Path-Complete Lyapunov Functions for Continuous-Time Switching Systems
Résumé
We use a graph-theory-based argument to propose a novel Lyapunov construction for continuous-time switching systems. Starting with a finite family of continuously differentiable functions, the inequalities involving these functions and the vector fields of the switching system are encoded in a direct and labeled graph. Relaying on the (path-)completeness of this graph, we introduce a signal-dependent Lyapunov function, providing sufficient conditions for stability under fixed-time or dwell-time switching hypothesis. For the case of linear systems, our conditions turn into linear matrix inequalities (LMI), and thus they are compared with previous results, via numerical examples .
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...