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Introduction

Modular equations. Modular equations of Siegel and Hilbert type for abelian surfaces [START_REF] Bröker | Modular polynomials for genus 2[END_REF][START_REF] Milio | A quasi-linear time algorithm for computing modular polynomials in dimension 2[END_REF][START_REF] Martindale | Hilbert modular polynomials[END_REF][START_REF] Milio | Modular polynomials on Hilbert surfaces[END_REF] are higher-dimensional analogues of the classical modular polynomials for elliptic curves [11, §11.C]. If ℓ is a prime, then the Siegel modular equations of level ℓ consist of three rational fractions in four variables

Ψ ℓ,1 , Ψ ℓ,2 , Ψ ℓ,3 ∈ Q(J 1 , J 2 , J 3 )[X],
and encode the presence of ℓ-isogenies between principally polarized (p.p.) abelian surfaces. More precisely, let A and A ′ be two sufficiently generic p.p. abelian surfaces over a field k whose characteristic is prime to ℓ, and denote their Igusa invariants by (j 1 , j 2 , j 3 ) and (j ′ 1 , j ′ 2 , j ′ 3 ) respectively. Then the equalities Ψ ℓ,1 (j 1 , j 2 , j 3 , j ′ 1 ) = 0 and j ′ k = Ψ ℓ,k (j 1 , j 2 , j 3 , j ′ 1 ) ∂ X Ψ ℓ,1 (j 1 , j 2 , j 3 , j ′ 1 )

(k = 2, 3)

hold if and only if A and A ′ are ℓ-isogenous (i.e. related by an isogeny of degree ℓ 2 with isotropic kernel in A[ℓ]) over an algebraic closure of k.

Similarly, Hilbert modular equations describe certain cyclic isogenies between Jacobians with real multiplication (RM) by a fixed real quadratic field. Modular equations of both Siegel and Hilbert type are examples of the general notion of modular equations on a PEL Shimura variety [START_REF] Kieffer | Degree and height estimates for modular equations on PEL Shimura varieties[END_REF].

From a computational point of view, modular equations are useful to detect isogenies without prior knowledge of their kernels, and also to compute these isogenies explicitly: see [START_REF] Elkies | Elliptic and modular curves over finite fields and related computational issues[END_REF][START_REF] Bostan | Fast algorithms for computing isogenies between elliptic curves[END_REF] in the case of elliptic curves, and [START_REF] Kieffer | Computing isogenies from modular equations in genus two[END_REF] in the case of p.p. abelian surfaces. In contrast, all other available methods to compute isogenies, to the author's knowledge, use a description of the kernel as part of their input [START_REF] Vélu | Isogénies entre courbes elliptiques[END_REF][START_REF] Couveignes | Computing functions on Jacobians and their quotients[END_REF][START_REF] Lubicz | Computing separable isogenies in quasi-optimal time[END_REF][START_REF] Dudeanu | Cyclic isogenies for abelian varieties with real multiplication[END_REF]. This makes modular equations an essential tool in the SEA algorithm for counting points on elliptic curves over finite fields [START_REF] Schoof | Counting points on elliptic curves over finite fields[END_REF], which goes the other way around, using isogenies to gain access to cyclic subgroups of the elliptic curve.

However, modular equations for abelian surfaces are very large objects. One can show that the total size of Siegel modular equations of level ℓ is O(ℓ 15 log ℓ) [START_REF] Kieffer | Degree and height estimates for modular equations on PEL Shimura varieties[END_REF], a prohibitive estimate that we expect to be accurate. Already for ℓ = 3, their total size is approximately 410 MB [START_REF] Milio | Database of modular polynomials of Hilbert and Siegel[END_REF].

Main results. In this paper, we argue that precomputing modular equations in full is not the correct strategy in higher dimensions. In most contexts, we only need evaluations of modular equations, and possibly their derivatives, at a given point (j 1 , j 2 , j 3 ) ∈ L 3 , where L is a number field; finite fields reduce to this case via lifts. These univariate polynomials can be evaluated directly using complex approximations, building on Dupont's algorithm [START_REF] Dupont | Moyenne arithmético-géométrique, suites de Borchardt et applications[END_REF]Chap. 10], [START_REF] Labrande | Computing theta functions in quasi-linear time in genus 2 and above[END_REF] to compute genus 2 theta constants in quasi-linear time, now proved to be correct [START_REF] Kieffer | Certified Newton schemes for the evaluation of low-genus theta functions[END_REF]. The resulting algorithm has a much lower asymptotic complexity than precomputing and storing the modular equations in full. For instance, in the case of Siegel modular equations over a prime finite field F p , we obtain the following result.

Theorem 1.1. There exists an algorithm which, given prime numbers p and ℓ, and given (j 1 , j 2 , j 3 ) ∈ F 3 p where the denominator of the Siegel modular equations Ψ ℓ,k does not vanish, evaluates the polynomials Ψ ℓ,k (j 1 , j 2 , j 3 ) and ∂ J i Ψ ℓ,k (j 1 , j 2 , j 3 ) for 1 ≤ i, k ≤ 3 as elements of F p [X] within O(ℓ 6 log p) binary operations.

A similar results holds for Hilbert modular equations encoding cyclic isogenies of degree ℓ between p.p. abelian surfaces with RM.

Theorem 1.2. Let F be either Q( √ 5) or Q( √ 8); let ∆ F be its discriminant and Z F its ring of integers. There exists an algorithm which, given a totally positive prime element β ∈ Z F of prime norm ℓ ∈ Z which is prime to ∆ F , given a prime number p, and given (g 1 , g 2 ) ∈ F 2 p where the denominator of the Hilbert modular equations of level β in Gundlach invariant does not vanish, evaluates these modular equations and their derivatives at (g 1 , g 2 ) as elements of F p [X] within O(ℓ 2 log p) binary operations.

In both cases, we save a factor of log p when the input values can be written as quotients of small integers: see for instance Theorem 5. [START_REF] Bost | Moyenne arithmético-géométrique et périodes de courbes de genre 1 et 2[END_REF].

The complexity estimate in Theorem 1.1 is small enough to make Elkies's method viable in the context of counting points on abelian surfaces over finite fields [START_REF] Kieffer | Counting points on abelian surfaces over finite fields with Elkies's method[END_REF]. An implementation of the algorithms described in this paper, based on the C libraries Flint [START_REF] Hart | FLINT: Fast Library for Number Theory[END_REF] and Arb [START_REF] Johansson | Arb: efficient arbitrary-precision midpoint-radius interval arithmetic[END_REF], is publicly available [START_REF] Kieffer | HDME: a C library for the evaluation of modular equations in dimension 2[END_REF].

Our algorithm is inspired from existing methods to evaluate elliptic modular polynomials via complex approximations [START_REF] Enge | Computing modular polynomials in quasi-linear time[END_REF]. Note that other methods of based on isogeny graphs [START_REF] Bröker | Modular polynomials via isogeny volcanoes[END_REF][START_REF] Sutherland | On the evaluation of modular polynomials[END_REF] allow us to compute or evaluate Φ ℓ over finite fields with better asymptotic complexities; however, they crucially rely on writing the modular equation in full over small auxiliary finite fields, and it is unclear whether this strategy can still be competitive when the number of variables increases.

Overview of the algorithm. Fix Igusa invariants (j 1 , j 2 , j 3 ) over a number field L. For every complex embedding µ of L, we compute a genus 2 hyperelliptic curve C over C with Igusa invariants µ(j 1 ), µ(j 2 ), µ(j 3 ) . Then, we compute a period matrix τ of C using AGM sequences [START_REF] Borchardt | Theorie des arithmetisch-geometrisches Mittels aus vier Elementen[END_REF][START_REF] Bost | Moyenne arithmético-géométrique et périodes de courbes de genre 1 et 2[END_REF][START_REF] Jarvis | Higher genus arithmetic-geometric means[END_REF]. Finally, we compute approximations of µ Ψ ℓ,k (j 1 , j 2 , j 3 ) ∈ C[X] for 1 ≤ k ≤ 3 using analytic formulas. This is done by enumerating carefully chosen period matrices of abelian surfaces that are ℓ-isogenous to Jac(C), reducing them to a neighborhood of the Siegel fundamental domain, and computing theta constants at these period matrices using Dupont's algorithm. In the case of Hilbert modular equations, an additional step consists in computing an approximate preimage of τ in Hilbert space.

By repeating this whole procedure at increasing precisions, we obtain increasingly better complex approximations of the desired result, a set of three polynomials in L[X]. We know that will eventually be able to correctly recognize its coefficients as algebraic numbers, and a possible strategy is to stop when tentative algebraic reconstructions seem to stabilize. Height bounds on the output [START_REF] Kieffer | Degree and height estimates for modular equations on PEL Shimura varieties[END_REF]Thm. 1.1] suffice to bound the asymptotic complexity of this algorithm. However, its output is difficult to certify when these height bounds are either not explicit or too large for practical use: see for instance [START_REF] Kieffer | Degree and height estimates for modular equations on PEL Shimura varieties[END_REF]Thm. 5.19]. Still, the output is very likely to be correct, and other methods might be available to certify it a posteriori, for instance by certifying the existence of an isogeny between p.p. abelian surfaces [START_REF] Costa | Rigorous computation of the endomorphism ring of a Jacobian[END_REF].

In some cases, we are able to circumvent these problems by reconstructing only algebraic integers in L: we separate the numerator and denominator of modular equations using an explicit description of the corresponding graded ring of modular forms with integral Fourier coefficients. As a corollary, we obtain provably correct evaluation algorithms for modular equations of Siegel type, and of Hilbert type for RM discriminants 5 and 8, as announced above.

Organization of the paper. In Section 2, we recall the definition of Siegel and Hilbert modular equations and give explicit formulas for their denominators. In Section 3, we present our computational model and study precision losses in certain polynomial operation appearing in the sequel. Section 4 focuses on computations in the analytic Siegel and Hilbert moduli spaces. In Section 5, we conclude on the cost of the whole algorithm, focusing the case of Hilbert modular equations for Q( √ 5).
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Modular equations for abelian surfaces

In this section, we recall the analytic formulas defining Siegel and Hilbert modular equations for abelian surfaces. We also study their denominators using the structures of the corresponding rings of modular forms over Z.

