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Switching Systems

Matteo Della Rossa Mirko Pasquini David Angeli *
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Abstract

We use a graph-theory-based argument to propose
a novel Lyapunov construction for continuous-time
switching systems. Starting with a finite family of
continuously differentiable functions, the inequalities
involving these functions and the vector fields of the
switching system are encoded in a direct and labeled
graph. Relaying on the (path-)completeness of this
graph, we introduce a signal-dependent Lyapunov
function, providing sufficient conditions for stability
under fixed-time or dwell-time switching hypothesis.
For the case of linear systems, our conditions turn
into linear matrix inequalities (LMI), and thus they
are compared with previous results, via numerical ex-
amples.

1 Introduction

Switching dynamical systems form a large subclass
of hybrid systems [1], providing a modeling struc-
ture for many physical phenomena. In this setting,
Lyapunov tools for stability/stabilization have been
deeply studied in the past decades, (see for example
the survey [2] or [3]).

Throughout this note we consider a finite family
of vector fields f1, . . . , fK ∈ C1(Rn,Rn). To model
the evolution of trajectories resulting from time-
dependent switching among these individual subsys-
tems, we introduce the switched system

ẋ(t) = fσ(t)(x(t)), (1)
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where σ : R→ {1, . . . ,K} is a time-dependent signal.
Assessing the stability of (1) under specific classes of
switching signals is a challenging task, see for exam-
ple [1, Chapter 2], [4] and [5] for a thorough discus-
sion.

Moreover, stability of the discrete-time counterpart
of (1), (i.e. considering subsystems defined by x+ =
fj(x), j ∈ {1, . . . ,K} and signals σ : N→ {1, . . .K})
has also attracted attention in the past years, see [6],
[3]. Recently, in the context of discrete-time linear
switching systems, [7] and [8] introduced and stud-
ied the notion of path-complete Lyapunov functions:
starting from a finite family of quadratic functions
V := {Vs}s∈S ⊂ C1(Rn,R), the inequalities involving
these functions and the system-data are encoded in
a direct and labeled graph G = (S,E). More pre-
cisely: given A := {A1, . . . AK} ⊂ Rn×n, the edge
(a, b, j) ∈ E if and only if Vb(Ajx) ≤ Va(x), for all
x ∈ Rn. This relation intuitively means that, af-
ter a discrete-time step, the sublevel sets of Va are
mapped into the corresponding sublevel sets of Vb
by the discrete-time system x+ = Ajx. Graph the-
ory tools are then used to study the stability of the
difference inclusion x+ ∈ co{A1x, . . . , AKx}, propos-
ing conditions which rely on the topological proper-
ties (path-completeness) of the corresponding graph
G = (S,E).

This intuition can be applied in the continuous-
time case, and this is the main contribution of this
article. We recall that a frequent assumption on sig-
nals σ : R+ → {1, . . . ,K} is that there exists a min-
imum time-threshold, a so-called dwell-time, during
which no switching occurs. Under this dwell-time as-
sumptions, the behavior of a continuous-time switch-
ing systems (1) somehow approaches/mimics the evo-
lution of a discrete-time switching system, and thus
a graph-based Lyapunov approach seems promising
also in this context.

It is appropriate to point out that stability of (1)
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under dwell-time assumption is a well-studied prob-
lem. When considering linear sub dynamics, (i.e.
fj(x) ≡ Ajx, with Aj ∈ Rn×n for all j ∈ {1, . . . ,K}),
it is well known that, if all the matrices A1, . . . , AK
are Hurwitz, there exists a (large enough) dwell-
time for which the switched system (1) is asymp-
totically stable [9, Lemma 2]. In this context, var-
ious numerical approximations of the minimal dwell-
time τdw ∈ R+ for which system (1) is stable have
been proposed, most of them relying on Lyapunov-
functions approaches: in [10] a family of quadrat-
ics is used to give lower-bounds on τdw, construct-
ing Lyapunov functions decreasing between switching
but possibly increasing at switching instants. In [11],
a different construction involving quadratic functions
is proposed, with the peculiarity that the resulting
Lyapunov functions are non-increasing (but possibly
discontinuous) at every switching instant. In [12], a
sum-of-square Lyapunov functions approach is inves-
tigated, while in [13] the authors made use of ho-
mogeneous polynomial functions; in [14], polyhedral
Lyapunov functions are considered. Regarding con-
verse Lyapunov constructions in this setting, see the
result presented in [15, Corollary 6.5].

