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Jean Kieffer
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Abstract

We design algorithms to efficiently evaluate modular equations of
Siegel and Hilbert type for abelian surfaces over number fields using
complex approximations. Their output can be made provably correct
if an explicit description of the associated graded ring of modular forms
over Z is known; this includes the Siegel case, and the Hilbert case for
the quadratic fields of discriminant 5 and 8. Our algorithms also apply
to finite fields via lifting.

1 Introduction

Modular equations. Modular equations of Siegel and Hilbert type for
abelian surfaces [7, 40, 37, 41] are higher-dimensional analogues of the clas-
sical modular polynomials for elliptic curves [11, §11.C]. If ℓ is a prime, then
the Siegel modular equations of level ℓ consist of three rational fractions in
four variables

Ψℓ,1,Ψℓ,2,Ψℓ,3 ∈ Q(J1, J2, J3)[X ],

and encode the presence of ℓ-isogenies between principally polarized (p.p.)
abelian surfaces. More precisely, let A and A′ be two sufficiently generic
p.p. abelian surfaces over a field k whose characteristic is prime to ℓ, and
denote their Igusa invariants by (j1, j2, j3) and (j′1, j

′
2, j

′
3) respectively. Then

the equalities

Ψℓ,1(j1, j2, j3, j
′
1) = 0 and j′k =

Ψℓ,k(j1, j2, j3, j
′
1)

∂XΨℓ,1(j1, j2, j3, j′1)
(k = 2, 3)
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hold if and only if A and A′ are ℓ-isogenous (i.e. related by an isogeny of
degree ℓ2 with isotropic kernel in A[ℓ]) over an algebraic closure of k.

Similarly, Hilbert modular equations describe certain cyclic isogenies be-
tween Jacobians with real multiplication (RM) by a fixed real quadratic field.
Modular equations of both Siegel and Hilbert type are examples of the gen-
eral notion of modular equations on a PEL Shimura variety [29].

From a computational point of view, modular equations are useful to
detect isogenies without prior knowledge of their kernels, and also to compute
these isogenies explicitly: see [15, 6] in the case of elliptic curves, and [31]
in the case of p.p. abelian surfaces. In contrast, all other available methods
to compute isogenies, to the author’s knowledge, use a description of the
kernel as part of their input [56, 10, 36, 13]. This makes modular equations
an essential tool in the SEA algorithm for counting points on elliptic curves
over finite fields [49], which goes the other way around, using isogenies to
gain access to cyclic subgroups of the elliptic curve.

However, modular equations for abelian surfaces are very large objects.
One can show that the total size of Siegel modular equations of level ℓ
is O(ℓ15 log ℓ) [29], a prohibitive estimate that we expect to be accurate.
Already for ℓ = 3, their total size is approximately 410 MB [39].

Main results. In this paper, we argue that precomputing modular equa-
tions in full is not the correct strategy in higher dimensions. In most contexts,
we only need evaluations of modular equations, and possibly their derivatives,
at a given point (j1, j2, j3) ∈ L3, where L is a number field; finite fields re-
duce to this case via lifts. These univariate polynomials can be evaluated
directly using complex approximations, building on Dupont’s algorithm [14,
Chap. 10], [33] to compute genus 2 theta constants in quasi-linear time, now
proved to be correct [27]. The resulting algorithm has a much lower asymp-
totic complexity than precomputing and storing the modular equations in
full. For instance, in the case of Siegel modular equations over a prime finite
field Fp, we obtain the following result.

Theorem 1.1. There exists an algorithm which, given prime numbers p
and ℓ, and given (j1, j2, j3) ∈ F3

p where the denominator of the Siegel mod-

ular equations Ψℓ,k does not vanish, evaluates the polynomials Ψℓ,k(j1, j2, j3)

and ∂JiΨℓ,k(j1, j2, j3) for 1 ≤ i, k ≤ 3 as elements of Fp[X ] within Õ(ℓ6 log p)
binary operations.
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A similar results holds for Hilbert modular equations encoding cyclic iso-
genies of degree ℓ between p.p. abelian surfaces with RM.

Theorem 1.2. Let F be either Q(
√
5) or Q(

√
8); let ∆F be its discriminant

and ZF its ring of integers. There exists an algorithm which, given a totally

positive prime element β ∈ ZF of prime norm ℓ ∈ Z which is prime to ∆F ,

given a prime number p, and given (g1, g2) ∈ F2
p where the denominator of the

Hilbert modular equations of level β in Gundlach invariant does not vanish,

evaluates these modular equations and their derivatives at (g1, g2) as elements

of Fp[X ] within Õ(ℓ2 log p) binary operations.

In both cases, we save a factor of log p when the input values can be
written as quotients of small integers: see for instance Theorem 5.4.

The complexity estimate in Theorem 1.1 is small enough to make Elkies’s
method viable in the context of counting points on abelian surfaces over finite
fields [28]. An implementation of the algorithms described in this paper,
based on the C libraries Flint [19] and Arb [25], is publicly available [26].

Our algorithm is inspired from existing methods to evaluate elliptic mod-
ular polynomials via complex approximations [16]. Note that other methods
of based on isogeny graphs [8, 52] allow us to compute or evaluate Φℓ over
finite fields with better asymptotic complexities; however, they crucially rely
on writing the modular equation in full over small auxiliary finite fields, and
it is unclear whether this strategy can still be competitive when the number
of variables increases.

Overview of the algorithm. Fix Igusa invariants (j1, j2, j3) over a num-
ber field L. For every complex embedding µ of L, we compute a genus 2
hyperelliptic curve C over C with Igusa invariants

(
µ(j1), µ(j2), µ(j3)

)
. Then,

we compute a period matrix τ of C using AGM sequences [3, 4, 24]. Finally,
we compute approximations of µ

(
Ψℓ,k(j1, j2, j3)

)
∈ C[X ] for 1 ≤ k ≤ 3 us-

ing analytic formulas. This is done by enumerating carefully chosen period
matrices of abelian surfaces that are ℓ-isogenous to Jac(C), reducing them
to a neighborhood of the Siegel fundamental domain, and computing theta
constants at these period matrices using Dupont’s algorithm. In the case
of Hilbert modular equations, an additional step consists in computing an
approximate preimage of τ in Hilbert space.

By repeating this whole procedure at increasing precisions, we obtain
increasingly better complex approximations of the desired result, a set of
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three polynomials in L[X ]. We know that will eventually be able to cor-
rectly recognize its coefficients as algebraic numbers, and a possible strategy
is to stop when tentative algebraic reconstructions seem to stabilize. Height
bounds on the output [29, Thm. 1.1] suffice to bound the asymptotic com-
plexity of this algorithm. However, its output is difficult to certify when
these height bounds are either not explicit or too large for practical use: see
for instance [29, Thm. 5.19]. Still, the output is very likely to be correct, and
other methods might be available to certify it a posteriori, for instance by
certifying the existence of an isogeny between p.p. abelian surfaces [9].

In some cases, we are able to circumvent these problems by reconstructing
only algebraic integers in L: we separate the numerator and denominator of
modular equations using an explicit description of the corresponding graded
ring of modular forms with integral Fourier coefficients. As a corollary, we
obtain provably correct evaluation algorithms for modular equations of Siegel
type, and of Hilbert type for RM discriminants 5 and 8, as announced above.

Organization of the paper. In Section 2, we recall the definition of Siegel
and Hilbert modular equations and give explicit formulas for their denomina-
tors. In Section 3, we present our computational model and study precision
losses in certain polynomial operation appearing in the sequel. Section 4
focuses on computations in the analytic Siegel and Hilbert moduli spaces.
In Section 5, we conclude on the cost of the whole algorithm, focusing the
case of Hilbert modular equations for Q(

√
5).

Acknowledgement. This work reproduces part of the author’s PhD dis-
sertation at the University of Bordeaux, France. He warmly thanks Damien
Robert and Aurel Page for their suggestions, advice, and encouragement.

2 Modular equations for abelian surfaces

In this section, we recall the analytic formulas defining Siegel and Hilbert
modular equations for abelian surfaces. We also study their denominators
using the structures of the corresponding rings of modular forms over Z.

4



2.1 Modular equations of Siegel type

Invariants on the Siegel moduli space. Let H2 be the set of symmetric
2 × 2 complex matrices τ such that Im τ is positive definite. Our notation
for the action of the symplectic group GSp4(Q) on H2 is the following: for
every γ ∈ GSp4(Q) and τ ∈ H2, we write

γτ = (aτ + b)(cτ + d)−1 and γ∗τ = cτ + d,

where

γ =

(
a b
c d

)
in 2× 2 blocks.

We also write Sp4(Z) = Γ(1). Recall that the quotient Γ(1)\H2 is a coarse
moduli space for p.p. abelian surfaces over C [1, Thm. 8.2.6], and is the
set of complex points of an algebraic variety defined over Q, by the general
theory of Shimura varieties [42, §14]. For a subring R ⊂ C, we denote by
MF(Γ(1), R) the graded R-algebra of Siegel modular forms of even weight
defined over R, i.e. whose Fourier coefficients are elements of R [55, §4].

The C-algebra MF(Γ(1),C) is free over four generators h4, h6, h10, h12 [21],
where subscripts denote weights. These modular forms can be defined in
terms of genus 2 theta constants (of level (2, 2)), which we now introduce.
Let a, b ∈ {0, 1}2, seen as vertical vectors. Then the function

θa,b(τ) =
∑

m∈Z2

exp
(
iπ

((
m+ a

2

)t
τ
(
m+ a

2

)
+
(
m+ a

2

)t b
2

))
(1)

is holomorphic on H2, and is called the theta constant of characteristic (a, b).
A traditional indexing, used for instance in [14, 50], is to denote θ(a1,a2),(b1,b2)
as θj where j = 8b2+4b1+2a2+a1 is an integer between 0 and 15. The only
nonzero theta constants are the even ones, for which the dot product atb is
even; they are indexed by j ∈ {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}.