Modular equations of Siegel type

Invariants on the Siegel moduli space. Let H 2 be the set of symmetric 2 × 2 complex matrices τ such that Im τ is positive definite. Our notation for the action of the symplectic group GSp 4 (Q) on H 2 is the following: for every γ ∈ GSp 4 (Q) and τ ∈ H 2 , we write

γτ = (aτ + b)(cτ + d) -1 and γ * τ = cτ + d,
where

γ = a b c d in 2 × 2 blocks.
We also write Sp 4 (Z) = Γ [START_REF] Birkenhake | Complex abelian varieties[END_REF]. Recall that the quotient Γ(1)\H [START_REF] Igusa | On Siegel modular forms of genus two[END_REF], where subscripts denote weights. These modular forms can be defined in terms of genus 2 theta constants (of level (2, 2)), which we now introduce. Let a, b ∈ {0, 1} 2 , seen as vertical vectors. Then the function

θ a,b (τ ) = m∈Z 2 exp iπ m + a 2 t τ m + a 2 + m + a 2 t b 2 (1) 
is holomorphic on H 2 , and is called the theta constant of characteristic (a, b).

A traditional indexing, used for instance in [START_REF] Dupont | Moyenne arithmético-géométrique, suites de Borchardt et applications[END_REF][START_REF] Streng | Complex multiplication of abelian surfaces[END_REF], is to denote θ (a 1 ,a 2 ),(b 1 ,b 2 ) as θ j where j = 8b 2 + 4b 1 + 2a 2 + a 1 is an integer between 0 and 15. The only nonzero theta constants are the even ones, for which the dot product a t b is even; they are indexed by j ∈ {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}.

It is known that every Siegel modular form in dimension 2 is a polynomial in theta constants [START_REF] Igusa | On the graded ring of theta-constants[END_REF], and the explicit expressions of h 4 , . . . , h 12 can be found in [50, (7.1) p. 68]. In particular, h 10 is the product of all squares of even theta constants, and is therefore a scalar multiple of the traditional cusp form χ 10 . Therefore τ ∈ H 2 is the period matrix of a genus 2 hyperelliptic curve over C if and only if h 10 (τ ) = 0.

Following [50, §2.1], we define the Igusa invariants as follows:

j 1 = h 4 h 6 h 10 , j 2 = h 2 4 h 12 h 2 10 , j 3 = h 5 4 h 2 10 . (2) 
They realize a birational map between Γ(1)\H 2 and the projective space P 3 . This map is defined over Q by the q-expansion principle [17, §V.1.5]. Therefore, the Igusa invariants (2) are suitable coordinates in which modular equations for p.p. abelian surfaces can be written. We will also use the structure of MF(Γ(1), Z). Igusa [START_REF] Igusa | On the ring of modular forms of degree two over Z[END_REF] computed fourteen explicit generators for this ring. For our purposes, it is sufficient to note that Z[h 4 , h 6 , h 10 , h 12 ] ⊂ MF(Γ(1), Z) is a reasonably large subring.

Lemma 2.1. Let f ∈ MF(Γ(1), Z) be a modular form of weight w. Then

2 ⌊7w/4⌋ 3 ⌊w/4⌋ f ∈ Z[h 4 , h 6 , h 10 , h 12 ].
Proof. The lowest weight generators of MF(Γ(1), Z) are

X 4 = 2 -2 h 4 , X 6 = 2 -2 h 6 , X 10 = -2 -12 h 10 , X 12 = 2 -15 h 12 .
The result holds for these four generators. Direct computations using the formulas from [23, p. 153] show that it also holds for the ten others. Proposition 2.2. Let f ∈ MF(Γ(1), Z) be a modular form of weight w. Let a ≥ 0 and 0 ≤ b ≤ 4 be integers such that 4⌊w/6⌋ + w = 10a + 4b. Then there exists a unique polynomial Q f ∈ Z[J 1 , J 2 , J 3 ] such that the following equality of Siegel modular functions holds: Siegel modular equations. Let ℓ ∈ Z be a prime. We define the subgroup Γ 0 (ℓ) of Γ(1) = Sp 4 (Z) as follows:

Q f (j 1 , j 2 , j 3 ) = 2 ⌊7w/4⌋ 3 ⌊w/4⌋ h ⌊w/6⌋ 4 h a 10 h b 4 f. The degree of Q f in J 1 , J
Γ 0 (ℓ) = a b c d ∈ Γ(1) : b = 0 mod ℓ .
Its index in Γ( 1) is ℓ 3 + ℓ 2 + ℓ + 1, and an explicit set C ℓ of representatives for the quotient Γ 0 (ℓ)\Γ( 1) is obtained by conjugating the matrices listed in [START_REF] Dupont | Moyenne arithmético-géométrique, suites de Borchardt et applications[END_REF]Def. 10.1] by 0 I 2 -I 2 0 . The absolute values of all their coefficients are bounded above by ℓ.

The Siegel modular equations of level ℓ [START_REF] Bröker | Modular polynomials for genus 2[END_REF][START_REF] Milio | A quasi-linear time algorithm for computing modular polynomials in dimension 2[END_REF] are the three multivariate rational fractions

Ψ ℓ,k ∈ Q(J 1 , J 2 , J 3 )[X], 1 ≤ k ≤ 3
such that for every τ ∈ H 2 where everything is well defined, we have

Ψ ℓ,1 j 1 (τ ), j 2 (τ ), j 3 (τ ) = γ∈C ℓ X -j 1 ( 1 ℓ γτ ) , Ψ ℓ,2 j 1 (τ ), j 2 (τ ), j 3 (τ ) = γ∈C ℓ j 2 ( 1 ℓ γτ ) γ ′ ∈C ℓ \{γ} X -j 1 ( 1 ℓ γ ′ τ ) , Ψ ℓ,3 j 1 (τ ), j 2 (τ ), j 3 (τ ) = γ∈C ℓ j 3 ( 1 ℓ γτ ) γ ′ ∈C ℓ \{γ} X -j 1 ( 1 ℓ γ ′ τ ) . (3) 
The degrees of the polynomials Ψ ℓ,k in X are at most ℓ 3 + ℓ 2 + ℓ + 1, and their total degrees in J 1 , J 2 , J 3 are at most 10(ℓ 3 + ℓ 2 + ℓ + 1)/3 by [START_REF] Kieffer | Degree and height estimates for modular equations on PEL Shimura varieties[END_REF]Prop. 4.10]. The height of their coefficients is O(ℓ 3 log ℓ) by [START_REF] Kieffer | Degree and height estimates for modular equations on PEL Shimura varieties[END_REF]Thm. 1.1].

Change of representatives. The analytic formulas (3), combined with the expression (2) of Igusa invariants, show that modular equations of Siegel type can be evaluated at some τ ∈ H 2 by computing theta constants at period matrices of the form γτ , where

γ ∈ I 2 0 0 ℓI 2 C ℓ ⊂ GSp 4 (Q). (4) 
We now show how to modify these matrices γ so that their lower left block becomes zero. This will be essential to achieve good control on the complexity of numerical computations later on, as it implies that γτ will not be too far from the fundamental domain when τ satisfies the same property. Similarly, in the dimension 1 case, SL 2 (Z) acts on the upper half plane H 1 , and matrices leaving the cusp at infinity invariant are precisely the upper triangular ones. 

) of V ∩ Z 4 , where V is the 2-dimensional Q-vector space V = Q 2 -c a .
This ensures that the lower left block of ηγ is zero. Since γ is symplectic, V is an isotropic subspace of Q 4 for the standard symplectic pairing, denoted by •, • . Therefore, it is possible to complete (l 3 , l 4 ) in a symplectic basis (l 1 , . . . , l 4 ) of Z 4 , providing the required η ∈ Sp 4 (Z).

The lines l 3 and l 4 can be obtained from the classical algorithm for elementary divisors over Z, giving log|l k | = O(log|γ|) for k = 3, 4; this costs O(log|γ|) binary operations. Choose any l 1 , l 2 with coefficients in Z such that l 1 , l 3 = l 2 , l 4 = 1 and l 1 , l 4 = l 2 , l 3 = 0; this can be done using the Euclidean algorithm, and defines l 1 , l 2 uniquely up to translations by Zl 3 ⊕ Zl 4 . Note that l 1 + xl 3 + yl 4 , l 2 + zl 3 + tl 4 = l 1 , l 2 + z -y, so l 1 , l 2 can easily be corrected to ensure that l 1 , l 2 = 0. The final basis satisfies

log|l k | = O(log|γ|) for 1 ≤ k ≤ 4.
Applying Proposition 2.3 to the matrices listed in (4), we obtain a collection D ℓ of ℓ 3 + ℓ 2 + ℓ + 1 matrices γ ∈ GSp 4 (Q) with integer coefficients, lower left block zero, determinant ℓ 2 , and such that log|γ| = O (log ℓ). They can be used to rewrite the formulas (3): for instance,

Ψ ℓ,1 j 1 (τ ), j 2 (τ ), j 3 (τ ) = γ∈D ℓ X -j 1 (γτ ) . Denominators. We call a polynomial Q ℓ ∈ Z[J 1 , J 2 , J 3 ] a denominator of the Siegel modular equations Ψ ℓ,k if for each 1 ≤ k ≤ 3, we have Q ℓ Ψ ℓ,k ∈ Z[J 1 , J 2 , J 3 , X].
Our goal is describe such a denominator by an analytic formula. For every τ ∈ H 2 , we define

g ℓ (τ ) = ℓ -20(2ℓ 2 +ℓ+1) γ∈Γ 0 (ℓ)\Γ(1) det(γ * τ ) -20 2 -24 h 2 10 ( 1 ℓ γτ ). (5) 
One can check that g ℓ is well-defined Siegel modular form of weight

w ℓ = 20(ℓ 3 + ℓ 2 + ℓ + 1).
Using the set of matrices D ℓ defined above, we can also write

g ℓ (τ ) = ℓ -20(2ℓ 2 +ℓ+1) γ∈D ℓ (ℓ 2 det(γ * τ ) -1 ) 20 2 -24 h 2 10 (γτ ).
In this product, det(γ * τ ) is simply the determinant of the lower right block of γ, and is independent of τ . Since γ has integer coefficients and determinant ℓ 2 , we see that ℓ 2 det(γ * τ ) -1 is either ±1, ±ℓ, or ±ℓ 2 . After computing D ℓ explicitly, we observe that ±1 happens ℓ 3 times, ±ℓ happens ℓ + 1 times, and ±ℓ 2 happens ℓ 2 times; therefore,

g ℓ (τ ) = γ∈D ℓ 2 -24 h 2 10 (γτ ). (6) 
This cancellation justifies the introduction of a power of ℓ in (5).

