Uniform Deconvolution for Poisson Point Processes - Archive ouverte HAL
Article Dans Une Revue Journal of Machine Learning Research Année : 2022

Uniform Deconvolution for Poisson Point Processes

Résumé

We focus on the estimation of the intensity of a Poisson process in the presence of a uniform noise. We propose a kernel-based procedure fully calibrated in theory and practice. We show that our adaptive estimator is optimal from the oracle and minimax points of view, and provide new lower bounds when the intensity belongs to a Sobolev ball. By developing the Goldenshluger-Lepski methodology in the case of deconvolution for Pois-son processes, we propose an optimal data-driven selection of the kernel's bandwidth, and we provide a heuristic framework to calibrate the estimator in practice. Our method is illustrated on the spatial repartition of replication origins along the human genome.
Fichier principal
Vignette du fichier
BLPR22_final.pdf (558.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02964117 , version 1 (12-10-2020)
hal-02964117 , version 2 (01-07-2022)

Identifiants

Citer

Anna Bonnet, Claire Lacour, Franck Picard, Vincent Rivoirard. Uniform Deconvolution for Poisson Point Processes. Journal of Machine Learning Research, 2022, 23 (194), pp.1--36. ⟨hal-02964117v2⟩
292 Consultations
161 Téléchargements

Altmetric

Partager

More