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Uniform deconvolution for Poisson Point Processes
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We focus on the estimation of the intensity of a Poisson process in the presence of a uniform noise. We propose a kernel-based procedure fully calibrated in theory and practice. We show that our adaptive estimator is optimal from the oracle and minimax points of view, and provide new lower bounds when the intensity belongs to a Sobolev ball. By developing the Goldenshluger-Lepski methodology in the case of deconvolution for Poisson processes, we propose an optimal data-driven selection of the kernel bandwidth. Our method is illustrated on the spatial distribution of replication origins and sequence motifs along the human genome.

Introduction

Inverse problems for Poisson point processes have focused much attention in the statistical literature over the last years, mainly because the estimation of a Poisson process intensity in the presence of additive noise is encountered in many practical situations like tomography, microscopy, high energy physics. Our work is motivated by an original application field in high throughput biology, that has been revolutionized by the development of high throughput sequencing. The applications of such technologies are many, and we focus on the particular cases where sequencing allows the fine mapping of genomic features along the genome, like transcription factors. The spatial distribution of these features can be modeled by a Poisson process with unknown intensity. Unfortunately, detections are prone to some errors, which produces data in the form of genomic intervals whose width is linked to the precision of c 2022 Anna Bonnet, Claire Lacour, Franck Picard, Vincent Rivoirard.

detection. Since the exact position of the peak is unknown within the interval (and not necessarily positioned at the center on average), the appropriate error distribution is uniform, the level of noise being given by the width of the intervals. Another example is provided when studying the spatial distribution of sequence motifs along the genome. A sequence motif is a pattern of nucleotides that is widespread along the genome, with potentially unknown function, but whose frequent occurrence suggests some implication in biological pathways. G-quadruplexes motifs for instance are made of guanine (G) repeats in tetrads that form particular 3D structures whose biologically function is currently unknown [START_REF] Chambers | High-throughput sequencing of DNA G-quadruplex structures in the human genome[END_REF]. However their implication in replication initiation has now been demonstrated [START_REF] Picard | The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells[END_REF] among other biological functions. These motifs are ∼ 25 -30 nucleotide long, and when studying their spatial distribution, their occurrence can be modelled by a Poisson process, and the uniform error model recalls that the data are in the form of intervals, without any reference occurrence point within the interval. Hence the spatial distribution of these motifs should be deconvoluted from this uniform error.

In the 2000s, several wavelet methods have been proposed for Poisson intensity estimation from indirect data [START_REF] Antoniadis | Poisson inverse problems[END_REF], as well as B-splines and empirical Bayes estimation [START_REF] Kuusela | Statistical unfolding of elementary particle spectra: Empirical bayes estimation and bias-corrected uncertainty quantification[END_REF]. Other authors turned to variational regularization: see the survey of [START_REF] Hohage | Inverse problems with Poisson data: statistical regularization theory, applications and algorithms[END_REF], which also contains examples of applications and reconstruction algorithms. From a more theoretical perspective, [START_REF] Kroll | Nonparametric intensity estimation from noisy observations of a Poisson process under unknown error distribution[END_REF] studied the estimation of the intensity function of a Poisson process from noisy observations in a circular model. His estimator is based on Fourier series and is not appropriate for uniform noise (whose Fourier coefficients are zero except the first).