For every

0 ≤ i ≤ ℓ 3 + ℓ 2 + ℓ + 1 and 1 ≤ k ≤ 3, we also define f ℓ,k,i (τ ) as the coefficient of X i in the polynomial g ℓ (τ )Ψ ℓ,k j 1 (τ ), j 2 (τ ), j 3 (τ ) .
Proposition 2.4. The functions g ℓ and f ℓ,k,i are Siegel modular forms of weight w ℓ defined over Z.

Proof. The modular form g ℓ has an algebraic interpretation: up to a rational scalar factor, it is the image of the modular form h 2 10 under the Hecke correspondence associated with ℓ-isogenies of abelian surfaces [START_REF] Faltings | Degeneration of abelian varieties[END_REF]§VII.3]. Therefore, the modular form g ℓ is defined over Q, and so are the modular forms f ℓ,k,i , since each f ℓ,k,i /g ℓ is a modular function defined over Q.

Let γ ∈ D ℓ . By writing down the Fourier expansion of h 10 , we see that the function τ → 2 -24 h 2 10 (γτ ) has a Fourier expansion in terms of the entries of τ /ℓ 2 with coefficients in Z[exp(2πi/ℓ 2 )]. Since g ℓ is a product of such functions by [START_REF] Bostan | Fast algorithms for computing isogenies between elliptic curves[END_REF], this shows that the Fourier coefficients of g ℓ are (algebraic) integers. Similarly, the modular forms f ℓ,k,i are sums of products of such functions, so their Fourier coefficients are integers.

Finally, let Q ℓ be the polynomial defined in Proposition 2.2 applied to the modular form g ℓ .

Theorem 2.5. The polynomial

Q ℓ ∈ Z[J 1 , J 2 , J 3 ] is a denominator of the Siegel modular equations of level ℓ. Proof. For each 1 ≤ k ≤ 3 and 0 ≤ i ≤ ℓ 3 + ℓ 2 + ℓ + 1, the coefficient of X i in the rational fraction Q ℓ Ψ ℓ,k ∈ Q(J 1 , J 2 , J 3 )[X] is precisely the poly- nomial Q f ℓ,k,i from Proposition 2.2.
For each τ ∈ H 2 such that h 10 (τ ) = 0, unfolding the definitions provides explicit formulas to evaluate

Q ℓ and Q ℓ Ψ ℓ,k for 1 ≤ k ≤ 3 at the point j 1 (τ ), j 2 (τ ), j 3 (τ )
given the values of theta constants at γτ for γ ∈ D ℓ .

Modular equations of Hilbert type

Invariants on Hilbert moduli spaces. Fix a real quadratic field F of discriminant ∆ F , and let Z F be its ring of integers. We fix a real embedding of F , and denote the other embedding by x → x. Then GL 2 (F ) embeds in GL 2 (R) 2 via the two real embeddings of F , so has a natural action on H 2 1 , denoted by (γ, t) → γt. For every γ ∈ GL 2 (F ), every α ∈ F and every t = (t 1 , t 2 ) ∈ H 2 1 , we also write αt = (αt 1 , αt 2 ), and

γ * t = (ct 1 + d)(ct 2 + d) if γ = a b c d . Let Z ∨ F = (1/ √ ∆ F ) Z F be
the dual of Z F with respect to the trace form, and define the group

Γ F (1) = a b c d ∈ SL 2 (F ) : a, d ∈ Z F , b ∈ Z ∨ F , c ∈ (Z ∨ F ) -1 .
The quotient Γ F (1)\H 2 1 is a coarse moduli space for p.p. abelian surfaces over C with real multiplication by Z F [1, §9.2]. The involution given by

σ : (t 1 , t 2 ) → (t 2 , t 1 )
exchanges the real multiplication embedding with its Galois conjugate. As in the Siegel case, Γ F (1)\H 2 1 has a canonical algebraic model which is defined over

Q [54, Chap. X, Rem. 4.1].
For a subring R ⊂ C, we denote by MF(Γ F (1), R) the graded R-algebra of Hilbert modular forms of even weight defined over R that are symmetric, i.e. invariant under σ. There is no known general description of these graded algebras, although MF(Γ F (1), Z) is known for discriminants 5 and 8 [START_REF] Nagaoka | On the ring of Hilbert modular forms over Z[END_REF], MF(Γ F (1), Q) is known for the additional discriminants 12, 13, 17, 24, 29, 37 (see [START_REF] Williams | The rings of Hilbert modular forms for Q( √ 29) and Q( √ 37)[END_REF] and the references therein), and in general they are amenable to computation for a fixed F [START_REF] Dembélé | Explicit methods for Hilbert modular forms[END_REF].

One way of defining coordinates on Hilbert moduli spaces consists in pulling back invariants from the Siegel moduli space by the forgetful map. Let (e 1 , e 2 ) be the Z-basis of Z F ; for the sake of fixing definitions, we take

(1, 1 2 √ ∆ F ) if ∆ F is even, and (1, 1 2 + 1 2 √ ∆ F ) if ∆ F is odd. Write R F = e 1 e 2 e 1 e 2 ∈ GL 2 (R).
Then the Hilbert embedding [54, p. 209] is the map

Φ F : H 2 1 → H 2 (t 1 , t 2 ) → R t F t 1 0 0 t 2 R F . (7) 
It is equivariant for the actions of GL 2 (F ) and GSp 4 (Q) under the following map, also denoted by Φ F :

a b c d → R t F 0 0 R -1 F a * b * c * d * R -t F 0 0 R F ( 8 
)
where x * = ( x 0 0 x ) for x ∈ F , and R -t F denotes the inverse of R t F . One can check that Φ F induces a map Φ F : Γ F (1)\H 2 1 → Γ(1)\H 2 ; in the modular interpretation, Φ F forgets the real multiplication embedding. Generically, the map Φ F is 2-1: for every t ∈ H 2 1 , we have

Φ F (t) = Φ F (σ(t)).
Therefore, the pullback of Igusa invariants under Φ F can be used to write down modular equations of Hilbert type symmetrized under σ.

When the structure of MF(Γ F (1), Z) is known, it is better to design other coordinates in terms of a generating set of modular forms. We will focus on the case of F = Q( √ 5). Then MF(Γ F (1), Z) is generated by four elements G 2 , F 6 , F 10 , and

F 12 = 1 4 (F 2 6 -G 2 F 10 )
, where subscripts denote weights [START_REF] Nagaoka | On the ring of Hilbert modular forms over Z[END_REF]. Following [START_REF] Milio | Modular polynomials on Hilbert surfaces[END_REF], we define the Gundlach invariants g 1 , g 2 as

g 1 = G 5 2 F 10 and g 2 = G 2 2 F 6 F 10 .
The expressions of the pullbacks of h 4 , . . . , h 12 by the Hilbert embedding Φ F in terms of G 2 , F 6 , F 10 can be found in [START_REF] Resnikoff | On the graded ring of Hilbert modular forms associated with Q( √ 5)[END_REF]; in particular Φ * F (h 10 ) = 2 12 F 10 . As a byproduct, Gundlach and Igusa invariants are related by explicit polynomial formulas [48, Thm. 1], [START_REF] Lauter | Computing genus 2 curves from invariants on the Hilbert moduli space[END_REF]Prop. 4.5].

From the description of MF(Γ F (1), Z), we immediately have the following analogues of Lemma 2.1 and Proposition 2.2.

Lemma 2.6. Let F = Q( √ 5). Then for every f ∈ MF(Γ F (1), Z) of weight w, we have 2 ⌊w/3⌋ f ∈ Z[G 2 , G 6 , F 10 ]. Proposition 2.7. Let F = Q( √ 5 
). Then for every f ∈ MF(Γ F (1), Z) of weight w, we have

2 ⌊w/3⌋ f ∈ Z[G 2 , G 6 , F 10 ].
Let a ≥ 0 and 0 ≤ b ≤ 4 be the unique integers such that 4⌊w/6⌋ + w = 10a + 2b. Then there exists a unique polynomial Q f ∈ Z[J 1 , J 2 ] such that the following equality of Hilbert modular function holds:

Q f (g 1 , g 2 ) = 2 ⌊w/3⌋ G 2⌊w/6⌋ 2 F a 10 G b 2 f.
The total degree of Q f is bounded above by ⌊w/6⌋.

Hilbert modular equations. We fix F = Q( √ 5) in the rest of this section, and consider modular equations in Gundlach invariants; the formulas in the general case of Hilbert modular equations in Igusa invariants are similar.

Let ℓ be a prime not dividing ∆ F that splits in F in two principal ideals generated by totally positive elements β, β ∈ Z F . Define the subgroup Γ 0

F (β) of Γ F (1) by Γ 0 F (β) = a b c d ∈ Γ F (1) : b = 0 mod β .
A set C β of representatives for the quotient Γ 0 F (β)\Γ(1) consists of the ℓ + 1 following matrices:

0 1/ √ ∆ F - √ ∆ F 0 , and 
1 a/ √ ∆ F 0 1 for a ∈ 0, ℓ -1 .
A set of representatives for the quotient

Γ 0 F (β)\(Γ(1)⋊ σ ) is C σ β = C β ∪C β σ.
The Hilbert modular equations of level β in Gundlach invariants [START_REF] Martindale | Hilbert modular polynomials[END_REF][START_REF] Milio | Modular polynomials on Hilbert surfaces[END_REF] are the two multivariate rational fractions

Ψ β,k ∈ Q(J 1 , J 2 )[X], 1 ≤ k ≤ 2
such that for every t ∈ H 2 1 , we have

Ψ β,1 g 1 (t), g 2 (t) = γ∈C σ β X -g 1 ( 1 β γt) , Ψ β,2 g 1 (t), g 2 (t) = γ∈C σ β g 2 ( 1 β γt) γ ′ ∈C σ β \{γ} X -g 1 ( 1 β γ ′ t) . (9) 
The degrees of the polynomials Ψ β,k in X are at most 2ℓ + 2, and their total degrees in g 1 , g 2 are at most 10(ℓ+1)/3 by [START_REF] Kieffer | Degree and height estimates for modular equations on PEL Shimura varieties[END_REF]Prop. 4.11]. The height of their coefficients is O(ℓ log ℓ) by [29, Thm. 1.1]. In the modular interpretation, these modular equations encode the presence of β-isogenies [START_REF] Dudeanu | Cyclic isogenies for abelian varieties with real multiplication[END_REF], of degree ℓ, between p.p. abelian surfaces with real multiplication by Z F . The formulas [START_REF] Costa | Rigorous computation of the endomorphism ring of a Jacobian[END_REF] show that Hilbert modular equations can be evaluated at g 1 (t), g 2 (t) for t ∈ H 2 1 by computing theta constants at each of the period matrices Φ F ( 1 β γt) in Siegel space, for γ ∈ C σ β . As in the Siegel case, we will let suitable elements of Γ(1) act on these period matrices to have better control on the numerical computations; in the Hilbert case, they will be computed during the execution of the algorithm.