In this paper, we exploit the path-complete graphs
formalism in studying stability of continuous-time
nonlinear switching systems under dwell-time as-
sumptions. In Section 2 we recall the main defini-
tions, while in Section 3 we introduce a continuous-
time counterpart of the correspondence that links
edges and inequalities, introduced in [7] in the
discrete-time setting. This will permit us to define,
given any switching signal σ, time-dependent Lya-
punov functions as a linear-interpolation between a
finite number of continuously differentiable functions,
similarly to [11]. Under path-completeness of the
resulting graph, this construction leads to sufficient
conditions for stability of (1), under fixed-time or
dwell-time assumptions. Our conditions depend on
the chosen dwell-time (or fixed-time) τ > 0, and thus
they could be compared, in the linear case, with the
previously cited results contained in [10], [11]. This
comparison is carried out in Section 4 with the help
of two numerical examples, showing that the same
minimal dwell-times are obtained.
Notation: The symbol R+ denotes the set of non-
negative real numbers, i.e R+ := {x ∈ R | x ≥ 0}. A
function α : R+ → R is positive definite (α ∈ PD)
if it is continuous, α(0) = 0, and α(s) > 0, for all
s ∈ R+ \ {0}. A function α : R+ → R is of class K
(α ∈ K) if it is positive definite and strictly increas-

ing; it is of class K∞ if, in addition, it is unbounded.
A continuous function β : R+ × R+ → R+ is said
to be of class KL if β(·, r) is class K for any fixed
r ∈ R+ and, for any fixed s > 0, β(s, ·) is decreasing
and limr→∞ β(s, r) = 0.

2 Preliminaries

2.1 Setting and Definitions

Consider a finite family of vector fields F :=
{f1, . . . , fK} ⊂ C1(Rn,Rn). We study the switched
system

ẋ(t) = fσ(t)(x(t)). (2)

Defining I := {1, . . .K}, the switching signals σ are
selected, in general, among the set S defined by

S := {σ : R+ → I | σ piecewise constant} . (3)

Without loss of generality we suppose that signals
σ ∈ S are right-continuous. Given a σ ∈ S, we define
the sequence of switching instants, that is the points
at which σ is discontinuous, and we denote it by {tσi }.
The sequence {tσi } may be infinite or finite, possibly
reduced to the initial instant t0 := 0; if it is infinite,
then it is divergent; see Figure 1 for an example of
σ ∈ S. Given a point x0 ∈ Rn, and a signal σ ∈ S,
we denote with x(t, x0, σ) the solution of (2) starting
at x0, evaluated at some instant t ≥ 0.

Definition 1. Consider F := {f1, . . . , fK} ⊂
C1(Rn,Rn) and a set of switching signals Ŝ ⊂ S. The

switched system (2) is said to be globally stable on Ŝ
if for all σ ∈ Ŝ, there exists an α ∈ K∞ such that

|x(t, x0, σ)| ≤ α(|x0|),

for all x0 ∈ Rn and for all t ≥ 0.
System (2) is said to be globally asymptotically sta-

ble on Ŝ, if for all σ ∈ Ŝ, there exists an β ∈ KL such
that

|x(t, x0, σ)| ≤ β(|x0|, t),
for all x0 ∈ Rn and for all t ≥ 0. 4

It is well-known that (asymptotic) stability of (2)
with respect to all the switching signals σ ∈ S is
equivalent to (asymptotic) stability of the differential
inclusion

ẋ(t) ∈ co{fj(x) | j ∈ I}, (4)

where co(C) denote the convex hull of a set C ⊂ Rn,
see [3, Section 2] for the technical details.
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In this article we will consider two proper sub-
classes of S. Given a τ > 0, we define the class of
fixed-time switching signals, as the set

Sfix(τ) :=

{
σ ∈ S | t

σ
i − tσi−1

τ
∈ N, ∀tσi > 0

}
, (5)

and the class of dwell-time switching signals, given by

Sdw(τ) :=
{
σ ∈ S | tσi − tσi−1 ≥ τ, ∀ tσi > 0

}
. (6)

2.2 Graphs and Path-Completeness

Our main goal is the study of stability of (2), using a
multiple-Lyapunov functions approach. For this rea-
son we introduce a formalism that permits us to rep-
resent inequalities involving multiple Lyapunov func-
tions by graphs.