It is known that every Siegel modular form in dimension 2 is a polynomial
in theta constants [22], and the explicit expressions of h4, . . . , h12 can be found
in [50, (7.1) p. 68]. In particular, h10 is the product of all squares of even
theta constants, and is therefore a scalar multiple of the traditional cusp
form χ10. Therefore τ ∈ H2 is the period matrix of a genus 2 hyperelliptic
curve over C if and only if h10(τ) 6= 0.

Following [50, §2.1], we define the Igusa invariants as follows:

j1 =
h4h6

h10
, j2 =

h2
4h12

h2
10

, j3 =
h5
4

h2
10

. (2)
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They realize a birational map between Γ(1)\H2 and the projective space P3.
This map is defined over Q by the q-expansion principle [17, §V.1.5]. There-
fore, the Igusa invariants (2) are suitable coordinates in which modular equa-
tions for p.p. abelian surfaces can be written.

We will also use the structure of MF(Γ(1),Z). Igusa [23] computed four-
teen explicit generators for this ring. For our purposes, it is sufficient to note
that Z[h4, h6, h10, h12] ⊂ MF(Γ(1),Z) is a reasonably large subring.

Lemma 2.1. Let f ∈ MF(Γ(1),Z) be a modular form of weight w. Then

2⌊7w/4⌋3⌊w/4⌋f ∈ Z[h4, h6, h10, h12].

Proof. The lowest weight generators of MF(Γ(1),Z) are

X4 = 2−2h4, X6 = 2−2h6, X10 = −2−12h10, X12 = 2−15h12.

The result holds for these four generators. Direct computations using the
formulas from [23, p. 153] show that it also holds for the ten others.

Proposition 2.2. Let f ∈ MF(Γ(1),Z) be a modular form of weight w.

Let a ≥ 0 and 0 ≤ b ≤ 4 be integers such that 4⌊w/6⌋+w = 10a+ 4b. Then

there exists a unique polynomial Qf ∈ Z[J1, J2, J3] such that the following

equality of Siegel modular functions holds:

Qf (j1, j2, j3) = 2⌊7w/4⌋3⌊w/4⌋h
⌊w/6⌋
4

ha
10h

b
4

f.

The degree of Qf in J1, J2, J3 is bounded above by ⌊w/6⌋, ⌊w/12⌋, ⌊w/12⌋
respectively, and the total degree of Qf is bounded above by ⌊w/6⌋.
Proof. By Lemma 2.1, we can rewrite the right hand side as

h
⌊w/6⌋
4

hb
10h

a
4

F

for some F ∈ Z[h4, h6, h10, h12]. Then the equalities

h4h6 = j1h10, h2
4h12 = j2h

2
10, h5

4 = j3h
2
10

show that this quotient can be rewritten as a polynomial in j1, j2, j3 with
integer coefficients satisfying the required degree bounds, as detailed in [29,
Lem. 4.7]. The resulting polynomial Qf is unique because j1, j2, j3 are alge-
braically independent.
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Siegel modular equations. Let ℓ ∈ Z be a prime. We define the sub-
group Γ0(ℓ) of Γ(1) = Sp4(Z) as follows:

Γ0(ℓ) =

{(
a b
c d

)
∈ Γ(1) : b = 0 mod ℓ

}
.

Its index in Γ(1) is ℓ3 + ℓ2 + ℓ + 1, and an explicit set Cℓ of representatives
for the quotient Γ0(ℓ)\Γ(1) is obtained by conjugating the matrices listed
in [14, Def. 10.1] by

(
0 I2

−I2 0

)
. The absolute values of all their coefficients are

bounded above by ℓ.
The Siegel modular equations of level ℓ [7, 40] are the three multivariate

rational fractions

Ψℓ,k ∈ Q(J1, J2, J3)[X ], 1 ≤ k ≤ 3

such that for every τ ∈ H2 where everything is well defined, we have

Ψℓ,1

(
j1(τ), j2(τ), j3(τ)

)
=

∏

γ∈Cℓ

(
X − j1(

1
ℓ
γτ)

)
,

Ψℓ,2

(
j1(τ), j2(τ), j3(τ)

)
=

∑

γ∈Cℓ

j2(
1
ℓ
γτ)

∏

γ′∈Cℓ\{γ}

(
X − j1(

1
ℓ
γ′τ)

)
,

Ψℓ,3

(
j1(τ), j2(τ), j3(τ)

)
=

∑

γ∈Cℓ

j3(
1
ℓ
γτ)

∏

γ′∈Cℓ\{γ}

(
X − j1(

1
ℓ
γ′τ)

)
.

(3)

The degrees of the polynomials Ψℓ,k in X are at most ℓ3+ℓ2+ℓ+1, and their
total degrees in J1, J2, J3 are at most 10(ℓ3+ ℓ2+ ℓ+1)/3 by [29, Prop. 4.10].
The height of their coefficients is O(ℓ3 log ℓ) by [29, Thm. 1.1].

Change of representatives. The analytic formulas (3), combined with
the expression (2) of Igusa invariants, show that modular equations of Siegel
type can be evaluated at some τ ∈ H2 by computing theta constants at
period matrices of the form γτ , where

γ ∈
(
I2 0
0 ℓI2

)
Cℓ ⊂ GSp4(Q). (4)

We now show how to modify these matrices γ so that their lower left block
becomes zero. This will be essential to achieve good control on the complexity
of numerical computations later on, as it implies that γτ will not be too far
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from the fundamental domain when τ satisfies the same property. Similarly,
in the dimension 1 case, SL2(Z) acts on the upper half plane H1, and matrices
leaving the cusp at infinity invariant are precisely the upper triangular ones.

Proposition 2.3. Let γ ∈ GSp4(Q) be a symplectic matrix with integer

coefficients. Then there exists a matrix η ∈ Sp4(Z) such that ηγ has a

zero lower left 2 × 2 block. A suitable η such that log|η| = O(log|γ|) can be

computed in Õ(log|γ|) binary operations.

Proof. Let a, b, c, d be the 2 × 2 blocks of γ. First, we choose the two lower
lines of η as a basis (l3, l4) of V ∩Z4, where V is the 2-dimensional Q-vector
space

V = Q2
(
−c a

)
.

This ensures that the lower left block of ηγ is zero. Since γ is symplectic,
V is an isotropic subspace of Q4 for the standard symplectic pairing, de-
noted by 〈·, ·〉. Therefore, it is possible to complete (l3, l4) in a symplectic
basis (l1, . . . , l4) of Z4, providing the required η ∈ Sp4(Z).

The lines l3 and l4 can be obtained from the classical algorithm for
elementary divisors over Z, giving log|lk| = O(log|γ|) for k = 3, 4; this

costs Õ(log|γ|) binary operations. Choose any l1, l2 with coefficients in Z

such that 〈l1, l3〉 = 〈l2, l4〉 = 1 and 〈l1, l4〉 = 〈l2, l3〉 = 0; this can be done
using the Euclidean algorithm, and defines l1, l2 uniquely up to translations
by Zl3 ⊕ Zl4. Note that

〈l1 + xl3 + yl4, l2 + zl3 + tl4〉 = 〈l1, l2〉+ z − y,

so l1, l2 can easily be corrected to ensure that 〈l1, l2〉 = 0. The final basis
satisfies log|lk| = O(log|γ|) for 1 ≤ k ≤ 4.

Applying Proposition 2.3 to the matrices listed in (4), we obtain a col-
lection Dℓ of ℓ3 + ℓ2 + ℓ+ 1 matrices γ ∈ GSp4(Q) with integer coefficients,
lower left block zero, determinant ℓ2, and such that log|γ| = O(log ℓ). They
can be used to rewrite the formulas (3): for instance,

Ψℓ,1

(
j1(τ), j2(τ), j3(τ)

)
=

∏

γ∈Dℓ

(
X − j1(γτ)

)
.
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Denominators. We call a polynomial Qℓ ∈ Z[J1, J2, J3] a denominator of
the Siegel modular equations Ψℓ,k if for each 1 ≤ k ≤ 3, we have

QℓΨℓ,k ∈ Z[J1, J2, J3, X ].

Our goal is describe such a denominator by an analytic formula. For every
τ ∈ H2, we define

gℓ(τ) = ℓ−20(2ℓ2+ℓ+1)
∏

γ∈Γ0(ℓ)\Γ(1)

det(γ∗τ)−202−24h2
10(

1
ℓ
γτ). (5)

One can check that gℓ is well-defined Siegel modular form of weight

wℓ = 20(ℓ3 + ℓ2 + ℓ + 1).

Using the set of matrices Dℓ defined above, we can also write

gℓ(τ) = ℓ−20(2ℓ2+ℓ+1)
∏

γ∈Dℓ

(ℓ2 det(γ∗τ)−1)202−24h2
10(γτ).

In this product, det(γ∗τ) is simply the determinant of the lower right block
of γ, and is independent of τ . Since γ has integer coefficients and determi-
nant ℓ2, we see that ℓ2 det(γ∗τ)−1 is either ±1, ±ℓ, or ±ℓ2. After comput-
ing Dℓ explicitly, we observe that ±1 happens ℓ3 times, ±ℓ happens ℓ + 1
times, and ±ℓ2 happens ℓ2 times; therefore,

gℓ(τ) =
∏

γ∈Dℓ

2−24h2
10(γτ). (6)

This cancellation justifies the introduction of a power of ℓ in (5).
For every 0 ≤ i ≤ ℓ3 + ℓ2 + ℓ + 1 and 1 ≤ k ≤ 3, we also define fℓ,k,i(τ)

as the coefficient of X i in the polynomial gℓ(τ)Ψℓ,k

(
j1(τ), j2(τ), j3(τ)

)
.

Proposition 2.4. The functions gℓ and fℓ,k,i are Siegel modular forms of

weight wℓ defined over Z.