As above, we call

Q β ∈ Z[J 1 , J 2 ] a denominator of the Hilbert modular equations Ψ β,k if for each 1 ≤ k ≤ 2, we have Q β Ψ β,k ∈ Z[J 1 , J 2 ]. For every t ∈ H 2 1 , we write g β (t) = f β (t)f β (σ(t))
, where

f β (t) = 1 ℓ γ∈Γ 0 F (β)\Γ F (1) (γ * t) -10 2 -12 h 10 Φ F ( 1 β γt) . (10) 
We can check that g β is a well-defined Hilbert modular form, symmetric and integral, of weight

w β = 20(2ℓ + 2),
and that the polynomial Q β obtained from Proposition 2.7 applied to g β is a denominator of the Hilbert modular equations.

Precision losses in polynomial operations

In all algorithms manipulating complex numbers, we use ball arithmetic [START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF]. Given z ∈ C and N ≥ 0, we define an approximation of z to precision N to be a complex ball of radius 2 -N containing z. An approximation of a polynomial to precision N is by definition an approximation to precision N coefficient per coefficient. Approximations centered at dyadic points can be stored in a computer, and allow us to design algorithms with meaningful input and provably correct output.

If an algorithm takes approximations to precision N ≥ M as input and outputs approximations to precision N -M for some M ≥ 0, we say that the precision loss in this algorithm is M bits. For instance, precision losses in elementary operations (additions, multiplications, etc.) can be bounded above in terms of the size of the operands. Besides these theoretical bounds, precision losses can also be computed on the fly in a precise way; this is done in the Arb library [START_REF] Johansson | Arb: efficient arbitrary-precision midpoint-radius interval arithmetic[END_REF], on which our implementation is based. If we run out of precision during the computation, we can simply double the precision and restart. Therefore, in the theoretical analysis presented here, it is sufficient to bound the precision losses from above in the O notation.

We let M(N) be a quasi-linear, superlinear function such that two Nbit integers can be multiplied in M(N) binary operations. We write log (resp. log 2 ) for the natural logarithm (resp. logarithm in base 2), and for x ∈ R, we define log + x = log max{1, x} and log + 2 x = log 2 max{1, x}.

We denote the modulus of the largest coefficient in a polynomial P by |P |; we also use this notation for vectors and matrices.

Product trees and interpolation

We start with a technical lemma that we will use several times, when we construct polynomials as products of linear factors.

Lemma 3.1. There exists an algorithm such that the following holds. Let

d ≥ 1, B ≥ 1, C ≥ 1, and let x i , y i , z i for 1 ≤ i ≤ d be complex numbers such that log + |x i | ≤ B, log + |y i | ≤ B, log + |z i | ≤ C, for all i.
Let N ≥ 1. Then, given approximations of these complex numbers to precision N, the algorithm computes the polynomials Level 0 is given as input. In order to compute level m+1 from level m, we compute one product per vertex, for a total cost of O M d(N +dB) binary operations; the precision loss in this operation is O(2 m B) bits. Therefore the total precision loss when computing P is O(dB) bits. The number of levels is O(log d), so the total cost is O M d(N + dB) log d binary operations.

P = d i=1 (x i X + y i ) Q = d i=1 z i j =i (x j X + y j ) within O M d(N + C + dB) log d
For the polynomial Q, the following product tree is used. Each vertex at level m + 1 is a polynomial of the form N 1 P 2 + N 2 P 1 where P i is a vertex of the product tree for P satisfying

deg(P i ) ≤ 2 m and log + |P i | = O(2 m B),
and the polynomials N i come from the m-th level, and satisfy

deg(N i ) ≤ 2 m -1 and log + |N i | = O(C + 2 m B).
By induction, the m-th level can be computed to precision N -O(C + 2 m B) using a total of O M d(N + C + dB) binary operations.

We apply Lemma 3.1 to Lagrange interpolation. Proposition 3.2. There exists an algorithm such that the following holds. Let P ∈ Z[X] be an irreducible polynomial of degree d ≥ 1, let (α i ) 1≤i≤d be the roots of P , and let (t i ) 1≤i≤d be complex numbers. Let M, C ≥ 1 such that log + |P | ≤ M, and log + |t i | ≤ C for every i.

Let N ≥ 1. Then, given P and approximations of the α i , t i , and 1/P ′ (α i ) to precision N, the algorithm computes the polynomial Q of degree at most d -1 interpolating the points (α i , t i ) within

O M d(N + C + dM + d log d) log d binary operations. The precision loss is O(C + dM + d log d) bits.
Proof. We write

Q = d i=1 t i P ′ (α i ) j =i (X -α j ).
We have log + |P ′ | ≤ M +log d. The discriminant Disc(P ) of P is the resultant of P and P ′ . Hence we can write

UP + V P ′ = Disc(P )
with U, V ∈ Z[X]; the coefficients of U, V have expressions as determinants of size O(d) involving the coefficients of P and P ′ , so by Hadamard's lemma, we have in particular

log + |V | = O(dM + d log d).
We have log + |α i | ≤ M + log(2) for every i, hence

log + 1 P ′ (α i ) = log + V (α i ) Disc(P ) = O (dM + d log d).
Therefore the precision loss taken when computing the d complex numbers

z i = t i /P ′ (α i ) is O(C + dM + d log d) bits; the total cost to compute the z i is O dM(N + C + dM + d log d)
binary operations. We conclude using Lemma 3.1.

Recognizing integers in number fields

Our goal is now to estimate the necessary precision to recognize integers in a number field L. We give two results according to the description of the number field. In the first description, the number field is Q(α) where α is a root of some polynomial P ∈ Z[X] with bounded coefficients, and we want to recognize an element x ∈ Z[α]. This situation arises for instance when lifting from a finite field; not much is known about the number field itself. In the second description, we assume that an HKZ-or LLL-reduced basis of the ring of integers Z L is known, and we want to recognize an element x ∈ Z L . The necessary precision is given in terms of the discriminant ∆ L of L and the absolute logarithmic height h(x) of x, as defined in [20, §B.2].

Proposition 3.3.

There exist an algorithm and an absolute constant C such that the following holds. Let L be a number field of degree d over Q defined by a monic irreducible polynomial P ∈ Z[X], and let M ≥ 1 such that log + |P | ≤ M. Let α be a root of P in L. Let

x = d-1 j=0 λ j α j ∈ Z[α]
with λ j ∈ Z and log + |λ j | ≤ H for every j. Let N ≥ C(H + dM + d log d).

Then, given P and approximations of x, α and 1/P ′ (α) to precision N in every complex embedding of L, the algorithm computes x within

O M d(H + dM + d log d) log d binary operations.
Proof. Denote the complex embeddings of L by µ 1 , . . . , µ d . The polynomial Q = d-1 j=0 λ j X j interpolates the points (µ i (α), µ i (x)) for every 1 ≤ i ≤ d. By assumption, we have for each i

log + |µ i (x)| ≤ H + O (dM).
We are in the situation of Proposition 3.2: we can compute an approximation of Q with a precision loss of O(H + dM + d log d) bits. Therefore, for an appropriate choice of the constant C, the resulting precision is sufficient to obtain Q exactly by rounding the result to the nearest integers.

Let L be a number field of degree d over Q. We endow Z L with the euclidean metric induced by the map Z L → C d given by the d complex embeddings µ 1 , . . . , µ d of L. Then Z L becomes a lattice of volume ∆ L in the Euclidean space 

Z L ⊗ Z R. Denote by 1 ≤ λ 1 ≤ • • • ≤ λ d the
4 k + 3 ≤ ( a k λ k ) 2 ≤ k + 3 4 .
• If (a 1 , . . . , a d ) is LLL-reduced (with parameter δ = 3 4 ) [46, Chap. 2, Thm. 9], then for each 1 ≤ k ≤ d, we have

a k ≤ 2 (d-1)/2 λ k . Moreover, d k=1 a k ≤ 2 d(d-1)/4 ∆ L .
HKZ-reduced bases approximate the successive minima closely, but are difficult to compute as the dimension d grows. On the other hand, LLLreduced bases can be computed in polynomial time in d [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. Proposition 3.4. There exist an algorithm and an absolute constant C such that the following holds. Let L be a number field of degree d and discriminant ∆ L . Let (a 1 , . . . , a d ) be an LLL-reduced basis of Z L , let µ 1 , . . . , µ d be the complex embeddings of L, and let m L be the matrix (µ i (a j )) 1≤i,j≤d . Let x ∈ Z L , and let

H ≥ 1 such that h(x) ≤ H. Let N ≥ C(log ∆ L + dH + d 2 ).
Then, given approximations of (µ i (x)) 1≤i≤d and m -1 L to precision N, the algorithm computes x within O d 2 M(H + log ∆ L + d 2 ) binary operations.