Given a discrete alphabet I ⊂ N, a direct and la-
beled graph G = (S,E) is defined by a finite set S (the
set of nodes) and E ⊂ S × S × I (the set of edges).

Definition 2 (Path-Completeness). A graph G =
(S,E) is path-complete for I if, for any K ≥ 1 and
any “word” j1 . . . jK , with jk ∈ I, there exists a
path {(sk, sk+1, jk)}1≤k≤K such that (sk, sk+1, jk) ∈
E, for each 1 ≤ k ≤ K. 4

This formalism was introduced in [7] and [8] in
the context of discrete-time switched systems. For
a thorough discussion and several examples of path-
complete graphs we refer to [7].

In what follows we analyze how these ideas can be
adapted in the continuous-time setting.

3 Path-Complete Lyapunov
Functions

3.1 Main Stability Results

Definition 3. Given a finite set S, a candidate
vector-valued Lyapunov function is a map V : Rn →
R|S|, such that V` ∈ C1(Rn,R) is positive definite and
radially unbounded for each ` ∈ S. More explicitly,
for all ` ∈ S, there exists α`, α` ∈ K∞ such that

α`(|x|) ≤ V`(x) ≤ α`(|x|), ∀x ∈ Rn. 4

Given the system (2), let us fix a threshold τ >
0 and consider a candidate vector-valued Lyapunov
function V : Rn → R|S|. Given a, b ∈ S and j ∈ I,

we say that there is an edge (a, b, j)τ ∈ E if

{
〈∇Va(x), fj(x)〉 ≤ 1

τ (Va(x)− Vb(x)) ∀x ∈ Rn,
〈∇Vb(x), fj(x)〉 ≤ 1

τ (Va(x)− Vb(x)) ∀x ∈ Rn.
(7)

Where there is no ambiguity, we will drop the sub-
script τ . With this definition, to each candidate
vector-valued Lyapunov function V : Rn → R|S| we
can associate a direct and labeled graph G = (S,E)
over the alphabet I. More precisely, given V : Rn →
R|S|, the associated graph G = (S,E) is defined by:
(a, b, j)τ ∈ E if and only if inequalities (7) are satis-
fied by Va, Vb, and fj . We can thus give the following
stability results

Theorem 1. Consider a τ > 0, a finite set S, and
V : Rn → R|S| a candidate vector-valued Lyapunov
function. If the associated graph G = (S,E) is path-
complete for I then system (2) is globally stable on
Sfix(τ).

Proof. The main idea is the following: for any σ ∈
Sfix(τ), we construct a positive definite and contin-
uous function W : R+ × Rn → Rn non-increasing
along solutions of (2), for any initial point x0 ∈ Rn.
Consider σ ∈ Sfix(τ), we construct recursively the
associated “word” as follows: for each tσi > 0 con-

sider the number n(i) =
tσi −t

σ
i−1

τ ; by definition of
Sfix(τ), n(i) ∈ N. If σ(tσi−1) = j, then add a
string of j’s of length n(i). If the sequence {tσi }
is finite, add an infinite sequence of jM ’s , where
jM = σ(max{tσi }), see Fig. 1 for a graphical interpre-
tation. By path-completeness of G, we can consider
a path in G = (V,E) corresponding to this sequence.
Suppose that the first arch of the selected path is
(a, b, j)τ ∈ E, for some a, b ∈ S and j ∈ I. Define
the function W on [0, τ ]× Rn by

W (t, x) :=
τ − t
τ

Va(x) +
t

τ
Vb(x) ∀t ∈ [0, τ ]. (8)

Consider x0 ∈ Rn, we want to show that
W (·, x(·, x0, σ)) : [0, τ ] → R is decreasing. Comput-
ing the derivative of W along the solution x(t) :=
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Figure 1: An example of switching signal
σ : R+ → I := {1, 2, 3}, σ ∈ Sfix(τ)
and the associated word, that is, the sequence
(1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 3, 2, . . . ) ∈ IN.