The specificity of uniform noise has rather been studied in the context of density deconvolution. In this case also, classical methods based on the Fourier transform do not work either in the case of a noise with vanishing characteristic function [START_REF] Meister | Density deconvolution[END_REF]. Nevertheless several corrected Fourier approaches were introduced [START_REF] Hall | Inverting noisy integral equations using wavelet expansions: a class of irregular convolutions[END_REF][START_REF] Hall | A ridge-parameter approach to deconvolution[END_REF][START_REF] Meister | Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions[END_REF][START_REF] Feuerverger | On optimal uniform deconvolution[END_REF]. In this line, the work of [START_REF] Delaigle | Nonparametric function estimation under fourieroscillating noise[END_REF] is particularly interesting, even if it is limited to a density to estimate with finite left endpoint. In a recent work, [START_REF] Belomestny | Density deconvolution under general assumptions on the distribution of measurement errors[END_REF] have shown that the Laplace transform can perform deconvolution for general measurement errors. Another approach consists in using Tikhonov regularization for the convolution operator [START_REF] Carrasco | A spectral method for deconvolving a density[END_REF][START_REF] Dang Duc Trong | Tikhonov's regularization to the deconvolution problem[END_REF]. In the specific case of uniform noise (also called boxcar deconvolution), it is possible to use ad hoc kernel methods [START_REF] Groeneboom | Density estimation in the uniform deconvolution model[END_REF][START_REF] Van Es | Combining kernel estimators in the uniform deconvolution problem[END_REF]. In this context of non-parametric estimation, each method depends on a regularization parameter (such as a resolution level, a regularization parameter or a bandwidth), and only a good choice of this parameter allows to achieve an optimal reconstruction. This parameter selection is often named adaptation since the point is to adapt the parameter to the features of the target density. The above cited works (except [START_REF] Delaigle | Nonparametric function estimation under fourieroscillating noise[END_REF]) do not address this adaptation issue or only from a practical point of view, although this is central both from the practical and theoretical points of views.

We propose a kernel estimator to estimate the intensity of a Poisson process in the presence of a uniform noise. We provide theoretical guarantees of its performance by deriving the minimax rates of convergence of the integrated squared risk for an intensity belonging to a Sobolev ball. To ensure the optimality of our procedure, we establish new lower bounds on this smoothness space. Then we provide an adaptive procedure for bandwidth selection using the Goldenshluger-Lepski methodology, and we show its optimality in the oracle and minimax frameworks. From the practical point of view we tune the method based on simulations to determine a consensus value for the hyperparameter. The empirical performance of our estimator is then studied by simulations and competed with a deconvolution method based on Gaussian errors. Finally we provide an illustration of our procedure on experimental data in Genomics, where the purpose is to study the spatial repartition of replication starting points and sequence motifs along chromosomes in humans [START_REF] Picard | The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells[END_REF]. The code is available at https://github.com/AnnaBonnet/PoissonDeconvolution.

Uniform deconvolution model

We consider (X i ) i , the realization of a Poisson Process on R, denoted by N X , with N + := N X (R) the number of occurrences. The uniform convolution model consists in observing (Y i ) i , occurrences of a Poisson process N Y , a noisy version of N X corrupted by a uniform noise, such that:

∀ i ∈ {1, . . . , N + }, Y i = X i + ε i , ε i ∼ U[-a; a], (2.1)
where a, assumed to be known, is fixed. The errors (ε i ) i are supposed mutually independent, and independent of (X i ) i . Then, we denote by λ X the intensity function of N X , and µ X its mean measure assumed to satisfy µ X (R) < ∞, so that

dµ X (x) = λ X (x)dx, x ∈ R.
Note that N + ∼ P(µ X (R)), where P(θ) denotes the Poisson distribution with parameter θ.

Then we further consider that observing N X with intensity λ X is equivalent to observing n i.i.d. Poisson processes with common intensity f X , with λ X = n × f X . This specification will be convenient to adopt an asymptotic perspective. As for λ Y , the intensity of N Y , it can easily be shown that

n -1 × λ Y = n -1 × (λ X f ε ) = f X f ε =: f Y ,
where f ε stands for the density of the uniform distribution. The goal of the deconvolution method is to estimate f X , based on the observation of N Y on a compact interval [0, T ] for some fixed positive real number T . In the following, we provide an optimal estimator of f X in the oracle and minimax settings. Minimax rates of convergence will be studied in the asymptotic perspective n → +∞ and parameters a and T will be viewed as constants. Furthermore, f X 1 , the L 1 -norm will be assumed to be larger than an absolute constant, denoted by r. 