Proof. Let λ j ∈ Z such that x = λ j a j . By definition of m L , we have

   λ 1 . . . λ d    = m -1 L    µ 1 (x) . . . µ d (x)    . The determinant of m L is ∆ L , so |det m L | ≥ 1.
In order to bound the absolute values of the coefficients of m -1 L from above, we use Hadamard's lemma. Each coefficient of

(det m L ) • m -1
L is the determinant of a submatrix of m L , and the L 2 -norms of the columns of m L are precisely the a k for 1 ≤ k ≤ d. Moreover a k ≥ 1 for every k. Therefore,

|m -1 L | ≤ d k=1 a k ≤ 2 d(d-1)/2 ∆ L ,
and hence

log + |m -1 L | ≤ log ∆ L + O(d 2 ). Since h(x) ≤ H, we have d i=1 log + |µ i (x)| ≤ dH.
Therefore, for some choice of the constant C that we do not make explicit, we can recover the coefficients λ j ∈ Z exactly. On average, we have log + |µ i (x)| ≤ H, so the cost of each multiplication is on average O M(H +log ∆ L +d 2 ) binary operations. Therefore the total cost of the matrix-vector product is only O d 2 M(H + log ∆ L + d 2 ) binary operations.

If (a 1 , . . . , a d ) is instead assumed to be HKZ-reduced in Proposition 3.4, then a similar proof shows that one can take

N ≥ C(log ∆ L + dH + d log d) with a cost of O d 2 M(H + log ∆ L + d log d) binary operations. Indeed, in this case we have d k=1 a k ≤ d d d k=1 λ k ≤ d d (1 + d 4 ) d/2 ∆ L , hence log + |m -1 L | ≤ log(∆ L ) + O(d log d).

Computations in analytic moduli spaces

In this section, we describe the part of the evaluation algorithm for modular equations consisting in analytic computations in the Siegel and Hilbert moduli spaces. The different steps, in order of appearance, are:

1. The computation of a period matrix in Siegel space realizing a given triple of Igusa invariants;

2. In the Hilbert case, the computation of preimages under the Hilbert embedding (7);

3. The evaluation of theta constants at a given period matrix, which involves an approximate reduction to the Siegel fundamental domain.

In the first two steps, complexity estimates rely on the fact that the period matrices we encounter were initially obtained from algebraic data. The third step is purely analytic. Before detailing these computations, we recall the classical definition of the Siegel fundamental domain be a symmetric 2 × 2 real matrix. Assume that Y is positive definite. We say that Y is ε-Minkowski reduced if

y 1 ≤ (1 + ε)y 2 and -εy 1 ≤ 2y 3 ≤ (1 + ε)y 1 .
Let Σ ⊂ Γ(1) be the set of 19 matrices defining the boundary of F 2 described in [START_REF] Gottschling | Explizite Bestimmung der Randflächen des Fundamentalbereiches der Modulgruppe zweiten Grades[END_REF]. We define the open set F ε 2 ⊂ H 2 as the set of all matrices τ ∈ H 2 such that

1. Im(τ ) is ε-Minkowski reduced, 2. |Re(τ )| ≤ 1/2 + ε, 3. |det(σ * τ )| ≥ 1 -ε for every σ ∈ Σ.
The fundamental domain F 2 corresponds to the case ε = 0.

We also introduce the following notation. For τ ∈ H 2 , we define

Λ(τ ) = log max{2, |τ |, det(Im τ ) -1 }.
Denote by λ 1 (τ ) ≤ λ 2 (τ ) the two eigenvalues of Im(τ ), and by m 1 (τ ) ≤ m 2 (τ ) the successive minima of Im(τ ) on the lattice Z 2 . We also write

Ξ(τ ) = log max{2, m 1 (τ ) -1 , m 2 (τ )}.
By [50, (5.4) p. 54], we always have

3 4 m 1 (τ )m 2 (τ ) ≤ det Im(τ ) ≤ m 1 (τ )m 2 (τ ), (11) 
so that log max{λ 1 (τ ) -1 , λ 2 (τ ), m 1 (τ ) -1 , m 2 (τ )} = O(Λ(τ )).

Computing period matrices

Let L be a number field of degree d L , and fix a complex embedding µ of L. Given Igusa invariants (j 1 , j 2 , j 3 ) ∈ L 3 , we wish to compute a period matrix τ ∈ F 2 realizing the Igusa invariants µ(j 1 ), µ(j 2 ), µ(j 3 ). We may assume that j 3 = 0: otherwise, modular equations are not defined at (j 1 , j 2 , j 3 ). Then τ can be computed in quasi-linear time using Borchardt means [14, §9.2.3]; our goal is to bound the precision losses in the process.

During the algorithm, we will consider a finite family Θ(j 1 , j 2 , j 3 ) of algebraic numbers constructed from j 1 , j 2 , j 3 . More precisely we consider Θ as a finite family of polynomials Q ∈ Q[X 1 , . . . , X n , Y ], and the algebraic numbers we that consider are constructed as roots of polynomials of the form Q(j 1 , j 2 , j 3 , x 4 , . . . , x n , Y ) where x 4 , . . . , x n are previously constructed elements of Θ(j 1 , j 2 , j 3 ). When presented in this way, Θ does not depend on L, j 1 , j 2 , or j 3 . As a toy example, consider the family Θ consisting of the single polynomial X 1 -Y 2 ; then Θ(j 1 , j 2 , j 3 ) = { √ j 1 }. We call Θ a finite recipe of algebraic extensions. If H denotes the height of (j 1 , j 2 , j 3 ), then the height of all elements of Θ(j 1 , j 2 , j 3 ) is in O Θ (H).

For every complex embedding µ of L, we define B Θ,µ ≥ 0 as the minimal real number such that

log(| µ(θ)|) ≤ B Θ,µ
for each nonzero θ ∈ Θ(j 1 , j 2 , j 3 ) and each extension µ of µ to the number field L(Θ(j 1 , j 2 , j 3 )). We can take B Θ,µ = O Θ (d L H); moreover the sum of the bounds B Θ,µ over all the complex embeddings of L is also O Θ (d L H). A typical example of how we use B Θ,µ is the following.

Proposition 4.1. There exist an algorithm and a finite recipe of algebraic extensions Θ such that the following holds. Let L be a number field, let j 1 , j 2 , j 3 ∈ L be such that j 3 = 0, let µ be a complex embedding of L, and define B Θ,µ as above. Let N ≥ 1. Then, given approximations of µ(j k ) for 1 ≤ k ≤ 3 to precision N, the algorithm computes a genus 2 hyperelliptic curve C over C with Igusa invariants µ(j 1 ), µ(j 2 ), µ(j 3 ) for a cost of O M(N + B Θ,µ ) binary operations, with a precision loss of O(B Θ,µ ) bits.

Proof. Use Mestre's algorithm [START_REF] Mestre | Construction de courbes de genre 2 à partir de leurs modules[END_REF]. This algorithm involves O(1) elementary operations with complex algebraic numbers constructed from the µ(j k ) for 1 ≤ k ≤ 3, hence the estimates on the running time and precision loss.

We first prove that the period matrix τ ∈ F 2 of C is bounded in terms of B Θ,µ for some acceptable choice of Θ. This is done by looking at theta quotients at τ . Recall from §2.1 that theta constants on H 2 are denoted by θ j for 0 ≤ j ≤ 15. Proof. By Thomae's formulas [START_REF] Mumford | Tata lectures on theta[END_REF]Thm. IIIa.8.1], the quotients θ j (τ )/θ 0 (τ ) for j ∈ 1, 15 are algebraic numbers constructed from the coefficients of C, and are nonzero for j ∈ {0, 1, 2, 3, 4, 6, 8, 12}. Therefore, we can choose Θ in such a way that 

log |θ j (τ )/θ 0 (τ )| ≤ B Θ,µ for j ∈ {4, 8}. Write τ = τ 1 τ 3 τ 3 τ 2 .
Jτ = -τ -1 , M 1 τ = τ + 1 0 0 0 , M 2 τ = τ + 0 0 0 1 , and 
M 3 τ = τ + 0 1 1 0 . Let γ i = (JM i ) 2 for 1 ≤ i ≤ 3.
Given theta quotients at τ , we compute the values of the modular functions b j = θ 2 j /θ 2 0 , 1 ≤ j ≤ 3 at τ and γ i τ for 1 ≤ i ≤ 3 using the transformation formula [START_REF] Mumford | Tata lectures on theta[END_REF]§II.5]. We obtain the quantities

1 θ 2 0 (γ i τ ) , 1 ≤ i ≤ 3
as the limits of Borchardt sequences with good sign choices [START_REF] Kieffer | Sign choices in the AGM for genus two theta constants[END_REF] starting from the tuples 1, b 1 (γ i τ ), b 2 (γ i τ ), b 3 (γ i τ ) . Finally, we use that

θ 2 0 (γ 1 τ ) = -iτ 1 θ 2 4 (τ ), θ 2 0 (γ 2 τ ) = -iτ 2 θ 2 8 (τ ), θ 2 0 (γ 3 τ ) = -det(τ )θ 2 0 (τ ). (12) 
In order to bound the complexity of this algorithm, we need estimates on the convergence of the Borchardt sequences above that are uniform in τ . We use the fact that theta constants converge quickly as the smallest eigenvalue λ 1 (τ ) of Im(τ ) tends to infinity. Moreover, λ 1 (γ i τ ) is bounded from below when τ ∈ F 2 and |τ | is not too large. Lemma 4.3. For every τ ∈ H 2 such that λ 1 (τ ) ≥ 1, we have

|θ j (τ ) -1| < 4.18 exp(-πλ 1 (τ ))
for 0 ≤ j ≤ 3.

Proof. Let 0 ≤ j ≤ 3. Using the series expansion of θ j , we obtain

|θ j (τ ) -1| ≤ n∈Z 2 \{0} exp(-πn t Im(τ )n) ≤ n∈Z 2 \{0} exp(-πλ 1 (τ ) n 2 ).
By splitting the plane into quadrants, we see that this last sum is equal to

4S 2 + 4S, with S = n≥1 exp(-πλ 1 (τ )n 2 ) ≤ exp(-πλ 1 (τ )) 1 -exp(-3πλ 1 (τ ))
.

Since λ 1 (τ ) ≥ 1, the conclusion follows.

Lemma 4.4. Let τ ∈ H 2 and γ ∈ Sp 4 (Z). Then

λ 1 (γτ ) ≥ det Im(τ ) 8|γ| 2 |τ |(2|τ | + 1) 2 .
Proof. We have

λ 1 (γτ ) ≥ det Im(γτ ) Tr Im(γτ )
.