x(t, x0, σ) we have

Ẇ (t, x(t)) = 〈∂W
∂x

(t, x(t)), fj(x(t))〉+
∂W

∂t
(t, x(t))

=
τ − t
τ
〈∇Va(x(t)), fj(x(t))〉

+
t

τ
〈∇Vb(x(t)), fj(x(t))〉+

Vb(x(t))− Va(x(t))

τ

=
τ − t
τ

(
〈∇Va(x(t)), fj(x(t))〉+

Vb(x(t))− Va(x(t))

τ

)
+
t

τ

(
〈∇Vb(x(t)), fj(x(t))〉+

Vb(x(t))− Va(x(t))

τ

)
.

Since (a, b, j)τ ∈ E, by definition (7), we thus have
Ẇ (t, x(t)) ≤ 0, for all t ∈ (0, τ). Since W ( · , x( · )) :
[0, τ ]→ R+ is absolutely continuous, this implies that
it is non-increasing. Noting that W (τ, x) = Vb(x) for
all x ∈ Rn, we can iterate this argument for every
subinterval of R+ of length τ , following the path in G
corresponding to the chosen switching signal σ. Since
x0 ∈ Rn was arbitrary, the obtained function W :
R+×Rn → R is continuous and non-increasing along
solutions of (2). Moreover W is positive definite and
radially unbounded in x, uniformly in the t variable,
since, recalling Definition 3 and by construction (8),
we have

min
`∈S

α`(|x|) ≤W (t, x) ≤ max
`∈S

α`(|x|),

for all (t, x) ∈ R+ × Rn. By arbitrariness of σ ∈
Sfix(τ) and by a standard comparison argument (see
for example [16, Theorem 4.8]) we conclude that (2)
is stable on Sfix(τ).

Remark 1. In the context of dwell-time linear
switched systems, the idea of constructing Lyapunov
functions via linear interpolation as in (8), is used
also in [11, Theorem 1], proposing inequalities similar
to the ones presented in (7). On the other hand, the

“global” construction proposed here is peculiar, since
it relies on the structure of path-complete graphs and
the set of required inequalities strongly depends on
the chosen graph. This choice could be somehow
suggested by the structure of the problem, or could
be seen as a factor of flexibility, since many path-
complete graphs (and thus many sets of inequalities)
could be “explored” to have sufficient conditions for
global (asymptotic) stability of (2). For a deeper
comparison, see the following Section 4. 4

This reasoning can be also applied for studying the
stability on the class Sdw(τ); we need the following
statement.

Lemma 1. Let us consider Va, Vb ∈ C1(Rn,R), fj ∈
C1(Rn,Rn) and τ > 0. Then{

(a, b, j)τ ∈ E,
(a, b, j)2τ ∈ E,

⇒ (a, b, j)τ̃ ∈ E, ∀ τ̃ ∈ [τ, 2τ ].

(9)

Proof. Recalling (7), the first inequalities encoded in
the edges (a, b, j)τ ∈ E and (a, b, j)2τ ∈ E are, re-
spectively,

〈∇Va(x), fj(x)〉 ≤ 1
τ (Va(x)− Vb(x)) ∀x ∈ Rn,

〈∇Va(x), fj(x)〉 ≤ 1
2τ (Va(x)− Vb(x)) ∀x ∈ Rn.

Consider any λ ∈ [0, 1], we multiply these inequalities
by λ and (1− λ) respectively. Adding we obtain

〈∇Va(x), fj(x)〉 ≤ λ
τ (Va(x)− Vb(x)) + 1−λ

2τ (Va(x)− Vb(x))

= 1+λ
2τ (Va(x)− Vb(x)).

Since the function φ : [0, 1]→ [1, 2] defined by φ(λ) =
2

1+λ is bijective, we conclude that

〈∇Va(x), fj(x)〉 ≤ 1

τ̃
(Va(x)− Vb(x)), ∀ τ̃ ∈ [τ, 2τ ].

Using the same reasoning for the second inequalities
encoded in (a, b, j)τ , (a, b, j)2τ ∈ E, implication (9)
holds.