Proof. The modular form gℓ has an algebraic interpretation: up to a ratio-
nal scalar factor, it is the image of the modular form h2

10 under the Hecke
correspondence associated with ℓ-isogenies of abelian surfaces [17, §VII.3].
Therefore, the modular form gℓ is defined over Q, and so are the modular
forms fℓ,k,i, since each fℓ,k,i/gℓ is a modular function defined over Q.
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Let γ ∈ Dℓ. By writing down the Fourier expansion of h10, we see that
the function τ 7→ 2−24h2

10(γτ) has a Fourier expansion in terms of the entries
of τ/ℓ2 with coefficients in Z[exp(2πi/ℓ2)]. Since gℓ is a product of such
functions by (6), this shows that the Fourier coefficients of gℓ are (algebraic)
integers. Similarly, the modular forms fℓ,k,i are sums of products of such
functions, so their Fourier coefficients are integers.

Finally, let Qℓ be the polynomial defined in Proposition 2.2 applied to
the modular form gℓ.

Theorem 2.5. The polynomial Qℓ ∈ Z[J1, J2, J3] is a denominator of the

Siegel modular equations of level ℓ.

Proof. For each 1 ≤ k ≤ 3 and 0 ≤ i ≤ ℓ3 + ℓ2 + ℓ + 1, the coefficient
of X i in the rational fraction QℓΨℓ,k ∈ Q(J1, J2, J3)[X ] is precisely the poly-
nomial Qfℓ,k,i from Proposition 2.2.

For each τ ∈ H2 such that h10(τ) 6= 0, unfolding the definitions pro-
vides explicit formulas to evaluate Qℓ and QℓΨℓ,k for 1 ≤ k ≤ 3 at the
point

(
j1(τ), j2(τ), j3(τ)

)
given the values of theta constants at γτ for γ ∈ Dℓ.

2.2 Modular equations of Hilbert type

Invariants on Hilbert moduli spaces. Fix a real quadratic field F of
discriminant ∆F , and let ZF be its ring of integers. We fix a real embedding
of F , and denote the other embedding by x 7→ x. Then GL2(F ) embeds
in GL2(R)

2 via the two real embeddings of F , so has a natural action on H2
1,

denoted by (γ, t) 7→ γt. For every γ ∈ GL2(F ), every α ∈ F and every
t = (t1, t2) ∈ H2

1, we also write

αt = (αt1, αt2), and γ∗t = (ct1 + d)(ct2 + d) if γ =

(
a b
c d

)
.

Let Z∨
F = (1/

√
∆F )ZF be the dual of ZF with respect to the trace form,

and define the group

ΓF (1) =

{(
a b
c d

)
∈ SL2(F ) : a, d ∈ ZF , b ∈ Z∨

F , c ∈ (Z∨
F )

−1

}
.
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The quotient ΓF (1)\H2
1 is a coarse moduli space for p.p. abelian surfaces

over C with real multiplication by ZF [1, §9.2]. The involution given by

σ : (t1, t2) 7→ (t2, t1)

exchanges the real multiplication embedding with its Galois conjugate. As
in the Siegel case, ΓF (1)\H2

1 has a canonical algebraic model which is defined
over Q [54, Chap. X, Rem. 4.1].

For a subring R ⊂ C, we denote by MF(ΓF (1), R) the graded R-algebra
of Hilbert modular forms of even weight defined over R that are symmetric,
i.e. invariant under σ. There is no known general description of these graded
algebras, although MF(ΓF (1),Z) is known for discriminants 5 and 8 [45],
MF(ΓF (1),Q) is known for the additional discriminants 12, 13, 17, 24, 29, 37
(see [57] and the references therein), and in general they are amenable to
computation for a fixed F [12].

One way of defining coordinates on Hilbert moduli spaces consists in
pulling back invariants from the Siegel moduli space by the forgetful map.
Let (e1, e2) be the Z-basis of ZF ; for the sake of fixing definitions, we take
(1, 1

2

√
∆F ) if ∆F is even, and (1, 1

2
+ 1

2

√
∆F ) if ∆F is odd. Write

RF =

(
e1 e2
e1 e2

)
∈ GL2(R).

Then the Hilbert embedding [54, p. 209] is the map

ΦF : H2
1 → H2

(t1, t2) 7→ Rt
F

(
t1 0
0 t2

)
RF .

(7)

It is equivariant for the actions of GL2(F ) and GSp4(Q) under the following
map, also denoted by ΦF :

(
a b
c d

)
7→

(
Rt

F 0
0 R−1

F

)(
a∗ b∗

c∗ d∗

)(
R−t

F 0
0 RF

)
(8)

where x∗ = ( x 0
0 x ) for x ∈ F , and R−t

F denotes the inverse of Rt
F .

One can check that ΦF induces a map ΦF : ΓF (1)\H2
1 → Γ(1)\H2; in

the modular interpretation, ΦF forgets the real multiplication embedding.
Generically, the map ΦF is 2-1: for every t ∈ H2

1, we have ΦF (t) = ΦF (σ(t)).
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Therefore, the pullback of Igusa invariants under ΦF can be used to write
down modular equations of Hilbert type symmetrized under σ.

When the structure of MF(ΓF (1),Z) is known, it is better to design other
coordinates in terms of a generating set of modular forms. We will focus on
the case of F = Q(

√
5). Then MF(ΓF (1),Z) is generated by four elements

G2, F6, F10, and F12 =
1
4
(F 2

6 −G2F10), where subscripts denote weights [45].
Following [41], we define the Gundlach invariants g1, g2 as

g1 =
G5

2

F10
and g2 =

G2
2F6

F10
.

The expressions of the pullbacks of h4, . . . , h12 by the Hilbert embedding ΦF

in terms of G2, F6, F10 can be found in [48]; in particular Φ∗
F (h10) = 212F10.

As a byproduct, Gundlach and Igusa invariants are related by explicit poly-
nomial formulas [48, Thm. 1], [34, Prop. 4.5].

From the description of MF(ΓF (1),Z), we immediately have the following
analogues of Lemma 2.1 and Proposition 2.2.

Lemma 2.6. Let F = Q(
√
5). Then for every f ∈ MF(ΓF (1),Z) of weight w,

we have 2⌊w/3⌋f ∈ Z[G2, G6, F10].

Proposition 2.7. Let F = Q(
√
5). Then for every f ∈ MF(ΓF (1),Z) of

weight w, we have 2⌊w/3⌋f ∈ Z[G2, G6, F10]. Let a ≥ 0 and 0 ≤ b ≤ 4 be the

unique integers such that 4⌊w/6⌋+w = 10a+2b. Then there exists a unique

polynomial Qf ∈ Z[J1, J2] such that the following equality of Hilbert modular

function holds:

Qf (g1, g2) = 2⌊w/3⌋G
2⌊w/6⌋
2

F a
10G

b
2

f.

The total degree of Qf is bounded above by ⌊w/6⌋.

Hilbert modular equations. We fix F = Q(
√
5) in the rest of this sec-

tion, and consider modular equations in Gundlach invariants; the formulas in
the general case of Hilbert modular equations in Igusa invariants are similar.

Let ℓ be a prime not dividing ∆F that splits in F in two principal ideals
generated by totally positive elements β, β ∈ ZF . Define the subgroup Γ0

F (β)
of ΓF (1) by

Γ0
F (β) =

{(
a b
c d

)
∈ ΓF (1) : b = 0 mod β

}
.

12



A set Cβ of representatives for the quotient Γ0
F (β)\Γ(1) consists of the ℓ+ 1

following matrices:

(
0 1/

√
∆F

−
√
∆F 0

)
, and

(
1 a/

√
∆F

0 1

)
for a ∈ J0, ℓ− 1K.

A set of representatives for the quotient Γ0
F (β)\(Γ(1)⋊〈σ〉) is Cσ

β = Cβ∪Cβσ.
The Hilbert modular equations of level β in Gundlach invariants [37, 41] are
the two multivariate rational fractions

Ψβ,k ∈ Q(J1, J2)[X ], 1 ≤ k ≤ 2

such that for every t ∈ H2
1, we have

Ψβ,1

(
g1(t), g2(t)

)
=

∏

γ∈Cσ
β

(
X − g1(

1
β
γt)

)
,

Ψβ,2

(
g1(t), g2(t)

)
=

∑

γ∈Cσ
β

g2(
1
β
γt)

∏

γ′∈Cσ
β
\{γ}

(
X − g1(

1
β
γ′t)

)
.

(9)

The degrees of the polynomials Ψβ,k in X are at most 2ℓ+2, and their total
degrees in g1, g2 are at most 10(ℓ+1)/3 by [29, Prop. 4.11]. The height of their
coefficients is O(ℓ log ℓ) by [29, Thm. 1.1]. In the modular interpretation,
these modular equations encode the presence of β-isogenies [13], of degree ℓ,
between p.p. abelian surfaces with real multiplication by ZF .

The formulas (9) show that Hilbert modular equations can be evaluated
at

(
g1(t), g2(t)

)
for t ∈ H2

1 by computing theta constants at each of the
period matrices ΦF (

1
β
γt) in Siegel space, for γ ∈ Cσ

β . As in the Siegel case,

we will let suitable elements of Γ(1) act on these period matrices to have
better control on the numerical computations; in the Hilbert case, they will
be computed during the execution of the algorithm.

As above, we call Qβ ∈ Z[J1, J2] a denominator of the Hilbert modular
equations Ψβ,k if for each 1 ≤ k ≤ 2, we have

QβΨβ,k ∈ Z[J1, J2].

For every t ∈ H2
1, we write gβ(t) = fβ(t)fβ(σ(t)), where

fβ(t) =
1

ℓ

∏

γ∈Γ0

F
(β)\ΓF (1)

(γ∗t)−102−12h10

(
ΦF (

1
β
γt)

)
. (10)
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We can check that gβ is a well-defined Hilbert modular form, symmetric and
integral, of weight

wβ = 20(2ℓ+ 2),

and that the polynomial Qβ obtained from Proposition 2.7 applied to gβ is
a denominator of the Hilbert modular equations.