By [50, (5.11) p. 57], we also have

Im(γτ ) = (γ * τ ) -t Im(τ )(γ * τ ) -1 so that det Im(γτ ) = det Im(τ ) |det(γ * τ )| 2 ,
and

Tr Im(γτ ) ≤ 8|(γ * τ ) -1 | 2 |Im(τ )| ≤ 8 |γ * τ | 2 |τ | |det(γ * τ )| 2 ≤ 8 |γ| 2 (2|τ | + 1) 2 |τ | |det(γ * τ )| 2 .
Proposition 4.5. There is an algorithm such that the following holds. Let τ ∈ F 2 and N ≥ 1. Then, given approximations of squares of theta quotients at τ to precision N, the algorithm computes an approximation of τ within

O M(N + |τ |) log|τ | + M(N) log N binary operations. The precision loss is O(log N + |τ | log|τ |) bits.
Proof. We obtain the quantities

(θ 2 j (2 n γ i τ )/θ 2 0 (γ i τ )) 0≤j≤3
after n Borchardt steps. By Lemma 4.4, we know that Then, we normalize so that one of the four values is 1, and continue performing a further O(log N) Borchardt steps: this O-constant and the accuracy of the result can be made explicit by [START_REF] Dupont | Moyenne arithmético-géométrique, suites de Borchardt et applications[END_REF]Prop. 7.2]. This costs O(M(N) log N) binary operations, and the precision loss is O(log N) bits. This allows us to compute the quantities θ 2 0 (γ i τ ) for 1 ≤ i ≤ 3; the precision loss up to now is O(log N + |τ | log|τ |) bits. Finally, we recover the entries of τ using eq. ( 12). This final computation costs O(N + |τ |) binary operations, and the precision loss is O(|τ |) bits.

|log λ 1 (γ i τ )| = O(log|τ |).
Theorem 4.6. There exists an algorithm and a finite recipe of algebraic extensions Θ such that the following holds. Let L be a number field, let j 1 , j 2 , j 3 ∈ L be such that j 3 = 0, let µ be a complex embedding of L, and define B Θ,µ as above. Let N ≥ 1. Then, given approximations of µ(j k ) for 1 ≤ k ≤ 3 to precision N, the algorithm computes a matrix τ ∈ F 2 such that the Igusa invariants at τ are the µ(j k ) for 1 ≤ k ≤ 3. The algorithm involves O M(N + B Θ,µ ) log(N + B Θ,µ ) binary operations, and a precision loss of O(log N + B Θ,µ log B Θ,µ ) bits.

Proof. First, we compute a curve C as in Proposition 4.1. Then, by Thomae's formula, there is a finite number of possibilities for the values of squares of theta quotients at τ ; one of them corresponds to an actual τ ∈ F 2 , and the others correspond to other elements in the orbit Γ(1)τ . When we attempt to run the algorithm of Proposition 4.5 on these inputs, we may discard all resulting period matrices that do not belong to F 2 . In order to distinguish between the remaining possible values of τ , it is usually enough to compute theta constants to precision O(1) using the naive algorithm, and match with the input. In extreme cases, we may resort to computing Igusa invariants at all remaining possible values of τ to precision O(N + B µ ) for the cost of O M(N + B µ ) log(N + B µ ) binary operations [START_REF] Kieffer | Certified Newton schemes for the evaluation of low-genus theta functions[END_REF]Thm. 5.2] 

Inverting the Hilbert embedding

Let F be a real quadratic field, and let R ∈ GL 2 (R) be the matrix defining the Hilbert embedding Φ F as in 2.2. Recall that for every τ ∈ H 2 , we denote by 0 < λ 1 (τ ) ≤ λ 2 (τ ) the two eigenvalues of Im(τ ). Lemma 4.7. There exists a constant C > 0 depending on F such that for every t = (t 1 , t 2 ) ∈ H 2 1 , we have

1 C λ 1 (Φ F (t)) ≤ min{Im(t 1 ), Im(t 2 )} ≤ Cλ 1 (Φ F (t)), 1 C λ 2 (Φ F (t)) ≤ max{Im(t 1 ), Im(t 2 )} ≤ Cλ 2 (Φ F (t))
. Proof. This is obvious from the formula [START_REF] Bröker | Modular polynomials for genus 2[END_REF].

Theorem 4.8. Let F be a real quadratic field, and let R be as above. Then there exist an algorithm, a constant C > 0, and a finite recipe of algebraic extensions Θ depending on F such that the following holds. Let L be a number field, let j 1 , j 2 , j 3 ∈ L be such that j 3 = 0, let µ be a complex embedding of L, and define B Θ,µ as in §4.1. Let C be a genus 2 hyperelliptic curve over C with Igusa invariants µ(j 1 ), µ(j 2 ), µ(j 3 ), and assume that Jac(C) has real multiplication by Z F . Let τ ∈ F 2 be a period matrix of C. Then there exists t = (t 1 , t 2 ) ∈ H 2 1 such that Φ F (t) ∈ H 2 is a period matrix of C, and |log(Im

t i )| ≤ CB Θ,µ for i = 1, 2.
Moreover, given an approximation of τ to precision N +CB Θ,µ , the algorithm computes t to precision N within O F (N + B Θ,µ ) binary operations.

Proof. By Lemma 4.2, if Θ is well chosen, we have

|τ | = O(B Θ,µ ).
The result would follow directly from Lemma 4.7 if there existed t ∈ H 2 1 such that τ = Φ F (t), but this is not always the case. In general, by [2, Lem. 

We claim that the heights of a, b, c, d, e must be in O F (B Θ,µ ) for some choice of Θ. We prove this by comparing the analytic and rational representations (see [1, §1.2]) of the endomorphism √ ∆ F on the complex abelian variety

A τ = C 2 /(τ Z 2 ⊕ Z 2 ).
By [START_REF] Birkenhake | Humbert surfaces and the Kummer plane[END_REF]Cor. 4.2], the rational representation of an endomorphism f in the image of

Z F inside End(A τ ) is of the form ρ R,τ (f ) =     n ma 0 md -mc mb + n -md 0 0 me n -mc -me 0 ma mb + n    
for some m, n ∈ Z.

On the other hand, the analytic representation ρ A,τ ( √ ∆ F ) of the endomorphism √ ∆ F of A τ can be computed as follows. Let ω = (ω 1 , ω 2 ) be a basis of differential forms on A τ such that Sym 2 (ω) corresponds by the Kodaira-Spencer isomorphism to a deformation of A τ along the Humbert surface. Then, the analytic representation of √ ∆ F in the basis ω is of the form

± √ ∆ F 0 0 - √ ∆ F .
Algorithm 4.6 in [START_REF] Kieffer | Computing isogenies from modular equations in genus two[END_REF] shows that such a basis ω exists; moreover the base change matrix m between (dz 1 , dz 2 ) and ω can be chosen such that

log max{|m|, |m -1 |} = O F (B Θ,µ ).
after extending Θ in a suitable way. Therefore, the analytic representation of √ ∆ F on A τ satisfies

log + ρ A,τ ( √ ∆) = O F (B Θ,µ ).
For every f ∈ End(A τ ), the rational and analytic representations of f are related by the following formula [START_REF] Birkenhake | Complex abelian varieties[END_REF]Rem. 8.14]:

ρ A,τ (f )(τ I 2 ) = (τ I 2 )ρ R,τ (f ).
Taking imaginary parts, we find that there exist m, n ∈ Z such that

Im(τ ) n ma -mc mb + n = Im ρ A,τ ( ∆ F )τ , Im(τ ) 0 md -md 0 = Im ρ A,τ ( ∆ F ) .
Therefore the heights of a, b, c, d, m, n are in O F (B Θ,µ ). The same is true for e by [START_REF] Dudeanu | Cyclic isogenies for abelian varieties with real multiplication[END_REF]. This proves our claim. Proof. Fix ε = 10 -2 , for instance. First, we apply Proposition 4.13 to compute γ such that γτ ∈ F ε 2 , using O Ξ(τ )M(Λ(τ )) log Λ(τ ) binary operations. Then, we recompute γτ to high precision, and reduce it further if necessary (using O(1) loops in the reduction algorithm 4.9) to land in F ε ′ 2 where ′ = 2 -N exp(C ′ Λ(τ )) for some appropriate constant C ′ . This further reduction step costs O(M(N + Λ(τ ))) binary operations. After that, we can increase the imaginary parts of the coefficients of γτ slightly and obtain

τ ′ ∈ F ′ 2 such that |τ ′ -γτ | ≤ C ′′ ε ′ |γτ |
for some absolute constant C ′′ . We output squares of theta constants evaluated at τ ′ to precision N + 1 using [27, Thm. 5.2]. Since derivatives of theta constants are uniformly bounded on a neighborhood on F 2 , the result is a suitable approximation of squared theta constants at γτ .

Evaluating Hilbert modular equations

In this final section, we describe the complete algorithm to evaluate Hilbert modular equations in Gundlach invariants for F = Q( √ 5). The algorithm is easily adapted to handle different choices of quadratic fields and invariants. The case of Siegel modular equations is even simpler, since the Hilbert embedding does not appear; we do not detail it and simply point out the differences in running time.

Analytic evaluation of modular equations

Let L be a number field, let (g 1 , g 2 ) ∈ L be a pair of Gundlach invariants, and let (j 1 , j 2 , j 3 ) be the associated Igusa invariants. We may assume that g 1 = 0 (i.e. j 3 = 0); otherwise, the denominator of modular equations vanishes. Choose β and ℓ as in §2.2, and let µ be a complex embedding of L. The following algorithm computes the numerator and denominator of Hilbert modular equations of level β in Gundlach invariants evaluated at (µ(g 1 ), µ(g 2 )).

Algorithm 5.1.

1. Compute a period matrix τ ∈ F 2 with Igusa invariants (µ(j 1 ), µ(j 2 ), µ(j 3 )) using Theorem 4.6.

2. Compute a matrix γ ∈ Sp 4 (Z) and t ∈ H 2 1 such that Φ F (t) = γτ using Theorem 4.8.

Consider the following set of symplectic matrices:

C τ = Φ F 1 0 0 β η • γ ∈ GSp 4 (Q).
Apply Proposition 2.3 to transform C τ into another set of representatives D τ ⊂ GSp 4 (Q) for the same orbits under Γ(1), consisting of matrices whose lower-left block is zero.

