is now becoming an imperative, with realistic
modeling as a corollary.

At this stage, a decisive recommendation is not to
neglect the process of fitting the model to observations. To
date, it has been rare for traditional potentials to fit ob-
served ecosystems [27, 44] and has mainly involved pattern
and fragmented datasets. To our knowledge, it has not once
been the case with process and ecosystem dynamics [32].
Most of the time, the model is displayed to interpret a
posteriori observations, and not strictly fitted to them. This
critical preliminary step should be performed with more
variables, on longer trends and with finer models, a
comment which is true for discrete event models too. Data
collection in ecology is particularly challenging, consid-
ering the cost of surveying a complete ecosystem (i.e., most
components) and considering the number of components,
but substitutes can be found to start this program of work.
Some chemostat and controlled experiments may allow for
high resolution and long-term measurements [71], while
some large scale ecosystems have begun to have rich da-
tabases too [27]. There appears to us to be an urgent need to
start calibrating potential-like and discrete-event models
on such complex data and to test their related hypotheses.
To generalize the potential concept to various contrasting
ecosystems, it will be necessary to confirm its power and
usefulness.

These recommendations may all be summarized as a
triangle of improvements that feed into the three main
components of any research theme of complexity, namely,
data, model, and concept research. In between, there are fits,
ideas, and tools that enable continuous testing of emerging
concepts such as state spaces and potential surfaces. At
present, some sides of this triangle appear to be missing, with
further studies being required to produce a satisfying theory
of ecosystem. As shown above, potential-like surfaces may
not be the most appropriate concepts for describing and
understanding complex ecosystem behaviors and dynamics.
Even in cases where the potential concept proved appro-
priate, it would be fruitful and heuristic to search for some
additional views [32]. For example, we recently proposed
also looking for linguistic principles in living systems and
ecosystems [72].

Simultaneously seeking new mathematical tools is also
an imperative; such models include these underused qual-
itative discrete event models [30]. Other tools have been
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proposed in the past, and it would be a shame to ignore them
or fail to fully acknowledge them. For example, Thom’s work
shows rich but unwieldy algebra specifically for potentials in
any field [25]. Economic and ethological studies have already
tried, unsuccessfully, to use these tools. In addition, we
believe it is crucial to develop possibilistic models for ex-
haustive characterization of ecosystem trajectories, instead
of probabilistic models focusing on a few dominant tra-
jectories only.

In conclusion, we would like to warn the ecologist
community of the hazards of drawing an analogy between
physical and ecological systems. The history of ecology has
already shown how this analogy once sent the community
down potentially erroneous and/or useless pathways [11]. It
is often fruitful to borrow concepts from other scientific
fields, but they need to be tailored to the questions under
examination at best and, at worst, they could send us off
down a slippery, dangerous slope.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. A. Hatton, K. S. McCann, J. M. Fryxell et al., “The predator-
prey power law: biomass scaling across terrestrial and aquatic
biomes,” Science, vol. 349, no. 6252, 2015.

[2] S. Kéfi, V. Miele, E. Wieters, S. Navarrete, and E. Berlow,
“How structured is the entangled bank? The surprisingly
simple organization of multiplex ecological networks leads to
increased persistence and resilience,” PLoS Biology, vol. 14,
no. 8, Article ID 1002527, 2016.

[3] R. M. May, Stability and Complexity of Model Ecosystems,
Princeton University Press, Princeton, NY, USA, 1974.

[4] E. Thébault and C. Fontaine, “Stability of ecological
communities and the architecture of mutualistic and
trophic networks,” Science, vol. 329, no. 5993,
pp. 853-856, 2010.

[5] R. C. Dewar, C. H. Lineweaver, R. K. Niven, and
K. Regenauer-Lieb, “Beyond the second law,” Entropy Pro-
duction and Non-Equilibrium Systems, Springer, Berlin,
Germany, 2011.

[6] B. C. Patten, “Network integration of ecological extremal
principles: exergy, emergy, power, ascendency, and indirect
effects,” Ecological Modelling, vol. 79, no. 1-3, pp. 75-84, 1995.

[7] E. Ostrom, “A general framework for analyzing sustainability
of social-ecological systems,” Science, vol. 325, no. 5939,
pp. 419-422, 2009.