3 Precision losses in polynomial operations

In all algorithms manipulating complex numbers, we use ball arithmetic [53].
Given z ∈ C and N ≥ 0, we define an approximation of z to precision N
to be a complex ball of radius 2−N containing z. An approximation of a
polynomial to precision N is by definition an approximation to precision N
coefficient per coefficient. Approximations centered at dyadic points can be
stored in a computer, and allow us to design algorithms with meaningful
input and provably correct output.

If an algorithm takes approximations to precision N ≥ M as input and
outputs approximations to precision N − M for some M ≥ 0, we say that
the precision loss in this algorithm is M bits. For instance, precision losses
in elementary operations (additions, multiplications, etc.) can be bounded
above in terms of the size of the operands. Besides these theoretical bounds,
precision losses can also be computed on the fly in a precise way; this is done
in the Arb library [25], on which our implementation is based. If we run out
of precision during the computation, we can simply double the precision and
restart. Therefore, in the theoretical analysis presented here, it is sufficient
to bound the precision losses from above in the O notation.

We let M(N) be a quasi-linear, superlinear function such that two N -
bit integers can be multiplied in M(N) binary operations. We write log
(resp. log2) for the natural logarithm (resp. logarithm in base 2), and for
x ∈ R, we define

log+ x = logmax{1, x} and log+2 x = log2max{1, x}.

We denote the modulus of the largest coefficient in a polynomial P by |P |;
we also use this notation for vectors and matrices.

14



3.1 Product trees and interpolation

We start with a technical lemma that we will use several times, when we
construct polynomials as products of linear factors.

Lemma 3.1. There exists an algorithm such that the following holds. Let

d ≥ 1, B ≥ 1, C ≥ 1, and let xi, yi, zi for 1 ≤ i ≤ d be complex numbers such

that

log+|xi| ≤ B, log+|yi| ≤ B, log+|zi| ≤ C, for all i.

Let N ≥ 1. Then, given approximations of these complex numbers to preci-

sion N , the algorithm computes the polynomials

P =
d∏

i=1

(xiX + yi) Q =
d∑

i=1

zi
∏

j 6=i

(xjX + yj)

within O
(
M

(
d(N + C + dB)

)
log d

)
binary operations, with a precision loss

of O(C + dB) bits.

Proof. We use product trees [5, §I.5.4]. For each 0 ≤ m ≤ ⌈log2(d)⌉, the
m-th level of the product tree to compute P consists of 2⌈log2(d)⌉−m products
of (at most) 2m factors of the form xiX + yi. Hence, for every polynomial R
appearing at the m-th level, we have

deg(R) ≤ 2m and log+|R| = O(2mB).

Level 0 is given as input. In order to compute level m+1 from level m, we
compute one product per vertex, for a total cost of O

(
M

(
d(N+dB)

))
binary

operations; the precision loss in this operation is O(2mB) bits. Therefore the
total precision loss when computing P is O(dB) bits. The number of levels
is O(log d), so the total cost is O

(
M

(
d(N + dB)

)
log d

)
binary operations.

For the polynomial Q, the following product tree is used. Each vertex at
level m+ 1 is a polynomial of the form N1P2 +N2P1 where Pi is a vertex of
the product tree for P satisfying

deg(Pi) ≤ 2m and log+|Pi| = O(2mB),

and the polynomials Ni come from the m-th level, and satisfy

deg(Ni) ≤ 2m − 1 and log+|Ni| = O(C + 2mB).

By induction, the m-th level can be computed to precision N −O(C +2mB)
using a total of O

(
M

(
d(N + C + dB)

))
binary operations.

15



We apply Lemma 3.1 to Lagrange interpolation.

Proposition 3.2. There exists an algorithm such that the following holds.

Let P ∈ Z[X ] be an irreducible polynomial of degree d ≥ 1, let (αi)1≤i≤d be

the roots of P , and let (ti)1≤i≤d be complex numbers. Let M,C ≥ 1 such that

log+|P | ≤ M, and log+|ti| ≤ C for every i.

Let N ≥ 1. Then, given P and approximations of the αi, ti, and 1/P ′(αi)
to precision N , the algorithm computes the polynomial Q of degree at most

d− 1 interpolating the points (αi, ti) within

O
(
M

(
d(N + C + dM + d log d)

)
log d

)

binary operations. The precision loss is O(C + dM + d log d) bits.

Proof. We write

Q =
d∑

i=1

ti
P ′(αi)

∏

j 6=i

(X − αj).

We have log+|P ′| ≤ M+log d. The discriminant Disc(P ) of P is the resultant
of P and P ′. Hence we can write

UP + V P ′ = Disc(P )

with U, V ∈ Z[X ]; the coefficients of U, V have expressions as determinants
of size O(d) involving the coefficients of P and P ′, so by Hadamard’s lemma,
we have in particular

log+|V | = O(dM + d log d).

We have log+|αi| ≤ M + log(2) for every i, hence

log+
∣∣∣

1

P ′(αi)

∣∣∣ = log+
∣∣∣
V (αi)

Disc(P )

∣∣∣ = O(dM + d log d).

Therefore the precision loss taken when computing the d complex numbers
zi = ti/P

′(αi) is O(C + dM + d log d) bits; the total cost to compute the zi
is

O
(
dM(N + C + dM + d log d)

)

binary operations. We conclude using Lemma 3.1.
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3.2 Recognizing integers in number fields

Our goal is now to estimate the necessary precision to recognize integers in
a number field L. We give two results according to the description of the
number field. In the first description, the number field is Q(α) where α is a
root of some polynomial P ∈ Z[X ] with bounded coefficients, and we want
to recognize an element x ∈ Z[α]. This situation arises for instance when
lifting from a finite field; not much is known about the number field itself. In
the second description, we assume that an HKZ- or LLL-reduced basis of the
ring of integers ZL is known, and we want to recognize an element x ∈ ZL.
The necessary precision is given in terms of the discriminant ∆L of L and
the absolute logarithmic height h(x) of x, as defined in [20, §B.2].

Proposition 3.3. There exist an algorithm and an absolute constant C such

that the following holds. Let L be a number field of degree d over Q defined

by a monic irreducible polynomial P ∈ Z[X ], and let M ≥ 1 such that

log+|P | ≤ M . Let α be a root of P in L. Let

x =
d−1∑

j=0

λjα
j ∈ Z[α]

with λj ∈ Z and log+|λj| ≤ H for every j. Let N ≥ C(H + dM + d log d).
Then, given P and approximations of x, α and 1/P ′(α) to precision N in

every complex embedding of L, the algorithm computes x within

O
(
M

(
d(H + dM + d log d)

)
log d

)

binary operations.

Proof. Denote the complex embeddings of L by µ1, . . . , µd. The polynomial
Q =

∑d−1
j=0 λjX

j interpolates the points (µi(α), µi(x)) for every 1 ≤ i ≤ d.
By assumption, we have for each i

log+|µi(x)| ≤ H +O(dM).

We are in the situation of Proposition 3.2: we can compute an approximation
of Q with a precision loss of O(H + dM + d log d) bits. Therefore, for an
appropriate choice of the constant C, the resulting precision is sufficient to
obtain Q exactly by rounding the result to the nearest integers.
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Let L be a number field of degree d over Q. We endow ZL with the
euclidean metric induced by the map ZL → Cd given by the d complex
embeddings µ1, . . . , µd of L. Then ZL becomes a lattice of volume ∆L in
the Euclidean space ZL ⊗Z R. Denote by 1 ≤ λ1 ≤ · · · ≤ λd the successive
minima of ZL. They satisfy the following inequality [46, Chap. 2, Thm. 5]:

d∏

k=1

λk ≤ α
d/2
d ∆L,

where αd ≤ 1 + d
4

denotes Hermite’s constant [46, Chap. 2, Cor. 3].
There exist several definitions of a reduced Z-basis (a1, . . . , ad) of ZL in

the literature, which are usually formulated in terms of the coefficients of the
base-change matrix from (a1, . . . , ad) to its Gram–Schmidt orthogonalization.
We will use the following properties of such bases:

• If (a1, . . . , ad) is HKZ-reduced [46, Chap. 2, Thm. 6], then for each
1 ≤ k ≤ d, we have

4

k + 3
≤ (

‖ak‖
λk

)2 ≤ k + 3

4
.

• If (a1, . . . , ad) is LLL-reduced (with parameter δ = 3
4
) [46, Chap. 2,

Thm. 9], then for each 1 ≤ k ≤ d, we have

‖ak‖ ≤ 2(d−1)/2λk.

Moreover,
d∏

k=1

‖ak‖ ≤ 2d(d−1)/4∆L.

HKZ-reduced bases approximate the successive minima closely, but are
difficult to compute as the dimension d grows. On the other hand, LLL-
reduced bases can be computed in polynomial time in d [35].

Proposition 3.4. There exist an algorithm and an absolute constant C such

that the following holds. Let L be a number field of degree d and discrim-

inant ∆L. Let (a1, . . . , ad) be an LLL-reduced basis of ZL, let µ1, . . . , µd be

the complex embeddings of L, and let mL be the matrix (µi(aj))1≤i,j≤d. Let

x ∈ ZL, and let H ≥ 1 such that h(x) ≤ H. Let

N ≥ C(log∆L + dH + d2).
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Then, given approximations of (µi(x))1≤i≤d and m−1
L to precision N , the

algorithm computes x within O
(
d2M(H + log∆L + d2)

)
binary operations.

Proof. Let λj ∈ Z such that x =
∑

λjaj . By definition of mL, we have



λ1
...
λd


 = m−1

L



µ1(x)

...
µd(x)


 .

