Path-Complete Lyapunov Functions for Continuous-Time Switching Systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Path-Complete Lyapunov Functions for Continuous-Time Switching Systems

Résumé

We use a graph-theory-based argument to propose a novel Lyapunov construction for continuous-time switching systems. Starting with a finite family of continuously differentiable functions, the inequalities involving these functions and the vector fields of the switching system are encoded in a direct and labeled graph. Relaying on the (path-)completeness of this graph, we introduce a signal-dependent Lyapunov function, providing sufficient conditions for stability under fixed-time or dwell-time switching hypothesis. For the case of linear systems, our conditions turn into linear matrix inequalities (LMI), and thus they are compared with previous results, via numerical examples .
Fichier principal
Vignette du fichier
MainReviewHAL.pdf (382.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02971179 , version 1 (19-10-2020)

Identifiants

Citer

Matteo Della Rossa, Mirko Pasquini, David Angeli. Path-Complete Lyapunov Functions for Continuous-Time Switching Systems. 59th Conference on Decision and Control (CDC) 2020, Dec 2020, Jeju Island (virtual conference), South Korea. ⟨10.1109/CDC42340.2020.9304192⟩. ⟨hal-02971179⟩
158 Consultations
212 Téléchargements

Altmetric

Partager

More