Estimation procedure

Deconvolution with kernel estimator

To estimate f X based on observations of N Y , we introduce a kernel estimator which is based on the following heuristic arguments inspired from van Es (2011) who considered the setting of uniform deconvolution for density estimation. We observe that f Y can be expressed by using the cumulative distribution of the X i 's:

F X (x) := x -∞ f X (u)du ≤ f X 1 , x ∈ R. Indeed, for x ∈ R, f Y (x) = R f X (x -u)f ε (u)du = 1 2a a -a f X (x -u)du = 1 2a F X (x + a) -F X (x -a) , (3.1) 
from which we deduce:

F X (x) = 2a +∞ k=0 f Y x -(2k + 1)a , x ∈ R.
Then, from heuristic arguments, we get

f X (x) = 2a +∞ k=0 f Y x -(2k + 1)a , (3.2)
which provides a natural form of our kernel estimate f Y . Note that differentiability of f Y is not assumed in the following. Indeed, we consider the kernel estimator of f Y such that

f Y (x) = 1 nh R K x -u h dN Y u ,
with dN Y the point measure associated to N Y , and K a kernel with bandwidth h > 0. Setting

K h (x) = 1 h K x h ,
we can write

f Y (x) = 1 n N + i=1 K h x -Y i . Then, if K is differentiable, we propose the following kernel-based estimator of f X f h (x) = 2a nh 2 +∞ k=0 N + i=1 K x -(2k + 1)a -Y i h .
The proof of subsequent Lemma 1 in Appendix shows that the expectation of f h is a regularization of f X , as typically desired for kernel estimates since we have

E[ f h ] = K h f X . (3.3)
Then, our objective is to provide an optimal selection procedure for the parameter h.

Symmetrization of the estimator

Our estimator is based on the inversion and differentiation of Equation (3.1), which can also be performed as follows:

2a +∞ k=0 f Y (x + (2k + 1)a) = +∞ k=0 F X (x + 2(k + 1)a) -F X (x + 2ka) = f X 1 -F X (x)
and differentiated to obtain:

f X (x) = -2a +∞ k=0 f Y x + (2k + 1)a ,
which leads to another estimator

fh (x) = - 2a nh 2 +∞ k=0 N + i=1 K x + (2k + 1)a -Y i h .
In the framework of uniform deconvolution for densities, van Es (2011) proposes to use α fh (x) + (1 -α) fh (x), a convex combination of fh and fh , as a combined estimator, to benefit from the small variance of fh (x) and fh (x) for large and small values of x respectively. Unfortunately the combination that minimizes the asymptotic variance of the combined estimator is achieved for α = 1 -F X (x), and thus depends on an unknown quantity. van Es (2011) suggested to use a plug-in estimator, but to avoid supplementary technicalities, we finally consider the following symmetric kernel-based estimator:

f h (x) := 1 2 fh (x) + fh (x) = a nh 2 +∞ k=-∞ s k N + i=1 K x -(2k + 1)a -Y i h , (3.4) with s k = 1 if k ≥ 0 and s k = -1 if k < 0. Then it is shown in Lemma 1 that E[ f h ] = (K h f X ).

Risk of the kernel-based estimator

Our objective is to provide a selection procedure to select a bandwidth h, that only depends on the data, so that the L 2 -risk of f h is smaller than the risk of the best kernel estimate (up to a constant), namely

E f h -f X 2 2,T inf h∈H E f h -f X 2 2,T .
Our procedure is based on the bias-variance trade-off of the risk of any estimate

f h E f h -f X ] 2 2,T = E[ f h ] -f X 2 2,T + E f h -E[ f h ] 2 2,T =: B 2 h + v h . (3.5)
Then we use the following mild assumption:

Assumption 1 The kernel K is supported on the compact interval [-A, A], with A ∈ R * + and K is differentiable on [-A, A].
Then the variance of the estimator is such that:

