Evaluating modular equations for abelian surfaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Evaluating modular equations for abelian surfaces

Résumé

We design algorithms to efficiently evaluate modular equations of Siegel and Hilbert type for abelian surfaces over number fields using complex approximations. Their output can be made provably correct if an explicit description of the associated graded ring of modular forms over Z is known; this includes the Siegel case, and the Hilbert case for the quadratic fields of discriminant 5 and 8. Our algorithms also apply to finite fields via lifting.
Fichier principal
Vignette du fichier
evaluation.pdf (410.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02971326 , version 1 (19-10-2020)
hal-02971326 , version 2 (03-03-2022)

Identifiants

Citer

Jean Kieffer. Evaluating modular equations for abelian surfaces. 2020. ⟨hal-02971326v2⟩
182 Consultations
112 Téléchargements

Partager

More