Corollary 1 (Dwell-Time). Consider a finite set S,
and V : Rn → R|S| a candidate vector-valued func-
tion. Consider a τ > 0. Suppose the associated
graph G = (S,E) is path-complete for I, and for all
(a, b, j)τ ∈ E also (a, b, j)2τ ∈ E. Then system (2) is
stable on Sdw(τ).

Proof. Consider any σ ∈ Sdw(τ), for any tσi > 0 de-

fine n(i) = b t
σ
i −t

σ
i−1

τ c, where, given a r ∈ R, brc de-
notes the greatest integer less than or equal to r. By
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definition of Sdw(τ) in (6), n(i) ≥ 1, for all tσi > 0.
Similarly to proof of Theorem 1, we construct the
“word” associated to σ as follows: for each tσi > 0, if
σ(tσi−1) = j, then add a string of j’s of length n(i). If
the sequence {tσi } is finite, add an infinite sequence
of jM ’s, where jM = σ(max{tσi }). It suffices now to
consider the path in G = (S,E) corresponding to this
word. We define the function W : R+ × Rn → Rn as
in proof of Theorem 1, with the peculiarity that here
we split each interval [tσi−1, t

σ
i ] in n(i)−1 sub-intervals

of length τ , namely[
tσi−1, t

σ
i−1 + τ

]
,
[
tσi−1 + τ, tσi−1 + 2τ

]
, . . .

and one last sub-interval,
[
tσi−1 + (n(i)− 1) τ, tσi

]
.

By definition of Sdw(τ) and n(i), this last sub-interval
has length equal to tσi − tσi−1 − (n(i)− 1) τ ∈ [τ, 2τ).
Recalling Lemma 1, it is easy to adapt the construc-
tion presented in (8) for each of these sub-intervals, fi-
nally obtaining a continuous function W : R+×Rn →
Rn, positive definite and non-increasing along solu-
tions of (2).

Remark 2 (Global Asymptotic Stability). In Theo-
rem 1 and Corollary 1 we give sufficient conditions to
ensure global stability of (2) on the classes Sfix(τ)
and Sdw(τ). We follow here the same reasoning,
proposing sufficient conditions for global asymptotic
stability of system (2). For this goal, we only need
to strengthen the conditions encoded in the generic
edge (a, b, j)τ , as defined in (7). In particular, given
Va, Vb : Rn → R and fj ∈ C1(Rn,Rn), we say that
the “strong” edge (a, b, j)τ is in Es (the set of strong
edges) if there exists ρ ∈ PD such that{
〈∇Va(x), fj(x)〉 − Va(x)−Vb(x)

τ ≤ −ρ(|x|), ∀x ∈ Rn,
〈∇Vb(x), fj(x)〉 − Va(x)−Vb(x)

τ ≤ −ρ(|x|), ∀x ∈ Rn.
(10)

It is now easy to prove that, given τ > 0, if Gs =
(S,Es) is path-complete, then system (2) is glob-
ally asymptotically stable on Sfix(τ). Moreover if
Gs = (S,Es) is path-complete and for all (a, b, j)τ ∈
Es also (a, b, j)2τ ∈ Es, then system (2) is globally
asymptotically stable on Sdw(τ). 4

3.2 Complete and co-Complete Case

In this section we underline how, in some particu-
lar cases, path-complete Lyapunov functions could
ensure stability of system (2) under arbitrary switch-
ing, that is for all σ ∈ S, or, equivalently, for the
differential inclusion (4).

Definition 4. A graph G = (S,E) on I is complete
if ∀ a ∈ S, ∀ j ∈ I, there exists a b ∈ S such that
(a, b, j) ∈ E.
A graph G = (S,E) on I is co-complete if ∀ b ∈ S,
∀ j ∈ I, there exists an a ∈ S such that (a, b, j) ∈ E.

It is easy to see that a (co-)complete graph G =
(S,E) is in particular path-complete.