Lemma 1 For any h ∈ H and any x ∈ [0, T ], we have

E[ f h (x)] = (K h f X )(x).
Under Assumption 1 and if h is small enough so that Ah ≤ a, then

v h := E f h -E[ f h ] 2 2,T = aT f X 1 K 2 2 2nh 3 .
The expectation of f h has the expected expression (derived from (3.3)), but Lemma 1 also provides the exact expression of the variance term v h of our very specific estimate. Since our framework is an inverse problem, this variance does not reach the classical (nh) -1 bound. Moreover, v h depends linearly on f X 1 but also on T , which means that the estimation of f X has to be performed on the compact interval [0, T ], for v h to be finite. This requirement is due to Expression (3.4) of our estimate that shows that for any x ∈ R, f h (x) is different from 0 almost surely. This dependence of v h on T is a direct consequence of our strategy not to make any assumption on the support of f X , that can be unknown or non-compact.

Of course, if the support of f X was known to be compact, like [0, 1], then we would force f h to be null outside [0, 1] (for instance by removing large values of |k| in the sum of (3.4)), and estimation would be performed on the set [0, 1]. Actually, estimating a non-compactly supported Poisson intensity on the whole real line leads to deterioration of classical nonparametric rates in general [START_REF] Reynaud | Near optimal thresholding estimation of a Poisson intensity on the real line[END_REF].

Bandwidth selection

The objective of our procedure is to choose the bandwidth h, based on the Goldenshluger-Lepski methodology [START_REF] Goldenshluger | General selection rule from a family of linear estimators[END_REF]. First, we introduce a finite set H of bandwidths such that for any h ∈ H, h ≤ a/A, which is in line with assumptions of Lemma 1.

Then, for two bandwidths t and h, we also define

f h,t := K h f t ,
a twice regularized estimator, that satisfies the following property (see Lemma 7 in Appendix):

f h,t = f t,h .
Now we select the bandwidth as follows:

h := argmin h∈H A(h) + c √ N + nh 3/2 , (3.6) where c = (1 + η)(1 + K 1 ) K 2 aT 2 (3.7)
for some η > -1 and

A(h) := max t∈H f h,t -f t 2,T - c √ N + nt 3/2 + . Finally, we estimate f X with f = f h . (3.8)
Note that A(h) is an estimation of the bias term B h of the estimator f h . Indeed,

B h := E[ f h ] -f X 2,T = K h f X -f X 2,T
and we replace the unknown function f X with the kernel estimate f t . The term

c √ N + nt 3/2 in A(h) controls the fluctuations of f h,t -f t 2,T . Finally, since E[N + ] = n f X 1 , (3.6
) mimics the bias-variance trade-off (3.5) (up to the squares). In order to fully define the estimation procedure, it remains to choose the set of bandwidths H. This is specified in Section 4.

Theoretical results

Oracle approach

The oracle setting allows us to prove that the bandwidth selection procedure described in Section 3.4 is (nearly) optimal among all kernel estimates. Indeed, we obtain the following result.

Theorem 2 Suppose that Assumption 1 is verified. We take η > 0 and we consider the estimate f such that the finite set of bandwidths H satisfies min H = 1/(δn

1 3 ) and max H = o(1)
for some constant δ > 0. Then, for n large enough,

E f h -f X 2 2,T ≤ C 1 inf h∈H E f h -f X 2 2,T + C 2 n , (4.1) 
where

C 1 = 2 + 24(1 + η) 2 (1 + K 1 ) 2 and C 2 is a constant depending on f X 1 , T , a, δ, η and K.
The proof of this result can be found in Section 7.3, where the expression of C 2 is provided (see Equation ( 7.3)).

Remark 3 Note that condition h ≥ δ -1 n -1/3 is equivalent to sup n sup h∈H v h < ∞ Remark 4 Equation (7.
3) provides the explicit dependence of C 2 on a, δ, η, T and K, showing that the kernel K has to be chosen such that K 1 , K ∞ , K 2 , K 1 and K 2 are as small as possible. Nevertheless, in the minimax approach of Section 4.2, the kernel has to satisfy some constraints (see Assumption 2). The parameter a is present in the remainder term of the risk bound in the following way

C 2 /n = (k 0 + k 1 a + k 2 a 2 )/n.
Thus the larger a the worse the bound, this is expected since a measures the noise level.