The determinant of mL is ∆L, so |detmL| ≥ 1. In order to bound the absolute
values of the coefficients of m−1

L from above, we use Hadamard’s lemma. Each
coefficient of (detmL) · m−1

L is the determinant of a submatrix of mL, and
the L2-norms of the columns of mL are precisely the ‖ak‖ for 1 ≤ k ≤ d.
Moreover ‖ak‖ ≥ 1 for every k. Therefore,

|m−1
L | ≤

d∏

k=1

‖ak‖ ≤ 2d(d−1)/2∆L,

and hence
log+|m−1

L | ≤ log∆L +O(d2).

Since h(x) ≤ H , we have
∑d

i=1 log
+|µi(x)| ≤ dH . Therefore, for some choice

of the constant C that we do not make explicit, we can recover the coefficients
λj ∈ Z exactly. On average, we have log+|µi(x)| ≤ H , so the cost of each mul-
tiplication is on average O

(
M(H+log∆L+d2)

)
binary operations. Therefore

the total cost of the matrix-vector product is only O
(
d2M(H+log∆L+d2)

)

binary operations.

If (a1, . . . , ad) is instead assumed to be HKZ-reduced in Proposition 3.4,
then a similar proof shows that one can take

N ≥ C(log∆L + dH + d log d)

with a cost of O
(
d2M(H + log∆L + d log d)

)
binary operations. Indeed, in

this case we have

d∏

k=1

‖ak‖ ≤ dd
d∏

k=1

λk ≤ dd(1 + d
4
)d/2∆L,

hence log+|m−1
L | ≤ log(∆L) +O(d log d).
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4 Computations in analytic moduli spaces

In this section, we describe the part of the evaluation algorithm for modu-
lar equations consisting in analytic computations in the Siegel and Hilbert
moduli spaces. The different steps, in order of appearance, are:

1. The computation of a period matrix in Siegel space realizing a given
triple of Igusa invariants;

2. In the Hilbert case, the computation of preimages under the Hilbert
embedding (7);

3. The evaluation of theta constants at a given period matrix, which in-
volves an approximate reduction to the Siegel fundamental domain.

In the first two steps, complexity estimates rely on the fact that the period
matrices we encounter were initially obtained from algebraic data. The third
step is purely analytic.

Before detailing these computations, we recall the classical definition of
the Siegel fundamental domain F2 [32, Chap. I], and define certain open
neighborhoods of this domain. Fix ε ≥ 0, and let

Y =

(
y1 y3
y3 y2

)

be a symmetric 2 × 2 real matrix. Assume that Y is positive definite. We
say that Y is ε-Minkowski reduced if

y1 ≤ (1 + ε)y2 and − εy1 ≤ 2y3 ≤ (1 + ε)y1.

Let Σ ⊂ Γ(1) be the set of 19 matrices defining the boundary of F2 described
in [18]. We define the open set F ε

2 ⊂ H2 as the set of all matrices τ ∈ H2

such that

1. Im(τ) is ε-Minkowski reduced,

2. |Re(τ)| ≤ 1/2 + ε,

3. |det(σ∗τ)| ≥ 1− ε for every σ ∈ Σ.
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The fundamental domain F2 corresponds to the case ε = 0.
We also introduce the following notation. For τ ∈ H2, we define

Λ(τ) = logmax{2, |τ |, det(Im τ)−1}.

Denote by λ1(τ) ≤ λ2(τ) the two eigenvalues of Im(τ), and by m1(τ) ≤ m2(τ)
the successive minima of Im(τ) on the lattice Z2. We also write

Ξ(τ) = logmax{2, m1(τ)
−1, m2(τ)}.

By [50, (5.4) p. 54], we always have

3

4
m1(τ)m2(τ) ≤ det Im(τ) ≤ m1(τ)m2(τ), (11)

so that
logmax{λ1(τ)

−1, λ2(τ), m1(τ)
−1, m2(τ)} = O(Λ(τ)).

4.1 Computing period matrices

Let L be a number field of degree dL, and fix a complex embedding µ of L.
Given Igusa invariants (j1, j2, j3) ∈ L3, we wish to compute a period matrix
τ ∈ F2 realizing the Igusa invariants µ(j1), µ(j2), µ(j3). We may assume that
j3 6= 0: otherwise, modular equations are not defined at (j1, j2, j3). Then τ
can be computed in quasi-linear time using Borchardt means [14, §9.2.3]; our
goal is to bound the precision losses in the process.

During the algorithm, we will consider a finite family Θ(j1, j2, j3) of al-
gebraic numbers constructed from j1, j2, j3. More precisely we consider Θ
as a finite family of polynomials Q ∈ Q[X1, . . . , Xn, Y ], and the algebraic
numbers we that consider are constructed as roots of polynomials of the
form Q(j1, j2, j3, x4, . . . , xn, Y ) where x4, . . . , xn are previously constructed
elements of Θ(j1, j2, j3). When presented in this way, Θ does not depend
on L, j1, j2, or j3. As a toy example, consider the family Θ consisting of the
single polynomial X1 − Y 2; then Θ(j1, j2, j3) = {√j1}. We call Θ a finite

recipe of algebraic extensions. If H denotes the height of (j1, j2, j3), then the
height of all elements of Θ(j1, j2, j3) is in OΘ(H).

For every complex embedding µ of L, we define BΘ,µ ≥ 0 as the minimal
real number such that ∣∣log(|µ̃(θ)|)

∣∣ ≤ BΘ,µ
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for each nonzero θ ∈ Θ(j1, j2, j3) and each extension µ̃ of µ to the number
field L(Θ(j1, j2, j3)). We can take BΘ,µ = OΘ(dLH); moreover the sum of
the bounds BΘ,µ over all the complex embeddings of L is also OΘ(dLH). A
typical example of how we use BΘ,µ is the following.

Proposition 4.1. There exist an algorithm and a finite recipe of algebraic

extensions Θ such that the following holds. Let L be a number field, let

j1, j2, j3 ∈ L be such that j3 6= 0, let µ be a complex embedding of L, and

define BΘ,µ as above. Let N ≥ 1. Then, given approximations of µ(jk) for

1 ≤ k ≤ 3 to precision N , the algorithm computes a genus 2 hyperellip-

tic curve C over C with Igusa invariants
(
µ(j1), µ(j2), µ(j3)

)
for a cost of

O
(
M(N +BΘ,µ)

)
binary operations, with a precision loss of O(BΘ,µ) bits.

Proof. Use Mestre’s algorithm [38]. This algorithm involves O(1) elementary
operations with complex algebraic numbers constructed from the µ(jk) for
1 ≤ k ≤ 3, hence the estimates on the running time and precision loss.

We first prove that the period matrix τ ∈ F2 of C is bounded in terms
of BΘ,µ for some acceptable choice of Θ. This is done by looking at theta
quotients at τ . Recall from §2.1 that theta constants on H2 are denoted by θj
for 0 ≤ j ≤ 15.

Lemma 4.2. There exists a finite recipe of algebraic extensions Θ such that

the following holds. Let C be as in Proposition 4.1, and let τ ∈ F2 be a period

matrix of C. Then we have

|τ | = O(BΘ,µ).

Proof. By Thomae’s formulas [44, Thm. IIIa.8.1], the quotients θj(τ)/θ0(τ)
for j ∈ J1, 15K are algebraic numbers constructed from the coefficients of C,
and are nonzero for j ∈ {0, 1, 2, 3, 4, 6, 8, 12}. Therefore, we can choose Θ in
such a way that

∣∣log
(
|θj(τ)/θ0(τ)|

)∣∣ ≤ BΘ,µ for j ∈ {4, 8}.

Write τ =

(
τ1 τ3
τ3 τ2

)
. By [50, Prop. 7.7], we have

|θ0(τ)− 1| < 0.405,

|θ4(τ)/ exp(iπτ1/4)− 1| < 0.368,

|θ8(τ)/ exp(iπτ2/4)− 1| < 0.368.
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Therefore both Im(τ1) and Im(τ2) are in O(BΘ,µ), hence also |Im(τ3)| because
det Im(τ) > 0. Since τ ∈ F2, we have |Re(τ)| ≤ 1/2 and the result follows.

In order to compute τ from the values of theta quotients, we use Borchardt
sequences [14, §9.2.3]. Define the matrices J,M1,M2,M3 ∈ Sp4(Z) whose
actions on τ ∈ H2 are given by

Jτ = −τ−1, M1τ = τ +

(
1 0
0 0

)
,

M2τ = τ +

(
0 0
0 1

)
, and M3τ = τ +

(
0 1
1 0

)
.

Let γi = (JMi)
2 for 1 ≤ i ≤ 3. Given theta quotients at τ , we compute the

values of the modular functions

bj = θ2j/θ
2
0, 1 ≤ j ≤ 3

at τ and γiτ for 1 ≤ i ≤ 3 using the transformation formula [43, §II.5]. We
obtain the quantities

1

θ20(γiτ)
, 1 ≤ i ≤ 3

as the limits of Borchardt sequences with good sign choices [30] starting from
the tuples

(
1, b1(γiτ), b2(γiτ), b3(γiτ)

)
. Finally, we use that

θ20(γ1τ) = −iτ1θ
2
4(τ), θ20(γ2τ) = −iτ2θ

2
8(τ), θ20(γ3τ) = − det(τ)θ20(τ).

(12)
In order to bound the complexity of this algorithm, we need estimates

on the convergence of the Borchardt sequences above that are uniform in τ .
We use the fact that theta constants converge quickly as the smallest eigen-
value λ1(τ) of Im(τ) tends to infinity. Moreover, λ1(γiτ) is bounded from
below when τ ∈ F2 and |τ | is not too large.

Lemma 4.3. For every τ ∈ H2 such that λ1(τ) ≥ 1, we have

|θj(τ)− 1| < 4.18 exp(−πλ1(τ)) for 0 ≤ j ≤ 3.