Lemma 2. Consider a finite set S, and V : Rn →
R|S| a candidate vector-valued function. Consider
any τ > 0. If the associated graph G = (S,E) is
complete then

Wm(x) := min
s∈S
{Vs(x)} , ∀x ∈ Rn, (11)

is a Lyapunov function for system (4). If G = (S,E)
is co-complete then

WM (x) := max
s∈S
{Vs(x)} , ∀x ∈ Rn, (12)

is a Lyapunov function for system (4).

Proof. Let us suppose G = (S,E) is complete, con-
sider any a ∈ S, and define the region X a := {x ∈
Rn | Va(x) ≤ Vs(x) ∀ s ∈ S }; we have Rn =⋃
a∈S X a. Consider any j ∈ I, by completeness there

exists a b ∈ S such that (a, b, j) ∈ E. Consider any
x ∈ X a where ∇Wm exists, we have

〈∇Wm(x), fj(x)〉 = 〈∇Va(x), fj(x)〉

≤ 1

τ
(Va(x)− Vb(x)) ≤ 0.

By arbitrariness of a ∈ S and j ∈ I, we can conclude
that

〈∇Wm(x), fj(x)〉 ≤ 0,

for all x ∈ Rn such that ∇Wm(x) exists and for all
j ∈ I. This implies that the locally Lipschitz func-
tion Wm : Rn → R is non-increasing along the so-
lutions of (4), as showed for example in [17] . The
proof in the co-complete case (implying WM common
Lyapunov function) can be obtained with the same
reasoning, defining the partition Rn =

⋃
b∈S Xb, with

Xb := {x ∈ Rn | Vb(x) ≥ Vs(x), ∀ s ∈ S }.

Remark 3. The use of pointwise minimum/maximum
of continuously differentiable functions for stability
of differential inclusions (4) is well-studied in litera-
ture. In [18], the authors presented conditions relying
on pointwise maximum of quadratics and its convex
conjugates in the context of linear differential inclu-
sions (LDI), that is system (4) with fj(x) = Ajx,
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for some A1, . . . , AK ∈ Rn×n. In [19], candidate
Lyapunov functions for LDI in the form of (convex-
hull of) pointwise minimum of quadratic functions
are also proposed. For a thorough discussion of
the use of various piecewise C1 Lyapunov functions,
we refer to [18] and reference therein. In this con-
text, Lemma 2 is thus a trivial corollary of these
well-known results. Instead, in the constrained-time
switched systems setting, Lemma 2 is an useful tool:
in studying the fixed-time (or dwell-time) stability of
a switching system (2), if we know a priori that the
system is not stable under arbitrary switching, we
also know that there is no hope that the inequalities
encoded in a (co-)complete graph are feasible, for any
choice of candidate vector-valued Lyapunov function
V : Rn → R|S|. In this situation we have two possi-
bilities: use a path-complete graph which is neither
complete nor co-complete, or relax the conditions en-
coded in the edges, as we explain in the following
subsection. 4

3.3 Splitting edges

In many situations ensuring that functions Va,Vb :
Rn → R and fj : Rn → Rn satisfy the inequalities en-
coded in the edge (a, b, j)τ for a fixed τ could be com-
putationally hard, or even structurally infeasible (see
Lemma 2 and Remark 3). One idea is to “relax” the
conditions encoded in one or more edges: considering
(a, b, j)τ we could split it in two new edges (a, c, j)τ/2
and (c, a, j)τ/2. More precisely, recalling (7), we re-
quire the existence of three positive definite functions
Va, Vb, Vc : Rn → R, such that{
〈∇Va(x), fj(x)〉 ≤ 2

τ (Va(x)− Vc(x)), ∀x ∈ Rn,
〈∇Vc(x), fj(x)〉 ≤ 2

τ (Va(x)− Vc(x)), ∀x ∈ Rn,{
〈∇Vc(x), fj(x)〉 ≤ 2

τ (Vc(x)− Vb(x)), ∀x ∈ Rn,
〈∇Vb(x), fj(x)〉 ≤ 2

τ (Vc(x)− Vb(x)), ∀x ∈ Rn.