[8] I. Steffan-Dewenter, M. Kessler, J. Barkmann et al., “TradeofTs

between income, biodiversity, and ecosystem functioning

during tropical rainforest conversion and agroforestry in-
tensification,” Proceedings of the National Academy of Sci-

ences, vol. 104, no. 12, pp. 4973-4978, 2007.

C. Gaucherel, “Ecosystem complexity through the lens of

logical depth: capturing ecosystem individuality,” Biological

Theory, vol. 9, no. 4, pp. 440-451, 2014.

[9



Complexity

[10] S. P.-V. Frontier, D. A. Lepétre, D. Davoult, and C. Luczak,
Ecosystémes. Structure, Fonctionnement, Evolution, Dunod,
Paris, France, 4th edition, 2008.

[11] C. Gaucherel, “Physical concepts and ecosystem ecology: a
revival?” Journal of Ecosystem and Ecography, vol. 8, 2018.

[12] R. E. Ricklefs and G. L. Miller, Ecology, Freeman, New York,
NY, USA, 4th edition, 2000.

[13] R. H. Mac Arthur and E. O. Wilson, The Theory of Insular
Zoogeography, Princeton Univesity Press, Princeton, NY,
USA, 1963.

[14] C.S. Holling, “Resilience and stability of ecological systems,”
Annual Review of Ecology and Systematics, vol. 4, no. 1,
pp. 1-23, 1973.

[15] M. Scheffer, Critical Transitions in Nature and Society,
Princeton University Press, Princeton, NJ, USA, 2009.

[16] M. Schefter, S. Carpenter, J. A. Foley, C. Folke, and B. Walker,
“Catastrophic shifts in ecosystems,” Nature, vol. 413, no. 6856,
pp. 591-596, 2001.

[17] B. Walker, C. S. Holling, S. R. Carpenter, and A. Kinzig,
“Resilience, adaptability and transformability in social-eco-
logical systems,” Ecology and Society, vol. 9, no. 2, 2004.

[18] C. Gaucherel, H. Théro, A. Puiseux, and V. Bonhomme,
“Understand ecosystem regime shifts by modelling ecosystem
development using boolean networks,” Ecological Complexity,
vol. 31, pp. 104-114, 2017.

[19] R. V. Solé and J. Bascompte, Self-Organization in Complex
Ecosystems, Princeton University Press, Princeton, NJ, USA,
2006.

[20] M. Hirota, M. Holmgren, E. H. Van Nes, and M. Scheffer,
“Global resilience of tropical forest and savanna to critical
transitions,” Science, vol. 334, no. 6053, pp. 232-235, 2011.

[21] B. W. Brook, E. C. Ellis, M. P. Perring, A. W. Mackay, and
L. Blomgqvist, “Does the terrestrial biosphere have planetary
tipping points?” Trends in Ecology & Evolution, vol. 28, no. 7,
pp. 396-401, 2013.

[22] C. Gaucherel and V. Moron, “Potential stabilizing points to
mitigate tipping point interactions in earth’s climate,” In-
ternational Journal of Climatology, vol. 37, no. 1, pp. 399-408,
2016.

[23] E. H. van Nes, M. Hirota, M. Holmgren, and M. Scheffer,
“Tipping points in tropical tree cover: linking theory to data,”
Global Change Biology, vol. 20, no. 3, pp. 1016-1021, 2014.

[24] R.Badiiand A. Politi, Complexity, Hierarchical Structures and
Scaling in Physics, Cambridge University Press, Cambridge,
UK, 1997.

[25] R. Thom, Structural Stability and Morphogenesis, Benjamin,
Reading, MA, USA, 1975.

[26] F. Accatino, C. De Michele, R. Vezzoli, D. Donzelli, and
R.J. Scholes, “Tree-grass co-existence in savanna: interactions
of rain and fire,” Journal of Theoretical Biology, vol. 267, no. 2,
pp. 235-242, 2010.

[27] M. Scheffer, S. H. Hosper, M.-L. Meijer, B. Moss, and
E. Jeppesen, “Alternative equilibria in shallow lakes,” Trends
in Ecology & Evolution, vol. 8, no. 8, pp. 275-279, 1993.

[28] A. C. Staver, S. Archibald, and S. Levin, “Tree cover in sub-
Saharan Africa: rainfall and fire constrain forest and savanna
as alternative stable states,” Ecology, vol. 92, no. 5,
pp. 1063-1072, 2011.