Proof. Let 0 ≤ j ≤ 3. Using the series expansion of θj , we obtain

|θj(τ)− 1| ≤
∑

n∈Z2\{0}

exp(−πnt Im(τ)n) ≤
∑

n∈Z2\{0}

exp(−πλ1(τ)‖n‖2).
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By splitting the plane into quadrants, we see that this last sum is equal to
4S2 + 4S, with

S =
∑

n≥1

exp(−πλ1(τ)n
2) ≤ exp(−πλ1(τ))

1− exp(−3πλ1(τ))
.

Since λ1(τ) ≥ 1, the conclusion follows.

Lemma 4.4. Let τ ∈ H2 and γ ∈ Sp4(Z). Then

λ1(γτ) ≥
det Im(τ)

8|γ|2|τ |(2|τ |+ 1)2
.

Proof. We have

λ1(γτ) ≥
det Im(γτ)

Tr Im(γτ)
.

By [50, (5.11) p. 57], we also have

Im(γτ) = (γ∗τ)−t Im(τ)(γ∗τ̄)−1

so that

det Im(γτ) =
det Im(τ)

|det(γ∗τ)|2 , and

Tr Im(γτ) ≤ 8|(γ∗τ)−1|2|Im(τ)| ≤ 8
|γ∗τ |2|τ |

|det(γ∗τ)|2 ≤ 8
|γ|2(2|τ |+ 1)2|τ |

|det(γ∗τ)|2 .

Proposition 4.5. There is an algorithm such that the following holds. Let

τ ∈ F2 and N ≥ 1. Then, given approximations of squares of theta quotients

at τ to precision N , the algorithm computes an approximation of τ within

O
(
M(N + |τ |) log|τ |+M(N) logN

)

binary operations. The precision loss is O(logN + |τ | log|τ |) bits.

Proof. We obtain the quantities

(θ2j (2
nγiτ)/θ

2
0(γiτ))0≤j≤3

after n Borchardt steps. By Lemma 4.4, we know that

|log λ1(γiτ)| = O(log|τ |).
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Therefore, we can choose n = O(log|τ |) such that λ1(2
nγiτ) ≥ 10, for in-

stance. Up to this point, we performed O(log|τ |) elementary operations with
complex numbers z such that log|z| = O(|τ |). Therefore the total cost is

O(M(N + |τ |) log|τ |)

binary operations, and the precision loss is O(|τ | log|τ |) bits. Even if |τ | is
not known explicitly, this moment is detected in the algorithm as when the
four values in the Borchardt sequence get very close to each other.

Then, we normalize so that one of the four values is 1, and continue
performing a further O(logN) Borchardt steps: this O-constant and the
accuracy of the result can be made explicit by [14, Prop. 7.2]. This costs
O(M(N) logN) binary operations, and the precision loss is O(logN) bits.
This allows us to compute the quantities θ20(γiτ) for 1 ≤ i ≤ 3; the precision
loss up to now is O(logN + |τ | log|τ |) bits. Finally, we recover the entries of
τ using eq. (12). This final computation costs O(N + |τ |) binary operations,
and the precision loss is O(|τ |) bits.

Theorem 4.6. There exists an algorithm and a finite recipe of algebraic

extensions Θ such that the following holds. Let L be a number field, let

j1, j2, j3 ∈ L be such that j3 6= 0, let µ be a complex embedding of L, and

define BΘ,µ as above. Let N ≥ 1. Then, given approximations of µ(jk) for

1 ≤ k ≤ 3 to precision N , the algorithm computes a matrix τ ∈ F2 such that

the Igusa invariants at τ are the µ(jk) for 1 ≤ k ≤ 3. The algorithm involves

O
(
M(N + BΘ,µ) log(N + BΘ,µ)

)
binary operations, and a precision loss of

O(logN +BΘ,µ logBΘ,µ) bits.

Proof. First, we compute a curve C as in Proposition 4.1. Then, by Thomae’s
formula, there is a finite number of possibilities for the values of squares of
theta quotients at τ ; one of them corresponds to an actual τ ∈ F2, and the
others correspond to other elements in the orbit Γ(1)τ . When we attempt
to run the algorithm of Proposition 4.5 on these inputs, we may discard all
resulting period matrices that do not belong to F2. In order to distinguish
between the remaining possible values of τ , it is usually enough to compute
theta constants to precision O(1) using the naive algorithm, and match with
the input. In extreme cases, we may resort to computing Igusa invariants
at all remaining possible values of τ to precision O(N + Bµ) for the cost of
O
(
M(N +Bµ) log(N +Bµ)

)
binary operations [27, Thm. 5.2]
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4.2 Inverting the Hilbert embedding

Let F be a real quadratic field, and let R ∈ GL2(R) be the matrix defining
the Hilbert embedding ΦF as in 2.2. Recall that for every τ ∈ H2, we denote
by 0 < λ1(τ) ≤ λ2(τ) the two eigenvalues of Im(τ).

Lemma 4.7. There exists a constant C > 0 depending on F such that for

every t = (t1, t2) ∈ H2
1, we have

1
C
λ1(ΦF (t)) ≤ min{Im(t1), Im(t2)} ≤ Cλ1(ΦF (t)),

1
C
λ2(ΦF (t)) ≤ max{Im(t1), Im(t2)} ≤ Cλ2(ΦF (t)).

Proof. This is obvious from the formula (7).

Theorem 4.8. Let F be a real quadratic field, and let R be as above. Then

there exist an algorithm, a constant C > 0, and a finite recipe of algebraic

extensions Θ depending on F such that the following holds. Let L be a number

field, let j1, j2, j3 ∈ L be such that j3 6= 0, let µ be a complex embedding

of L, and define BΘ,µ as in §4.1. Let C be a genus 2 hyperelliptic curve

over C with Igusa invariants µ(j1), µ(j2), µ(j3), and assume that Jac(C) has

real multiplication by ZF . Let τ ∈ F2 be a period matrix of C. Then there

exists t = (t1, t2) ∈ H2
1 such that ΦF (t) ∈ H2 is a period matrix of C, and

|log(Im ti)| ≤ CBΘ,µ for i = 1, 2.

Moreover, given an approximation of τ to precision N+CBΘ,µ, the algorithm

computes t to precision N within ÕF (N +BΘ,µ) binary operations.

Proof. By Lemma 4.2, if Θ is well chosen, we have

|τ | = O(BΘ,µ).

The result would follow directly from Lemma 4.7 if there existed t ∈ H2
1 such

that τ = ΦF (t), but this is not always the case. In general, by [2, Lem. 4.1],
there exist coprime integers a, b, c, d, e such that

b2 − 4ac− 4de = ∆F and aτ1 + bτ3 + cτ2 + d det(τ) + e = 0. (13)

We claim that the heights of a, b, c, d, e must be in OF (BΘ,µ) for some choice
of Θ. We prove this by comparing the analytic and rational representations
(see [1, §1.2]) of the endomorphism

√
∆F on the complex abelian variety

Aτ = C2/(τZ2 ⊕ Z2).
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By [2, Cor. 4.2], the rational representation of an endomorphism f in the
image of ZF inside End(Aτ ) is of the form

ρR,τ (f) =




n ma 0 md
−mc mb+ n −md 0
0 me n −mc

−me 0 ma mb+ n


 for some m,n ∈ Z.

On the other hand, the analytic representation ρA,τ (
√
∆F ) of the endomor-

phism
√
∆F of Aτ can be computed as follows. Let ω = (ω1, ω2) be a basis

of differential forms on Aτ such that Sym2(ω) corresponds by the Kodaira–
Spencer isomorphism to a deformation of Aτ along the Humbert surface.
Then, the analytic representation of

√
∆F in the basis ω is of the form

±
(√

∆F 0
0 −

√
∆F

)
.

Algorithm 4.6 in [31] shows that such a basis ω exists; moreover the base
change matrix m between (dz1, dz2) and ω can be chosen such that

logmax{|m|, |m−1|} = OF (BΘ,µ).

after extending Θ in a suitable way. Therefore, the analytic representation
of

√
∆F on Aτ satisfies

log+
∣∣ρA,τ (

√
∆)

∣∣ = OF (BΘ,µ).

For every f ∈ End(Aτ ), the rational and analytic representations of f are
related by the following formula [1, Rem. 8.14]:

ρA,τ (f)(τ I2) = (τ I2)ρR,τ (f).

Taking imaginary parts, we find that there exist m,n ∈ Z such that

Im(τ)

(
n ma

−mc mb+ n

)
= Im

(
ρA,τ (

√
∆F )τ

)
,

Im(τ)

(
0 md

−md 0

)
= Im

(
ρA,τ (

√
∆F )

)
.

Therefore the heights of a, b, c, d,m, n are in OF (BΘ,µ). The same is true
for e by (13). This proves our claim.
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The algorithm to compute t is the following. We compute the integers
a, b, c, d, e in ÕF (BΘ,µ) binary operations with the LLL algorithm [47], using
eq. (13). Then, we use the algorithm from [2, Prop. 4.5] to compute a matrix
γ ∈ Γ(1) such that γτ lies in the image of ΦF ; the matrix γ has a simple
expression in terms of a, b, c, d, e, hence we also have

log|γ| = OF (BΘ,µ).

By Lemma 4.4, we also have

Λ(γτ) ∈ OF (BΘ,µ),

so the result follows from Lemma 4.7.

4.3 Computing theta constants

We now turn to the problem of evaluating theta constants at a given period
matrix. We crucially rely on the following fact: given τ ∈ F2 (for instance
a matrix with dyadic entries), one can evaluate theta constants at τ to any
desired precision N ≥ 0 in uniform quasi-linear time O(M(N) logN) [27,
Thm. 5.2]. When given a general τ ∈ H2, the standard strategy is to reduce τ
and compute a symplectic matrix γ ∈ Γ(1) such that γτ is very close to F2.
Then we increase the imaginary parts of the coefficients of γτ slightly to
obtain an actual period matrix τ ′ ∈ F2. Computing theta constants at τ ′

yields good approximations of the value of theta constants at γτ .
We now describe the approximate reduction algorithm, which mimics [51,

Alg. 6.8]. The input consists a matrix τ ∈ H2 to some precision N ≥ 1, and
the output is a matrix γ ∈ Sp4(Z) such that γτ ∈ F ε

2 . We assume that the
current precision remains greater than |log2 ε|+ 1 at any time; if we run out
of precision, we stop and output “failure”.