Following an idea proposed firstly in [11], this re-
ducing procedure could be generalized considering an
N ∈ N and δ1, . . . , δN > 0 such that

∑N
k=1 δk = τ ,

a b

(1,τ)

(2,τ)

(1,τ) (2,τ)

Figure 2: Path-complete (co-complete) graph

0 10 20 30 40 50
-6

-4

-2

0

2
106

0 10 20 30 40 50
-1

0

1

106

Figure 3: Trajectory of system (13), in Example 1
under a fixed time switching σ = {1, 2, 1, 2, . . . } every
0.3125 time units.

and then splitting the edge (a, b, j)τ in N edges de-
fined by

(a, c1, j)δ1 , . . . , (cN−1, b, j)δN .

Intuitively the resulting conditions imply again
Vb(x(τ, x0, fj)) ≤ Va(x0), but without the stronger
assumption encoded in (a, b, j)τ defined in (7). More
precisely, the idea is to redefine W : [0, τ)× Rn → R
used in the proof of Theorem 1 not simply as the
linear interpolation on [0, τ) between two function in
C1(Rn,R) (Va and Vb) as in (8), but as the linear in-
terpolation between N + 1 functions, on a partition
of [0, τ) in N sub-intervals. See Fig. 2, 4 and 5 for a
graphical illustration of this splitting procedure. We
note here that this strategy is ineffective on edges
which represent self-loops, that is, edges of the form
(a, a, j)τ ∈ E, for some a ∈ S and j ∈ I. Indeed, a
self-loop (a, a, j)τ ∈ E simply encodes the fact that
the function Va : Rn → R is a Lyapunov function for
the system fj : Rn → Rn (independently of τ ∈ R+)
and thus it can not be relaxed splitting time intervals.

4 Linear Case and Numerical
Examples

4.1 Linear Switched Systems

Let us consider A = {A1, . . . , AK} ⊂ Rn×n, we define
the linear switched system, as

ẋ(t) = Aσ(t)x(t), (13)

where the switching signals σ are again selected in
(a subclass of) S, see (3). In this case we consider
positive definite quadratics as base functions of our
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multiple-Lyapunov functions construction. More pre-
cisely, given a finite set S, we consider candidate
vector-valued Lyapunov functions V : Rn → R|S|
component-wise quadratic, that is

V`(x) = x>P`x, ∀x ∈ Rn,

where P` ∈ Rn×n are postive definite, for any ` ∈
S. In this setting, fixing a τ > 0, the inequalities
encoded in (a, b, j)τ ∈ E given in (7) are reduced to{

PaAj +A>j Pa − 1
τ (Pa − Pb) ≤ 0,

PbAj +A>j Pb − 1
τ (Pa − Pb) ≤ 0,

(14)

that is a system of LMIs (linear matrix inequalities).
If one is interested in the strong counterpart (as de-
fined in (10)), (a, b, j)τ ∈ Es, simply become{

PaAj +A>j Pa − 1
τ (Pa − Pb) < 0,

PbAj +A>j Pb − 1
τ (Pa − Pb) < 0.

(15)

While the choice of quadratics as base functions
for (13) seems reasonable, it is important to point out
that this introduces some degree of conservatism: the
converse Lyapunov theorem in [15] relies on generic
norms, see also the results in [13] and [14] for the
study of more general classes of Lyapunov functions
for (13).

4.2 Numerical Examples

In what follows we introduce two linear switched sys-
tems (13), and we want to estimate (as precisely as
possible) τdw ∈ R+, that is the minimal dwell-time
for which (13) is GAS on the classes Sdw(τ), for all
τ ≥ τdw, using the ideas presented in the previous
sections. If all the matrices in A are Hurwitz, it is
known that such minimal dwell-time τdw ≥ 0 exists,
as proved in [9, Lemma 2].

Example 1. Consider system (13) where A =
{A1, A2} ⊂ R2×2, with:

A1 =

[
−18 17
−9 8

]
, A2 =

[
13 −79
4 −20

]
The convex combination 1

2A1 + 1
2A2 =

[−2.5 −31
−2.5 −6

]
is non-Hurwitz, implying that the system is not sta-
ble under arbitrary switching. Moreover we can see
explicitly in simulation (see Fig. 3) that using the
switching signal σ = {1, 2, 1, 2, . . . }, with a fixed
switching time τ = 0.3125, the system diverges, im-
plying that τdw > 0.3125.

a b

c1 c2 c3

d1d2d3

(1, τ
4
)

(1, τ
4
) (1, τ

4
)

(1, τ
4
)

(1,τ)

(2, τ
4
)

(2, τ
4
)(2, τ

4
)

(2, τ
4
)

(2,τ)

Figure 4: Graph obtained by splitting the edges
(a, b, 1)τ , (b, a, 2)τ using 3 auxiliary nodes for every
edge.