[29] E. H. Van Nes and M. Scheffer, “Slow recovery from per-
turbations as a generic indicator of a nearby catastrophic
shift,” The American Naturalist, vol. 169, no. 6, pp. 738-747,
2007.

[30] C. Gaucherel and F. Pommereau, “Using discrete systems to
exhaustively characterize the dynamics of an integrated

13

ecosystem,” Methods in Ecology and Evolution, vol. 10, no. 9,
pp. 1-13, 2019.

[31] F. Pommereau, Algebras of Coloured Petri Nets, Lambert
Academic Publishing (LAP), Riga, Latvia, 2010.

[32] C. Hély, H. H. Shuggart, B. Swap, and C. Gaucherel, “The
drape concept to understand ecosystem dynamics and its
tipping points,” 2020.

[33] H. Ehrig, M. Pfender, and H. J. Schneider, “Graph-grammars:
an algebraic approach,” in Proceedings of the 14th Annual
Symposium on Switching and Automata Theory (Swat 1973),
pp- 167-180, IEEE Transactions on Cybernetics, Iowa City, IA,
USA, October 1973.

[34] J.-L. Giavitto and O. Michel, “Modeling the topological or-
ganization of cellular processes,” Biosystems, vol. 70, no. 2,
pp. 149-163, 2003.

[35] W. Reisig, Understanding Petri Nets, Springer Berlin Hei-
delberg, Berlin, Germany, 2013.

[36] J. S. Turner, The Extended Organism: The Physiology of Ani-
mal-Built Structures, Harvard University Press, Cambridge,
MA, USA, 2009.

[37] M. Cosme, C. Hély, F. Pommereau et al., “East-African
rangeland dynamics: from a knowledge-based model to the
possible futures of an integrated social-ecological system. In
review,” 2020.

[38] C.Gaucherel, C. Carpentier, I. R. Geijzendorfter, C. Nots, and
P. F, “Long term development of a realistic and integrated
ecosystem,” 2020.

[39] H. G. Fowler, V. Pereira da-Silva, L. C. Forti, and N. B. Saes,
“Population dynamics of leaf cutting ants: a brief review,” Fire
Ants and Leaf-Cutting Ants, pp. 123-145, Westview Press,
Boulder, CO, USA, 1986.

[40] M. A. Blitke, M. Heiner, and W. Marwan, “Tutorial,” in Petri
Nets in Systems Biology, Otto-von-Guericke University
Magdeburg, Magdeburg, Germany, 2011.

[41] J.-L. Giavitto, H. Klaudel, and F. Pommereau, “Integrated
regulatory networks (IRNs): spatially organized biochemical
modules,” Theoretical Computer Science, vol. 431, pp. 219-
234, 2012.

[42] J. M. Dambacher, H. K. Luh, H. W. Li, and P. A. Rossignol,
“Qualitative stability and ambiguity in model ecosystems,”
The American Naturalist, vol. 161, no. 6, pp. 876-888, 2003.

[43] B. T. Bestelmeyer, A. Ash, J. R. Brown et al, “State and
transition models: theory, applications, and challenges,”
Rangeland Systems, pp. 303-345, Springer, Berlin, Germany,
2017.

[44] M. Scheffer, S. R. Carpenter, V. Dakos, and E. H. van Nes,
“Generic indicators of ecological resilience: inferring the
chance of a critical transition,” Annual Review of Ecology,
Evolution, and Systematics, vol. 46, no. 1, pp. 145-167, 2015.

[45] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool
TINA—construction of abstract state spaces for petri nets and
time petri nets,” International Journal of Production Research,
vol. 42, 2004.

[46] V. N. Livina, F. Kwasniok, and T. M. Lenton, “Potential
analysis reveals changing number of climate states during the
last 60 kyr,” Climate of the Past, vol. 6, no. 1, pp. 77-82, 2010.

[47] T. M. Lenton, V. N. Livina, V. Dakos, and M. Scheffer,
“Climate bifurcation during the last deglaciation?” Climate of
the Past, vol. 8, no. 4, pp. 1127-1139, 2012.

[48] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Appli-
cations to Physics, Biology and Chemistry, Perseus Publishing,
New York, NY, USA, 2001.

[49] TJ. Lovelock, The Ages of Gaia: A Biography of Our Living Earth,
Oxford University Press, Oxford, UK, 2000.



14

[50] O. Lejeune, M. Tlidi, and P. Couteron, “Localized vegetation
patches: a self-organized response to resource scarcity,” Physical
Review E, vol. 66, no. 1, 2002.