4. Compute squares of theta constants at all period matrices of the form ητ for η ∈ D τ using Theorem 4.14.

5. Build product trees as described in Lemma 3.1 to compute the numerators and denominator of Hilbert modular equations evaluated at t, using the formulas of §2.2.

To avoid complicated expressions, we hide logarithmic factors in the O notation from now on. Recall that Q β ∈ Q[J 1 , J 2 ] denotes the denominator of Hilbert modular equations Ψ β,k for 1 ≤ k ≤ 2 constructed in §2.2. Proposition 5.2. There exists a finite recipe of algebraic extensions Θ and a constant C > 0 such that the following holds. Let L be a number field, let µ be a complex embedding of L, let (g 1 , g 2 ) ∈ L 2 be such that g 1 = 0, define B Θ,µ as in §4.1, and let N ≥ C(B Θ,µ log B Θ,µ + log ℓ). Then, given approximations of µ(g 1 ) and µ(g 2 ) to precision N, Algorithm 5. By Theorem 4.14, the precision loss taken in the reduction algorithm applied on each ητ is O(B Θ,µ + log ℓ); the total cost of reduction is O(ℓ(N + B Θ,µ )) binary operations. Let γ η ∈ Γ(1) be the reduction matrix provided by the theorem. The total cost of computing all squared theta constants at the period matrices τ η = γ η (ητ ) in step 4 is O(ℓN). This yields the values of the modular forms h 4 , h 6 , h 10 , h 12 at the matrices τ η using O(ℓ) binary operations, with a further precision loss of O(1) bits.

1 computes µ(Q β (g 1 , g 2 )) and µ(Q β Ψ β,k (g 1 , g 2 )) for k ∈ {1,
In step 5, we evaluate g β (t) using eq. ( 10), and the relations satisfied by h 10 as a modular form: for instance, we have h 2 10 (ητ ) = (det γ * η (ητ )) -20 h 2 10 (τ η ), for each η ∈ D τ . By Lemma 4.11, the total precision loss in this computation is O(ℓ(B Θ,µ + log ℓ)); the total cost of computing g β (t) is O(ℓ(N + B Θ,µ )) binary operations. Up to a similar scalar factor, the polynomials µ(Ψ β,k (g 1 , g 2 )) for k ∈ {1, 2} are given by

η∈C σ β (F 10 (τ η )X + G 5 2 (τ η )) for k = 1, η∈C σ β G 5 2 (τ η ) η ′ ∈C σ β \{η} (F 10 (τ η ′ )X -G 2 2 (τ η ′ )F 6 (τ η ′ )) for k = 2.
By Lemma 3.1, these polynomials can be computed in O(ℓN) binary operations, with a precision loss of O(ℓ) bits. We conclude by summing precision losses and binary costs of each step.

In the case of Siegel modular equations, the complexity and precision loss estimates are similar, with each occurence of ℓ replaced by ℓ 3 .

Algebraic reconstruction

Once modular equations and their denominators have been computed in every complex embedding, we only have to recognize their coefficients as algebraic numbers. We present two results, one in the case of a finite field (generalizing Theorem 1.2), and the second in the case of a number field.

In the case of a finite field, we are given a prime power q = p d , and a monic polynomial P ∈ Z[X] of degree d, irreducible modulo p. We let M ≥ 1 such that log|P | ≤ M. We assume that a black box provides us with approximations of the roots of P to any desired precision. Then, we represent elements of F q as elements of F p [X]/(P ).

Theorem 5.3. There exists an algorithm such that the following holds.

Let β ∈ Z F for F = Q( √ 5) or Q( √ 8 
) be a totally positive prime, prime to the discriminant ∆ F , of prime norm ℓ ∈ Z. Then, given ℓ and g 1 , g 2 ∈ F q where the denominator of Hilbert modular equations Ψ β,k does not vanish, the algorithm computes

Ψ β,k (g 1 , g 2 ) ∈ F q [X] for k ∈ {1, 2} within O(ℓ 2 d log p + ℓ 2 d 2 M) binary operations.
If dM = O(log p), and in particular when q = p is prime, the cost estimate simplifies to O(ℓ 2 log q) binary operations. Theorem 1.1 stated in the introduction is the analogue of Theorem 5.3 for Siegel modular equations over prime finite fields, and is obtained by a similar proof, except that each occurrence of ℓ should be replaced by ℓ 3 .

Proof. Let L be the number field Q[X]/(P ), and let α be a root of P in L. We lift g 1 and g 2 to elements of Z[α] in such a way that the height of their coefficients is bounded above by log p. Then the following inequalities hold: h(α) ≤ M + log 2, and max{h(g 1 ), h(g 2 )} ≤ log(p) + dh(α) + log(d) = O(dM + log p).

Since Q β and the coefficients of Q β Ψ β,k are polynomials in Z[g 1 , g 2 ] of degree O(ℓ) and height O(ℓ log ℓ), the algebraic numbers we have to recognize are all elements of Z[α], and the height of their coefficients is O(ℓ log ℓ + ℓdM + ℓ log p). By Proposition 3.3, we can recognize each coefficient within O(ℓd 2 M +ℓd log p) binary operations, provided that its images under all complex embeddings of L are computed to precision C(ℓ log ℓ + ℓdM + ℓ log p), where C is a suitable absolute constant.

Let µ be a complex embedding of L, and choose a starting precision N. Then µ(g 1 ) and µ(g 2 ) are obtained by replacing α by one of the complex roots of P : this can be done within O(d(M + N)) binary operations, and a precision loss of O(dM + log p) bits, using Horner's algorithm. We run Algorithm 5.1 for each complex embedding µ of L; let Θ be the finite recipe of algebraic extensions provided by Proposition 5. If g 1 , g 2 ∈ Z are small integers, then the complexity of evaluating modular equations is quasi-linear in the output size. The complexity of evaluating Hilbert modular equations over a number field of degree d over Q can also be bounded above in terms of the discriminant and the height of the operands. We assume that an LLL-reduced integer basis of the number field L has been precomputed. Moreover, if m L is the matrix defined in Proposition 3.4, we assume that a black box provides us with the coefficients of m -1 L to any desired precision.

Theorem 5.5. There exists an algorithm such that the following holds. Let H ≥ 1, and let g 1 , g 2 ∈ L given as quotients of integers of height at most H such that Q β (g 1 , g 2 ) = 0. Then the algorithm computes Ψ β,k (g 1 , g 2 ) ∈ L[X] for k ∈ {1, 2} within O(ℓ 2 d 2 H + ℓd 2 log ∆ L + ℓd 4 ) binary operations.

In the case L = Q, the cost estimate simplifies to O(ℓ 2 H) binary operations, thus generalizing Theorem 5.4.

Proof. For simplicity, assume that g 1 and g 2 are actually integers: in the general case we multiply Q β by an appropriate power of a common denominator of g 1 and g 2 in Z L . We know that Q β and the coefficients of Q β Ψ β,k are polynomials in Z[J 1 , J 2 ] of degree O(ℓ) and height O(ℓ log ℓ): their evaluations at (g 1 , g 2 ) are therefore algebraic integers of height O(ℓH). By Proposition 3.4, we can recognize each coefficient within O(d 2 ℓH + d 2 log ∆ L + d 4 ) binary operations, provided that complex approximations are computed to a high enough precision N. It suffices to take N in O(log ∆ L + dℓH + d 2 ).

In order to obtain these approximations, we run Algorithm 5.1 for each complex embedding µ of L. The starting precision is chosen in O(log ∆ L + dℓH + ℓB Θ,µ + d 2 ), for a suitable recipe of algebraic extensions Θ. Therefore, the cost to compute the required complex approximations in the embedding µ is O(ℓ 2 B Θ,µ + ℓ log ∆ L + dℓ 2 H + ℓd 2 ) binary operations. The sum of the bounds B Θ,µ is in O(dH), hence the total cost over all embeddings is O(ℓ 2 d 2 H + ℓd log ∆ L + ℓd 3 ) binary operations.

These evaluation algorithms for modular equations can be modified to output derivatives of modular equations as well, as in Theorems 1.1 and 1.2, for the same asymptotic cost. Indeed, the algorithm of [START_REF] Kieffer | Certified Newton schemes for the evaluation of low-genus theta functions[END_REF] actually computes derivatives of theta constants as well; moreover, Q 2 ℓ and Q 2 β can be used as denominators for derivatives of modular equations. Algorithm 5.1 can be formally differentiated to compute analytic approximations of derivatives of modular equations from derivatives of theta constants. One can check that the precision losses taken in the resulting algorithm remain within the asymptotic bounds given in Proposition 5.2.

  binary operations, with a precision loss of O(C + dB) bits.Proof. We use product trees[5, §I.5.4]. For each 0 ≤ m ≤ ⌈log 2 (d)⌉, the m-th level of the product tree to compute P consists of 2 ⌈log 2 (d)⌉-m products of (at most) 2 m factors of the form x i X + y i . Hence, for every polynomial R appearing at the m-th level, we have deg(R) ≤ 2 m and log + |R| = O(2 m B).

d

  successive minima of Z L . They satisfy the following inequality [46, Chap. 2, Thm. 5]: ∆ L , where α d ≤ 1 + d 4 denotes Hermite's constant [46, Chap. 2, Cor. 3]. There exist several definitions of a reduced Z-basis (a 1 , . . . , a d ) of Z L in the literature, which are usually formulated in terms of the coefficients of the base-change matrix from (a 1 , . . . , a d ) to its Gram-Schmidt orthogonalization. We will use the following properties of such bases: • If (a 1 , . . . , a d ) is HKZ-reduced [46, Chap. 2, Thm. 6], then for each 1 ≤ k ≤ d, we have

F 2 [= y 1 y 3 y 3 y 2

 22 32, Chap. I], and define certain open neighborhoods of this domain. Fix ε ≥ 0, and let Y

Lemma 4 . 2 .

 42 There exists a finite recipe of algebraic extensions Θ such that the following holds. Let C be as in Proposition 4.1, and let τ ∈ F 2 be a period matrix of C. Then we have |τ | = O(B Θ,µ ).