Theorem 2 shows that our procedure achieves nice performance: Up to the constant C 1 and the negligible term C 2 /n that goes to 0 quickly, our estimate has the smallest risk among all kernel rules under mild conditions on the set of bandwidths H.

Minimax approach

The minimax approach is a framework that shows the optimality of an estimate among all possible estimates. For this purpose, we consider a class of functional spaces for f X , then we derive the minimax risk associated with each functional space and show that our estimator achieves this rate. Here, we consider the class of Sobolev balls that can be defined, for instance, through the Fourier transform of L 2 -functions: Given β > 0, L > 0, b > 0 and r > 0, consider the following subset of the Sobolev ball of smoothness β and radius L

S β (L, r, b) := g ∈ L 2 : +∞ -∞ |g * (ξ)| 2 (ξ 2 + 1) β dξ ≤ L 2 , r ≤ g 1 ≤ bL ,
where g * (ξ) := e ixξ g(x)dx is the Fourier transform of g. Observe that the classical Sobolev space corresponds to the case r = 0 and b = +∞; r and b will be viewed as constants in the sequel. In the Poisson setting, the L 1 -norm of the Poisson intensity is not fixed but it of course plays a key role in rates. Given L, the radius of the Sobolev ball containing g, the L 1 -norm of g scales in L. We finally introduce the lower bound g 1 ≥ r with r > 0 to avoid the asymptotic setting where the Poisson intensity goes to 0.

From a statistical perspective, the minimax rate associated with the space

S β (L, r, b) is R n (β, L) := inf Zn sup f X ∈S β (L,r,b) E Z n -f X 2 2,T ,
where the infimum is taken over all estimators Z n of f X based on the observations (Y i ) i=1,...,N + .

In the notation, we drop the dependence of the risk on r and b since we are only interested in the dependence on n, β and L. We first derive a lower bound for the minimax risk.

Theorem 5 We assume that rL -1 ≤ π/(2c β ) ≤ b, where c β is defined in (7.4). There exists a positive constant C 3 only depending on β, a and T such that, if n is larger than some n 0 only depending on r and T ,

R n (β, L) ≥ C 3 L 2β+6 2β+3 n -2β 2β+3 + Ln -1 . (4.2)
Theorem 5 is proved in Section 7.4. To the best of our knowledge, because of the second term Ln -1 , the rate established in (4.2) is new. Of course, if L is bounded then the second term is negligible with respect to the first one when n → +∞. The rate n

-2β 2β+3 is slower than the classical non-parametric rate n -2β 2β+1 .
It is the expected rate since our deconvolution problem corresponds to an inverse problem of order 1, meaning that f * ε , the characteristic function of the noise, satisfies

|f * ε (ξ)| = O(ξ -1 ) as ξ → ∞.
Note that the analog of the previous lower bound has been established in the density deconvolution context, first by [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF], but with supplementary assumption |f * ε (ξ)| = O(ξ -2 ) which is not satisfied in our case of uniform noise (see Equation (7.8)). Our proof is rather inspired by the work of Meister ( 2009), but we face here a Poisson inverse problem, and we have to control the L 2 -norm on [0, T ] instead of R. Furthermore, Theorem 2.14 of [START_REF] Meister | Density deconvolution[END_REF] only holds for β > 1/2. Consequently, we use different techniques to establish Theorem 5, which are based on wavelet decompositions of the signal. Specifically, we use the Meyer wavelets of order 2.

We now show that the rate achieved by our estimate f corresponds to the lower bound (4.2), up to a constant. We have the following corollary, easily derived from Theorem 2, and based on the following assumption.

