Evaluating modular equations for abelian surfaces
Résumé
We design algorithms to efficiently evaluate modular equations of Siegel and Hilbert type for abelian surfaces over number fields using complex approximations. Their output can be made provably correct if an explicit description of the associated graded ring of modular forms over Z is known; this includes the Siegel case, and the Hilbert case for the quadratic fields of discriminant 5 and 8. Our algorithms also apply to finite fields via lifting.
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|