  By [50, Prop. 7.7], we have |θ 0 (τ ) -1| < 0.405, |θ 4 (τ )/ exp(iπτ 1 /4) -1| < 0.368, |θ 8 (τ )/ exp(iπτ 2 /4) -1| < 0.368. Therefore both Im(τ 1 ) and Im(τ 2 ) are in O(B Θ,µ ), hence also |Im(τ 3 )| because det Im(τ ) > 0. Since τ ∈ F 2 , we have |Re(τ )| ≤ 1/2 and the result follows. In order to compute τ from the values of theta quotients, we use Borchardt sequences [14, §9.2.3]. Define the matrices J, M 1 , M 2 , M 3 ∈ Sp 4 (Z) whose actions on τ ∈ H 2 are given by

Therefore, we can

  choose n = O(log|τ |) such that λ 1 (2 n γ i τ ) ≥ 10, for instance. Up to this point, we performed O(log|τ |) elementary operations with complex numbers z such that log|z| = O(|τ |). Therefore the total cost is O(M(N + |τ |) log|τ |) binary operations, and the precision loss is O(|τ | log|τ |) bits. Even if |τ | is not known explicitly, this moment is detected in the algorithm as when the four values in the Borchardt sequence get very close to each other.

  4.1], there exist coprime integers a, b, c, d, e such that b 2 -4ac -4de = ∆ F and aτ 1 + bτ 3 + cτ 2 + d det(τ ) + e = 0.

1 .

 1 a matrix γ ∈ Sp 4 (Z) such that log|γ| = O(Λ(τ )), 2. a matrix τ ′ ∈ F 2 such that τ ′ is an approximation of γτ to precision N, 3. an approximation of squares of theta constants at γτ to precision N, within O Ξ(τ )M(Λ(τ )) log Λ(τ ) + M(N) log N binary operations.

  2} within O(ℓB Θ,µ +ℓN) binary operations, with a precision loss of O(ℓB Θ,µ + log N) bits. Proof. Steps 1 and 2 can be performed in O(N +B Θ,µ ) binary operations with a precision loss of O(log N + B Θ,µ log B Θ,µ ) bits, by the results cited above. We have log|γ| = O(B Θ,µ ); therefore the elements of C τ have coefficients of height O(B Θ,µ + log ℓ). In step 3, the set D τ can then be computed in O(ℓB Θ,µ ) binary operations by Proposition 2.3. For each η ∈ D τ , we have Ξ(ητ ) = O(log ℓ).

2 .

 2 It suffices to choose N in O(ℓdM + ℓ log p + ℓB Θ,µ ). The cost of Algorithm 5.1 is then O(ℓ 2 dM +ℓ 2 log p+ℓB Θ,µ ) binary operations, for each µ. Since we have µ B Θ,µ = O(d log p + d 2 M), total cost of analytic evaluations over all embeddings is O(ℓ 2 d log p + ℓ 2 d 2 M) binary operations, and dominates the cost of algebraic reconstruction.

Theorem 5 . 4 .

 54 There exists an algorithm such that the following holds. Given the prime ℓ and g 1 , g 2 ∈ Z such thatmax{|g 1 |, |g 2 |} ∈ O(1) and Q β (g 1 , g 2 ) = 0, the algorithm computes the polynomials Ψ β,k (g 1 , g 2 ) ∈ Q[X] for k ∈ {1, 2} within O(ℓ 2 ) binary operations.Proof. In this case, we have B Θ,µ = O(1). It is sufficient to round the result of Proposition 5.2 with N = Cℓ log ℓ, where C is an absolute constant, to the nearest integers.

  2 , J 3 is bounded above by ⌊w/6⌋, ⌊w/12⌋, ⌊w/12⌋ respectively, and the total degree of Q f is bounded above by ⌊w/6⌋.

	Proof. By Lemma 2.1, we can rewrite the right hand side as
	⌊w/6⌋ h 4 h b 4 10 h a	F
	for some F ∈ Z[h 4 , h 6 , h 10 , h 12 ]. Then the equalities
	h 4 h 6 = j 1 h 10 , h 2 4 h 12 = j 2 h 2 10 , h 5 4 = j 3 h 2

show that this quotient can be rewritten as a polynomial in j 1 , j 2 , j 3 with integer coefficients satisfying the required degree bounds, as detailed in[START_REF] Kieffer | Degree and height estimates for modular equations on PEL Shimura varieties[END_REF] Lem. 4.7]. The resulting polynomial Q f is unique because j 1 , j 2 , j 3 are algebraically independent.

The algorithm to compute t is the following. We compute the integers a, b, c, d, e in O F (B Θ,µ ) binary operations with the LLL algorithm [START_REF] Novocin | An LLL-reduction algorithm with quasilinear time complexity[END_REF], using eq. [START_REF] Dudeanu | Cyclic isogenies for abelian varieties with real multiplication[END_REF]. Then, we use the algorithm from [START_REF] Birkenhake | Humbert surfaces and the Kummer plane[END_REF]Prop. 4.5] to compute a matrix γ ∈ Γ(1) such that γτ lies in the image of Φ F ; the matrix γ has a simple expression in terms of a, b, c, d, e, hence we also have

By Lemma 4.4, we also have

so the result follows from Lemma 4.7.

Computing theta constants

We now turn to the problem of evaluating theta constants at a given period matrix. We crucially rely on the following fact: given τ ∈ F 2 (for instance a matrix with dyadic entries), one can evaluate theta constants at τ to any desired precision N ≥ 0 in uniform quasi-linear time O(M(N) log N) [START_REF] Kieffer | Certified Newton schemes for the evaluation of low-genus theta functions[END_REF]Thm. 5.2]. When given a general τ ∈ H 2 , the standard strategy is to reduce τ and compute a symplectic matrix γ ∈ Γ(1) such that γτ is very close to F 2 . Then we increase the imaginary parts of the coefficients of γτ slightly to obtain an actual period matrix τ ′ ∈ F 2 . Computing theta constants at τ ′ yields good approximations of the value of theta constants at γτ .

We now describe the approximate reduction algorithm, which mimics [START_REF] Streng | Computing Igusa class polynomials[END_REF]Alg. 6.8]. The input consists a matrix τ ∈ H 2 to some precision N ≥ 1, and the output is a matrix γ ∈ Sp 4 (Z) such that γτ ∈ F ε 2 . We assume that the current precision remains greater than |log 2 ε| + 1 at any time; if we run out of precision, we stop and output "failure". Algorithm 4.9 (Reduction to F ε 2 ). Start with τ ′ = τ and iterate the following three steps until

4. Update γ ∈ Γ(1) and recompute τ ′ = γτ .

In order to analyze Algorithm 4.9, we mimic the analysis of the exact reduction algorithm [51, §6]. First, we detail the Minkowski reduction step. Lemma 4.10. There exists an algorithm and an absolute constant C such that the following holds. Let τ ∈ H 2 and ε > 0. Then, given an approximation of τ to precision N ≥ CΛ(τ ) + |log 2 ε|, the algorithm computes

Proof. Write Im(τ ) = R t R, and consider the matrix R ′ obtained by rounding the coefficients of 2 N R to the nearest integers. If C is chosen appropriately, then the matrix R ′ is still invertible. We apply a quasi-linear version of Gauss's reduction algorithm to R ′ [START_REF] Yap | Fast unimodular reduction: planar integer lattices[END_REF], and obtain a reduced basis of the lattice R ′ Z 2 within O(M(N) log N) binary operations. The base change matrix U ∈ SL 2 (Z) must satisfy

by [START_REF] Streng | Computing Igusa class polynomials[END_REF]Lem. 6.6]. Therefore, the matrix U t Im(τ )U will be ε-Minkowski reduced if C is large enough.

Then, we bound precision losses during the execution of Algorithm 4.9.

Lemma 4.11. Let τ, τ ′ ∈ H 2 , and assume that there exists γ ∈ Γ(1) such that τ ′ = γτ . Then we have

Proof. Let R be a real matrix such that R t R = Im(τ ). Then we have Lemma 4.12. There is an absolute constant C such that the following holds. Let τ ∈ H 2 and ε > 0, and assume that the precision during Algorithm 4.9 remains greater than |log 2 ε|+1. Then the number of loops is O(Ξ(τ )). Moreover, during the algorithm, the quantities log |det(γ * τ )| , Λ(τ ′ ) and log|γ| remain in O(Λ(τ )).

Proof. The number of iterations is O(Ξ(τ )) by [START_REF] Streng | Computing Igusa class polynomials[END_REF]Prop. 6.16]: observe that [51, Lem. 6.11 and 6.12] still apply, because det Im(τ ′ ) is strictly increasing in Algorithm 4.9. The proof of [START_REF] Streng | Computing Igusa class polynomials[END_REF]Lem. 6.16] also applies to Algorithm 4.9 with slightly worse constants. This shows that log|τ ′ | and log|det(γ

During the algorithm, we have log + m 2 (τ ′ ) = O(Λ(τ )) by [START_REF] Streng | Computing Igusa class polynomials[END_REF]Lem. 6.13]. Moreover det Im(τ ′ ) ≥ det Im(τ ), so

by [START_REF] Cox | Primes of the form x 2 + ny 2[END_REF]. Therefore we also have Λ(τ ′ ) = O(Λ(τ )). The remaining bounds follow from Lemma 4.11. Proof. By Lemma 4.12, there is a constant C ′ such that log|γ| ≤ C ′ Λ(τ ) during the execution of Algorithm 4.9 as long as the absolute precision is at least |log 2 ε| + 1. Therefore, if C is chosen appropriately, step 4 in Algorithm 4.9 ensures that the absolute precision is at least |log 2 ε| + 1 at every step. Hence the estimate on log|γ| and Λ(τ ′ ) remains valid until the end of the algorithm, and we can perform the approximate Minkowski reductions using Lemma 4.10. By Lemma 4.12, there are O(Ξ(τ )) steps in Algorithm 4.9, and by Lemma 4.10, each step costs O(M(N) log N) binary operations. When the algorithm stops, the absolute precision is still greater than |log 2 ε| + 1, so the final τ ′ belongs to F ε 2 .

Theorem 4.14. There exist an algorithm and an absolute constant C such that the following holds. Let τ ∈ H 2 and N ≥ 1. Then, given an approximation of τ to precision N + CΛ(τ ), the algorithm computes