Assumption 2 The kernel K is of order = β , meaning that the functions x → x j K(x), j = 0, 1, . . . , are integrable and satisfy

K(x)dx = 1, x j K(x)dx = 0, j = 1, . . . , .
Remark 6 See Proposition 1.3 of Tsybakov ( 2008) or Section 3.2 of [START_REF] Goldenshluger | On adaptive minimax density estimation on R d[END_REF] for the construction of kernels satisfying Assumptions 1 and 2.

Corollary 1 Suppose that Assumptions 1 and 2 are satisfied. We take η > 0 and we consider the estimate f such that the set of bandwidths H is

H = D -1 : D ∈ log n; δn 1 3
, for some constant δ > 0. Then, for n large enough,

sup f X ∈S β (L,r,b) E f -f X 2 2,T ≤ C 4 L 2β+6 2β+3 n -2β 2β+3 + Ln -1 ,
where C 4 only depends on δ, η, K, β, r, b, a and T .

Corollary 1, proved in Section 7.5, shows that our estimator is adaptive minimax, i.e. it achieves the best possible rate (up to a constant) and the bandwidth selection does not depend on the spaces parameters (β, L) on the whole range {0 < β < + 1, L > 0}, where is the order of the chosen kernel. We have established the optimality of our procedure.

Simulation study and numerical tuning

In the following we use numerical simulations to tune the hyperparameters of our estimator and to assess the performance of our deconvolution procedure. We consider different shapes for the Poisson process intensity to challenge our estimator in different scenarii, by first generating Poisson processes on [0, 1] based on the Beta probability distribution function, with

f unisym = Beta(2, 2) (unimodal symmetric), f bisym = 0.5 × Beta(2, 6) + 0.5 × Beta(6, 2) (bimodal symmetric), f biasym = 0.5 × Beta(2, 20) + 0.5 × Beta(2, 2) (bimodal assymmetric).
We also generate Poisson processes with Laplace distribution intensity (location 5, scale 0.5) to consider a sharp form and a different support. In this case, we consider that T = 10. We consider a uniform convolution model with increasing noise (a ∈ {0.05, 0.1} for Beta, a ∈ {0.5, 1, 2, 3} for Laplace) and Poisson processes with increasing number of occurrences (n ∈ {500, 1000}). For each set (f X , n, a), we present the median performance over 30 replicates. In order to keep a bounded variance of our estimators, we explore different values of h using a grid denoted by H, with minimum value h min = (aT /n) 1/3 (see Lemma 1 and Corollary 1). For Beta intensity we consider a grid H from h min to 0.5 with steps of 0.025 and for Laplace intensities from h min to 10 with steps of 0.5. Finally, our procedure is computed with an Epanechnikov kernel, that is K(u) = 0.75(1 -u 2 )1 |u|≤1 . Our estimator is challenged by the oracle estimator, that is the estimator f h * , with h * minimizing (with respect to h) the mean squared error E f X -f h 2 2,T , with f X the true intensity.

To assess the interest of designing a deconvolution method dedicated to uniform noise, our method is also competed with a deconvolution procedure for Gaussian noise [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF], available in the fDKDE R-package. All methods are compared to a density estimator without deconvolution calibrated by cross-validation.

Hyperparameter tuning

Our selection procedure for parameter h is based on the two-step method described in Section 3. Using this procedure in practice requires to tune the value of the hyper-parameter η that is part of the penalty c(η):

c(η) = (1 + η)(1 + K 1 ) aT 2 K 2 ,
with K the Epanechnikov kernel in our simulations. This penalty is at the core of the two-step method that consists in computing:

A η (h) = max t∈H f t -f h,t 2,T -c(η) √ N + nt 3/2 + ,
(5.1) followed by

h = argmin h∈H A η (h) + c(η) √ N + nh 3/2 .
(5.2)

We propose to investigate if we could find a "universal" value of parameter η that would be appropriate whatever the form of the intensity function. For a grid of η in [-1; 1], we compare the mean squared errors (MSE) of estimators calibrated with different values of η to the MSE achieved by the oracle estimator that achieves the smallest MSE over the grid H. Figure 1 shows that the optimal choice of η depends on the shape of the true intensity (∼ -0.15 for Beta,∼ -0.9 for Laplace). For Beta intensities, the MSE curve is minimal and almost flat for η ∈ [-0.4, 0]. Since in this range the MSE remains close to its oracle for Laplace intensities, we propose to choose η = -0.3 as a reasonable trade-off to obtain good performance in most settings.