[51] C. H. Waddington, “The epigenotype,” Endeavour, vol. 1,
pp. 18-20, 1942.

[52] S. Gavrilets, “Highimensional fitness landscapes and speciation,”
in Evolution-The Extended Synthesis, M. Pigliucci and G. B.
Miiller, Eds., pp. 45-79, MIT Press Scholarship Online, Cam-
bridge, MA, USA, 2010.

[53] H. Ledford, “Language: disputed definitions,” Nature, vol. 455,
no. 7216, pp. 1023-1028, 2008.

[54] V. V. Ogryzko, “Erwin schroedinger, francis crick and epigenetic
stability,” Biology Direct, vol. 3, no. 1, p. 15, 2008.

[55] J. Vollmer, “Chaos, spatial extension, transport, and non-equi-
librium thermodynamics,” Physics Reports, vol. 372, no. 2,
pp. 131-267, 2002.

[56] C. Gaucherel, P. H. Gouyon, and J. L. Dessalles, Information, the
Hidden Side of Life, ISTE, Wiley, London, UK, 2019.

[57] E. P. Odum, “Energy flow in ecosystems: a historical review,”
American Zoologist, vol. 8, no. 1, pp. 11-18, 1968.

[58] F. Bouchard, “How ecosystem evolution strengthens the case
for functional pluralism,” Functions: Selection and
Mechanisms, pp. 83-95, Springer Netherlands, Dordrecht,
Netherlands, 2013.

[59] S.]J. Gould, Wonderful Life: The Burgess Shale and the Nature of
History, W. W. Norton & Company, New York, NY, USA, 1989.

[60] C. Hély, P. Braconnot, J. Watrin, and W. Zheng, “Climate and
vegetation: simulating the African humid period,” Comptes
Rendus Geoscience, vol. 341, no. 8-9, pp. 671-688, 2009.

[61] K. Sterelny, “Contingency and history,” Philosophy of Science,

vol. 83, pp. 1-18, 2015.

J. Ratnam, W. J. Bond, R. J. Fensham et al., “When is a “forest” a

savanna, and why does it matter?” Global Ecology and Biogeog-

raphy, vol. 20, no. 5, pp. 653-660, 2011.

[63] Y. Bergeron and A. Leduc, “Relationships between change in fire

frequency and mortality due to spruce budworm outbreak in the

southeastern Canadian boreal forest,” Journal of Vegetation Sci-

ence, vol. 9, pp. 493-500, 1998.

B. J. Stocks, M. A. Fosberg, T. J. Lynham et al,, “Climate change

and forest fire potential in Russian and Canadian boreal forests,”

Climatic Change, vol. 38, no. 1, pp. 1-13, 1998.

[65] A. G. Tansley, “The use and abuse of vegetational concepts and
terms,” Ecology, vol. 16, no. 3, pp. 284-307, 1935.

[66] N. Chomsky, Studies on Semantics in Generative Grammar,
Mouton & Co., NV Publishers, La Haye, Netherlands, 1972.

[67] C. Gaucherel, F. Boudon, T. Houet, M. Castets, and C. Godin,

“Understanding patchy landscape dynamics: towards a

landscape language,” PLoS One, vol. 7, no. 9, Article ID

€46064, 2012.

C. Godin, “Representing and encoding plant architecture: a re-

view,” Annals of Forest Science, vol. 57, no. 5, pp. 413-438, 2000.

C. L. Crumley, “Historical ecology: a multidimensionalecological

orientation,” in Historical Ecology: Cultural Knowledge and

Changing Landscapes, C. L. Crumley, Ed.,pp. 1-16, School of

American Research Press, Santa Fe, NM,USA, 1994.

C. Hély, L. Bremond, S. Alleaume, B. Smith, M. T. Sykes, and

J. Guiot, “Sensitivity of African biomes to changes in the pre-

cipitation regime,” Global Ecology and Biogeography, vol. 15, no. 3,

pp. 258-270, 2006.

[71] M. ]J. Wade, J. Harmand, B. Benyahia et al, “Perspectives in
mathematical modelling for microbial ecology,” Ecological
Modelling, vol. 321, pp. 64-74, 2016.

[72] C. Gaucherel, The Languages of Nature. When Nature Writes
to Itself, Lulu editions, Paris, France, 2019.

[62

[64

(68

(69

[70

Complexity