Algorithm 4.9 (Reduction to F ε
2 ). Start with τ ′ = τ and iterate the follow-

ing three steps until τ ′ ∈ F ε
2 , keeping track of a matrix γ ∈ Γ(1) such that

τ ′ = γτ :

1. Reduce Im(τ ′) such that it becomes ε-Minkowski reduced.

2. Reduce Re(τ ′) such that |Re(τ ′)| ≤ 1/2 + ε.

3. Apply σ ∈ Σ such that |detσ∗(τ ′)| is at most 1 − ε/2 and minimal, if
such a σ exists.
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4. Update γ ∈ Γ(1) and recompute τ ′ = γτ .

In order to analyze Algorithm 4.9, we mimic the analysis of the exact
reduction algorithm [51, §6]. First, we detail the Minkowski reduction step.

Lemma 4.10. There exists an algorithm and an absolute constant C such

that the following holds. Let τ ∈ H2 and ε > 0. Then, given an approx-

imation of τ to precision N ≥ CΛ(τ) + |log2 ε|, the algorithm computes

a matrix U ∈ SL2(Z) such that U t Im(τ)U is ε-Minkowski reduced within

O(M(N) logN) binary operations.

Proof. Write Im(τ) = RtR, and consider the matrix R′ obtained by rounding
the coefficients of 2NR to the nearest integers. If C is chosen appropriately,
then the matrix R′ is still invertible. We apply a quasi-linear version of
Gauss’s reduction algorithm to R′ [58], and obtain a reduced basis of the
lattice R′Z2 within O(M(N) logN) binary operations. The base change
matrix U ∈ SL2(Z) must satisfy

log|U | = O(Λ(τ))

by [51, Lem. 6.6]. Therefore, the matrix U t Im(τ)U will be ε-Minkowski
reduced if C is large enough.

Then, we bound precision losses during the execution of Algorithm 4.9.

Lemma 4.11. Let τ, τ ′ ∈ H2, and assume that there exists γ ∈ Γ(1) such

that τ ′ = γτ . Then we have

log+ max{|γ∗τ |, |(γ∗τ)−1|} = O(max{Λ(τ),Λ(τ ′)}),
log|γ| = O(max{Λ(τ),Λ(τ ′)}).

Proof. Let R be a real matrix such that RtR = Im(τ). Then we have

Im(τ ′) = (γ∗τ)−t Im(τ)(γ∗τ)−1 = R′tR′

with R′ = R(γ∗τ)−1. Since |R| ≤ |Im(τ)|1/2 and |R′| ≤ |Im(τ ′)|1/2, we obtain

|γ∗τ | = |R′−1R| ≤ 2
|R′|

det(R′)
|R|

so log+|γ∗τ | = O(max{Λ(τ),Λ(τ ′)}), and similarly for (γ∗τ)−1.
It remains to bound |γ|. If c, d denote the two lower blocks of γ, then we

have Im(γ∗τ) = c Im(τ). Therefore log+|c| = O(max{Λ(τ),Λ(τ ′)}), and in
turn log+|d| ≤ log+(|cτ |+ |γ∗τ |) = O(max{Λ(τ),Λ(τ ′)}). Finally, we bound
the upper blocks a and b of γ using the relation aτ + b = τ ′(cτ + d).
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Lemma 4.12. There is an absolute constant C such that the following holds.

Let τ ∈ H2 and ε > 0, and assume that the precision during Algorithm 4.9

remains greater than |log2 ε|+1. Then the number of loops is O(Ξ(τ)). More-

over, during the algorithm, the quantities
∣∣log

(
|det(γ∗τ)|

)∣∣, Λ(τ ′) and log|γ|
remain in O(Λ(τ)).

Proof. The number of iterations is O(Ξ(τ)) by [51, Prop. 6.16]: observe that
[51, Lem. 6.11 and 6.12] still apply, because det Im(τ ′) is strictly increasing in
Algorithm 4.9. The proof of [51, Lem. 6.16] also applies to Algorithm 4.9 with
slightly worse constants. This shows that log|τ ′| and log|det(γ∗τ)| remain
in O(Λ(τ)).

During the algorithm, we have log+m2(τ
′) = O(Λ(τ)) by [51, Lem. 6.13].

Moreover det Im(τ ′) ≥ det Im(τ), so

m1(τ
′)−1 ≤ m2(τ

′)

det Im(τ ′)
≤ m2(τ

′)

det Im(τ)
≤ 4m2(τ

′)

3m1(τ)2

by (11). Therefore we also have Λ(τ ′) = O(Λ(τ)). The remaining bounds
follow from Lemma 4.11.

Proposition 4.13. There is an absolute constant C such that the following

holds. Let τ ∈ H2 and ε > 0. Then, given an approximation of τ to precision

N ≥ CΛ(τ) + |log2 ε| as input, Algorithm 4.9 does not run out of precision,

and computes a matrix γ ∈ Γ(1) such that γτ ∈ F ε
2 and log|γ| = O(Λ(τ)).

It costs O(Ξ(τ)M(N) logN) binary operations.

Proof. By Lemma 4.12, there is a constant C ′ such that log|γ| ≤ C ′Λ(τ)
during the execution of Algorithm 4.9 as long as the absolute precision is
at least |log2 ε| + 1. Therefore, if C is chosen appropriately, step 4 in Algo-
rithm 4.9 ensures that the absolute precision is at least |log2 ε| + 1 at every
step. Hence the estimate on log|γ| and Λ(τ ′) remains valid until the end of the
algorithm, and we can perform the approximate Minkowski reductions using
Lemma 4.10. By Lemma 4.12, there are O(Ξ(τ)) steps in Algorithm 4.9, and
by Lemma 4.10, each step costs O(M(N) logN) binary operations. When
the algorithm stops, the absolute precision is still greater than |log2 ε| + 1,
so the final τ ′ belongs to F ε

2 .

Theorem 4.14. There exist an algorithm and an absolute constant C such

that the following holds. Let τ ∈ H2 and N ≥ 1. Then, given an approxima-

tion of τ to precision N + CΛ(τ), the algorithm computes
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1. a matrix γ ∈ Sp4(Z) such that log|γ| = O(Λ(τ)),

2. a matrix τ ′ ∈ F2 such that τ ′ is an approximation of γτ to precision N ,

3. an approximation of squares of theta constants at γτ to precision N ,

within

O
(
Ξ(τ)M(Λ(τ)) log Λ(τ) +M(N) logN

)

binary operations.

Proof. Fix ε = 10−2, for instance. First, we apply Proposition 4.13 to com-
pute γ such that γτ ∈ F ε

2 , using O
(
Ξ(τ)M(Λ(τ)) log Λ(τ)

)
binary opera-

tions. Then, we recompute γτ to high precision, and reduce it further if
necessary (using O(1) loops in the reduction algorithm 4.9) to land in F ε′

2

where ε′ = 2−N exp(C ′Λ(τ)) for some appropriate constant C ′. This further
reduction step costs O(M(N + Λ(τ))) binary operations. After that, we
can increase the imaginary parts of the coefficients of γτ slightly and obtain
τ ′ ∈ F ′

2 such that
|τ ′ − γτ | ≤ C ′′ε′|γτ |

for some absolute constant C ′′. We output squares of theta constants evalu-
ated at τ ′ to precision N + 1 using [27, Thm. 5.2]. Since derivatives of theta
constants are uniformly bounded on a neighborhood on F2, the result is a
suitable approximation of squared theta constants at γτ .

5 Evaluating Hilbert modular equations

In this final section, we describe the complete algorithm to evaluate Hilbert
modular equations in Gundlach invariants for F = Q(

√
5). The algorithm

is easily adapted to handle different choices of quadratic fields and invari-
ants. The case of Siegel modular equations is even simpler, since the Hilbert
embedding does not appear; we do not detail it and simply point out the
differences in running time.

5.1 Analytic evaluation of modular equations

Let L be a number field, let (g1, g2) ∈ L be a pair of Gundlach invari-
ants, and let (j1, j2, j3) be the associated Igusa invariants. We may assume
that g1 6= 0 (i.e. j3 6= 0); otherwise, the denominator of modular equations
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vanishes. Choose β and ℓ as in §2.2, and let µ be a complex embedding
of L. The following algorithm computes the numerator and denominator
of Hilbert modular equations of level β in Gundlach invariants evaluated
at (µ(g1), µ(g2)).

Algorithm 5.1. 1. Compute a period matrix τ ∈ F2 with Igusa invari-
ants (µ(j1), µ(j2), µ(j3)) using Theorem 4.6.

2. Compute a matrix γ ∈ Sp4(Z) and t ∈ H2
1 such that ΦF (t) = γτ using

Theorem 4.8.

3. Consider the following set of symplectic matrices:

Cτ = ΦF

((
1 0
0 β

)
η
)
· γ ∈ GSp4(Q).

Apply Proposition 2.3 to transform Cτ into another set of represen-
tatives Dτ ⊂ GSp4(Q) for the same orbits under Γ(1), consisting of
matrices whose lower-left block is zero.

4. Compute squares of theta constants at all period matrices of the form ητ
for η ∈ Dτ using Theorem 4.14.

5. Build product trees as described in Lemma 3.1 to compute the numer-
ators and denominator of Hilbert modular equations evaluated at t,
using the formulas of §2.2.