If we consider the path-complete graph in Fig. 2,
there is no Lyapunov function satisfying the as-
sociated constraints described in the previous Sec-
tion: this graph is in particular co-complete and by
Lemma 2, this would imply the existence of a com-
mon Lyapunov function for A1 and A2 jointly, which
does not exist since there is a non-Hurvitz convex
combination of A1 and A2.

Consider instead the graph in Fig. 4, constructed
using the idea presented in Section 3.3, and thus split-
ting the edges (a, b, 1)τ , (b, a, 2)τ ∈ E in 4 sub-edges
of length τ/4. We can find a PC-LF for the class
Sfix(τ) for τ = 0.8. Using the idea of Corollary 1
(and thus “doubling” the inequalities) we are able to
find a PC-LF for the class Sdw(τ) for τ = 1.1.
It seems intuitive that: the more we split the edges
(a, b, 1)τ , (b, a, 2)τ in the graph of Fig. 2, the more
degrees of freedom we are adding to the problem and
consequently we should be able to get a smaller τ . In
fact, consider the graph where any of these two edges
is split using N subnodes (Fig. 5). With N = 50 we
can find a PC-LF for the class Sdw(τ) with τ = 0.35,
while we need to increase to N = 90 to find a PC-
LF for the class Sdw(τ) with τ = 0.345. We cannot
find a feasible solution for τ = 0.34 even considering
N = 400.

Example 2. Consider the following example, intro-
duced in [11, Example 1], of system (13) with A =
{A1, A2} ⊂ R3×3 defined by

A1 =

−1 0 1
−1 −1 0
0 1 −1

 , A2 =

−1 0 6
−1 −1 −5
0 1 −1


In [11] the authors are able to establish that the sys-
tem is stable under the class of switching Sdw(τ) with
τ = 0.4. The authors used a splitting technique simi-
lar to the one described in Section 3.3, using K = 95
sub-intervals of τ .
With our method, using again the graph in Fig. 5,
we can recover the same result, finding a PC-LF for
the class Sdw(τ) with τ = 0.4, and N = 55.
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a b

c1 . . . . . . cNc1 . . . . . . cN

d1. . . . . .dN

(1, τ
N+1

) (1, τ
N+1

)

(1,τ)

(2, τ
N+1

)(2, τ
N+1

)

(2,τ)

Figure 5: Graph obtained by splitting the edges
(a, b, 1)τ , (b, a, 2)τ using N auxiliary nodes for each
edge.

Remark 4 (Uncertain Case). In [11] the same mini-
mal value τdw = 0.4 for Example 2 is obtained using
the result presented in [10, Theorem 1] with less com-
putation effort. This result requires to compute the
matrix exponentials eAjτ for any j ∈ I. Since in gen-
eral the function A 7→ eAτ is non-convex, the ideas
of [10] can not be easily generalized to the case of
uncertain matrices. On the contrary, the conditions
in (14) and (15) (as the conditions proposed in [11])
are linear in Aj , j ∈ I, and thus the extension to the
case with uncertainty is possible (but leading to a
certain degree of conservatism), and open for further
investigation. 4
Remark 5. The variable τ can, in principle, be added
as a decision variable to the feasibility problem
above but this would make the problem non-linear
and potentially hard to solve. For this reason, a
binary search on τ is performed to find numerically
the lowest value for which the LMIs hold. 4

5 Conclusions

Considering continuous-time nonlinear switching sys-
tems, we explored stability conditions based on the
concept of path-complete graphs. In the linear case,
the obtained inequalities permitted us to estimate the
minimal dwell-time using a finite number of LMIs.
Possible open questions for further research are the
case of uncertain systems and whether or not path-
complete Lyapunov functions are universal (i.e. ex-
istence is also necessary) for the dwell-time stability.

References

[1] D. Liberzon, Switching in systems and control.
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