Results and comparison with other methods

Figure 2 highlights two different behaviours depending on the size of the noise and the shape on the true intensity: when the noise is small (a ≤ 0.1 for beta intensities and a ≤ 1 for Laplace intensities), the estimator proposed by [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF] is very efficient. This was quite expected that the distribution of the noise would not matter when its variance is small: we see indeed that the density estimator without deconvolution also performs well in such context. However, when the noise increases and the true intensity is sharp (a ≥ 2 for Laplace intensities), we observe major differences and our method designed for uniform noises is the only one that can provide an accurate intensity estimation. These results are confirmed with the mean-squared errors computed for each method and displayed in Figure 3.

These results motivate the application on genomic data proposed in Section 6, where the measurement errors can be large compared to the average distance between points. 2.79 0.71 0.31 0.29 n=1000 9.76 2.08 0.78 0.76 Table 1: Computational times (in seconds) associated with one estimation for different values of a and n considered in the numerical study. The computations were run on 16 cores of a server Intel Xeon E5-4620 2.20GHz .

Computational times

The calibration procedure for the bandwidth selection requires multiple integral computations, in particular if we use a thin grid H. However, the computational times remains reasonable for one estimation especially when the size of the noise is not too small, as summarized in Table 1. The value of a determines indeed the number of non-zero terms in the double sum that appears in the definition of the estimator (3.4) (the smaller a, the larger number of terms), which explains that the longest computational times is obtained for the smaller value of a and the larger number of observations n. The code, implemented in R, is parallelized and uses the Rcpp package in order to reduce the computational cost.

Deconvolution of Genomic data

Next generation sequencing technologies (NGS) have allowed the fine mapping of eukaryotes replication origins that constitute the starting points of chromosomes duplication. To maintain the stability and integrity of genomes, replication origins are under a very strict spatio-temporal control, and part of their positioning has been shown to be associated with cell differentiation [START_REF] Picard | The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells[END_REF]. The spatial organization has become central to better understand genomes architecture and regulation. However, the positioning of replication origins is subject to errors, since any NGS-based high-throughput mapping consists of peakcalling based on the detection of an exceptional enrichment of short reads [START_REF] Picard | The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells[END_REF].

Consequently, the true positions of the replication starting points are unknown, but rather inferred from genomic intervals. The spatial control of replication being very strict, the precise quantification of the density of origins along chromosomes is central, but should account for this imprecision of the mapping step. The interval shape of the data makes the uniform assumption of the noise particularly appropriate. However, other types of distributions could be considered. We compare our results to those obtained by the estimator proposed by Delaigle and Gijbels ( 2004) and implemented in the R package fDKDE, which was developed to handle errors with Gaussian distribution. Both deconvolution estimators provide an intensity estimation that is less smooth than the one obtained without accounting for the error positioning. However, the estimator of Delaigle and Gijbels ( 2004) identifies three regions with a high density of origins while ours shows several sharp peaks which suggests the existence of clusters of origins, the location of which can be precisely identified.

The comparison shows that the Gaussian-based estimator is overly smooth regarding the underlying biological process. Indeed, replication origins are known to be organized according to the so-called replication domains that are ≤ 1Mb on average [START_REF] Pope | Topologically associating domains are stable units of replication-timing regulation[END_REF]. The deconvoluted estimator based on uniform errors provides an intensity that shows peaks that are approximatively ≤ 1Mb wide, whereas the Gaussian-based estimator shows clusters of size ∼ 3Mb.