To avoid complicated expressions, we hide logarithmic factors in the Õ
notation from now on. Recall that Qβ ∈ Q[J1, J2] denotes the denominator
of Hilbert modular equations Ψβ,k for 1 ≤ k ≤ 2 constructed in §2.2.

Proposition 5.2. There exists a finite recipe of algebraic extensions Θ and

a constant C > 0 such that the following holds. Let L be a number field, let µ
be a complex embedding of L, let (g1, g2) ∈ L2 be such that g1 6= 0, define BΘ,µ

as in §4.1, and let N ≥ C(BΘ,µ logBΘ,µ+log ℓ). Then, given approximations

of µ(g1) and µ(g2) to precision N , Algorithm 5.1 computes µ(Qβ(g1, g2)) and

µ(QβΨβ,k(g1, g2)) for k ∈ {1, 2} within Õ(ℓBΘ,µ+ℓN) binary operations, with

a precision loss of Õ(ℓBΘ,µ + logN) bits.

Proof. Steps 1 and 2 can be performed in Õ(N+BΘ,µ) binary operations with
a precision loss of O(logN + BΘ,µ logBΘ,µ) bits, by the results cited above.
We have log|γ| = O(BΘ,µ); therefore the elements of Cτ have coefficients
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of height O(BΘ,µ + log ℓ). In step 3, the set Dτ can then be computed

in Õ(ℓBΘ,µ) binary operations by Proposition 2.3. For each η ∈ Dτ , we have

Ξ(ητ) = O(log ℓ).

By Theorem 4.14, the precision loss taken in the reduction algorithm applied
on each ητ is O(BΘ,µ + log ℓ); the total cost of reduction is Õ(ℓ(N + BΘ,µ))
binary operations. Let γη ∈ Γ(1) be the reduction matrix provided by the
theorem. The total cost of computing all squared theta constants at the
period matrices τη = γη(ητ) in step 4 is Õ(ℓN). This yields the values of the
modular forms h4, h6, h10, h12 at the matrices τη using O(ℓ) binary operations,
with a further precision loss of O(1) bits.

In step 5, we evaluate gβ(t) using eq. (10), and the relations satisfied
by h10 as a modular form: for instance, we have

h2
10(ητ) = (det γ∗

η(ητ))
−20h2

10(τη),

for each η ∈ Dτ . By Lemma 4.11, the total precision loss in this computation
is O(ℓ(BΘ,µ+ log ℓ)); the total cost of computing gβ(t) is Õ(ℓ(N +BΘ,µ)) bi-
nary operations. Up to a similar scalar factor, the polynomials µ(Ψβ,k(g1, g2))
for k ∈ {1, 2} are given by

∏

η∈Cσ
β

(F10(τη)X +G5
2(τη)) for k = 1,

∑

η∈Cσ
β

G5
2(τη)

∏

η′∈Cσ
β
\{η}

(F10(τη′)X −G2
2(τη′)F6(τη′)) for k = 2.

By Lemma 3.1, these polynomials can be computed in Õ(ℓN) binary opera-
tions, with a precision loss of O(ℓ) bits. We conclude by summing precision
losses and binary costs of each step.

In the case of Siegel modular equations, the complexity and precision loss
estimates are similar, with each occurence of ℓ replaced by ℓ3.

5.2 Algebraic reconstruction

Once modular equations and their denominators have been computed in ev-
ery complex embedding, we only have to recognize their coefficients as al-
gebraic numbers. We present two results, one in the case of a finite field
(generalizing Theorem 1.2), and the second in the case of a number field.
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In the case of a finite field, we are given a prime power q = pd, and
a monic polynomial P ∈ Z[X ] of degree d, irreducible modulo p. We let
M ≥ 1 such that log|P | ≤ M . We assume that a black box provides us
with approximations of the roots of P to any desired precision. Then, we
represent elements of Fq as elements of Fp[X ]/(P ).

Theorem 5.3. There exists an algorithm such that the following holds.

Let β ∈ ZF for F = Q(
√
5) or Q(

√
8) be a totally positive prime, prime

to the discriminant ∆F , of prime norm ℓ ∈ Z. Then, given ℓ and g1, g2 ∈ Fq

where the denominator of Hilbert modular equations Ψβ,k does not vanish,

the algorithm computes Ψβ,k(g1, g2) ∈ Fq[X ] for k ∈ {1, 2} within

Õ(ℓ2d log p+ ℓ2d2M)

binary operations.

If dM = O(log p), and in particular when q = p is prime, the cost esti-

mate simplifies to Õ(ℓ2 log q) binary operations. Theorem 1.1 stated in the
introduction is the analogue of Theorem 5.3 for Siegel modular equations
over prime finite fields, and is obtained by a similar proof, except that each
occurrence of ℓ should be replaced by ℓ3.

Proof. Let L be the number field Q[X ]/(P ), and let α be a root of P in L.
We lift g1 and g2 to elements of Z[α] in such a way that the height of their
coefficients is bounded above by log p. Then the following inequalities hold:

h(α) ≤ M + log 2, and

max{h(g1), h(g2)} ≤ log(p) + dh(α) + log(d) = O(dM + log p).

Since Qβ and the coefficients of QβΨβ,k are polynomials in Z[g1, g2] of de-
gree O(ℓ) and height O(ℓ log ℓ), the algebraic numbers we have to recognize
are all elements of Z[α], and the height of their coefficients is O(ℓ log ℓ +
ℓdM + ℓ log p). By Proposition 3.3, we can recognize each coefficient within

Õ(ℓd2M+ℓd log p) binary operations, provided that its images under all com-
plex embeddings of L are computed to precision C(ℓ log ℓ + ℓdM + ℓ log p),
where C is a suitable absolute constant.

Let µ be a complex embedding of L, and choose a starting precision N .
Then µ(g1) and µ(g2) are obtained by replacing α by one of the complex

roots of P : this can be done within Õ(d(M + N)) binary operations, and
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a precision loss of O(dM + log p) bits, using Horner’s algorithm. We run
Algorithm 5.1 for each complex embedding µ of L; let Θ be the finite recipe
of algebraic extensions provided by Proposition 5.2. It suffices to choose N
in

Õ(ℓdM + ℓ log p+ ℓBΘ,µ).

The cost of Algorithm 5.1 is then Õ(ℓ2dM+ℓ2 log p+ℓBΘ,µ) binary operations,
for each µ. Since we have

∑

µ

BΘ,µ = O(d log p+ d2M),

total cost of analytic evaluations over all embeddings is Õ(ℓ2d log p+ ℓ2d2M)
binary operations, and dominates the cost of algebraic reconstruction.

If g1, g2 ∈ Z are small integers, then the complexity of evaluating modular
equations is quasi-linear in the output size.

Theorem 5.4. There exists an algorithm such that the following holds.

Given the prime ℓ and g1, g2 ∈ Z such that

max{|g1|, |g2|} ∈ O(1) and Qβ(g1, g2) 6= 0,

the algorithm computes the polynomials Ψβ,k(g1, g2) ∈ Q[X ] for k ∈ {1, 2}
within Õ(ℓ2) binary operations.

Proof. In this case, we have BΘ,µ = O(1). It is sufficient to round the result
of Proposition 5.2 with N = Cℓ log ℓ, where C is an absolute constant, to
the nearest integers.

The complexity of evaluating Hilbert modular equations over a number
field of degree d over Q can also be bounded above in terms of the discrimi-
nant and the height of the operands. We assume that an LLL-reduced integer
basis of the number field L has been precomputed. Moreover, if mL is the
matrix defined in Proposition 3.4, we assume that a black box provides us
with the coefficients of m−1

L to any desired precision.

Theorem 5.5. There exists an algorithm such that the following holds. Let

H ≥ 1, and let g1, g2 ∈ L given as quotients of integers of height at most H
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such that Qβ(g1, g2) 6= 0. Then the algorithm computes Ψβ,k(g1, g2) ∈ L[X ]
for k ∈ {1, 2} within

Õ(ℓ2d2H + ℓd2 log∆L + ℓd4)

binary operations.

In the case L = Q, the cost estimate simplifies to Õ(ℓ2H) binary opera-
tions, thus generalizing Theorem 5.4.

Proof. For simplicity, assume that g1 and g2 are actually integers: in the gen-
eral case we multiply Qβ by an appropriate power of a common denominator
of g1 and g2 in ZL. We know that Qβ and the coefficients of QβΨβ,k are poly-
nomials in Z[J1, J2] of degree O(ℓ) and height O(ℓ log ℓ): their evaluations

at (g1, g2) are therefore algebraic integers of height Õ(ℓH). By Proposi-
tion 3.4, we can recognize each coefficient within Õ(d2ℓH + d2 log∆L + d4)
binary operations, provided that complex approximations are computed to a
high enough precision N . It suffices to take N in Õ(log∆L + dℓH + d2).

In order to obtain these approximations, we run Algorithm 5.1 for each
complex embedding µ of L. The starting precision is chosen in

Õ(log∆L + dℓH + ℓBΘ,µ + d2),

for a suitable recipe of algebraic extensions Θ. Therefore, the cost to compute
the required complex approximations in the embedding µ is

Õ(ℓ2BΘ,µ + ℓ log∆L + dℓ2H + ℓd2)

binary operations. The sum of the bounds BΘ,µ is in O(dH), hence the total

cost over all embeddings is Õ(ℓ2d2H+ℓd log∆L+ℓd3) binary operations.

These evaluation algorithms for modular equations can be modified to
output derivatives of modular equations as well, as in Theorems 1.1 and 1.2,
for the same asymptotic cost. Indeed, the algorithm of [27] actually computes
derivatives of theta constants as well; moreover, Q2

ℓ and Q2
β can be used

as denominators for derivatives of modular equations. Algorithm 5.1 can
be formally differentiated to compute analytic approximations of derivatives
of modular equations from derivatives of theta constants. One can check
that the precision losses taken in the resulting algorithm remain within the
asymptotic bounds given in Proposition 5.2.
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