In a second step we focused on the spatial distribution of G-quadruplex motifs that were shown to be associated with replication initiation in vertebrates [START_REF] Picard | The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells[END_REF]. Their precise role in replication remains unknown, and their effect may be associated with some epigenetic response [START_REF] Hnsel-Hertsch | G-quadruplex structures mark human regulatory chromatin[END_REF] which makes their positional information very valuable regarding the biophysics constraints characterizing the DNA molecule. Thus we considered the spatial distribution of G-quadruplexes [START_REF] Zheng | Detection of genomic G-quadruplexes in living cells using a small artificial protein[END_REF] along all replication origins [START_REF] Picard | The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells[END_REF], by considering the initiation peak as the reference position (Figure 5). When estimating the spatial distribution of G-quadruplex motifs around replication origins, the estimator without deconvolution provides an almost flat estimated density with one small central peak. The fDKDE estimator highlights one central peak and several smaller peaks. Finally, our estimator reveals a periodic clustering pattern of G-quadruplexes occurrences along replication origins, which is completely masked when computing a standard density estimator and only slightly suggested with the fDKDE estimator. This clustering pattern could be related to the periodic organization of nucleosomes and chromatin around replication origins as suggested by experimental evidence [START_REF] Prorok | Involvement of G-quadruplex regions in mammalian replication origin activity[END_REF]. Hence, our estimator provides a finer-scale resolution for the accumulation pattern of G-quadruplexes in the vicinity of replication initiation sites that could be biologically relevant. 

Proofs

If θ is a vector of constants (for instance θ = (T, a, K)), we denote by θ a positive constant that only depends on θ and that may change from line to line.

In the sequel, we use at several places the following property: Setting

S k : x -→ N + i=1 K h x -(2k + 1)a -Y i , since Ah ≤ a, S k and S k have disjoint supports if k = k .

Proof of Lemma 1

Proof. Considering first f h , we have:

E[ f h (x)] = 2a nh 2 +∞ k=0 R K x -(2k + 1)a -u h nf Y (u)du = 1 h 2 +∞ k=0 R K x -(2k + 1)a -u h [F X (u + a) -F X (u -a)]du = 1 h 2 +∞ k=0 R K x -2ka -v h F X (v)dv - R K x -2(k + 1)a -v h F X (v)dv = 1 h 2 R K x -v h F X (v)dv = 1 h R K x -v h f X (v)dv = (K h f X )(x).
The first point is then straightforward by using the definition of f h . For the second point, observe that

f h (t) -E[ f h (t)] = a nh 2 +∞ k=-∞ s k K t -(2k + 1)a -u h dN Y u -nf Y (u)du = a nh R L h (t -u) dN Y u -nf Y (u)du , with L h (x) := 1 h +∞ k=-∞ s k K x -(2k + 1)a h .
Using the support [-A, A] of K, for each x

(L h (x)) 2 = 1 h 2 +∞ k=-∞ s k K x -(2k + 1)a h 2 = 1 h 2 +∞ k=-∞ K 2 x -(2k + 1)a h
as soon as Ah ≤ a. We have:

T 0 E[( f h (t) -E[ f h (t)]) 2 ]dt = a 2 n 2 h 2 T 0 Var R L h (t -u)dN Y u dt = a 2 n 2 h 2 T 0 R L 2 h (t -u)nf Y (u)dudt = a 2 nh 4 T 0 R +∞ k=-∞ K t -u -(2k + 1)a h 2 f Y (u)dudt = a 2 nh 4 T 0 R K t -v h 2 +∞ k=-∞ f Y (v -(2k + 1)a)dvdt = a 2nh 4 T 0 R K t -v h 2 (lim +∞ F X -lim -∞ F X )dvdt,
which yields

E f h (t) -E[ f h (t)] 2 2,T = aT f X 1 K 2 2 2nh 3 .

Auxiliary lemma

Our procedure needs the following result.

Lemma 7 For any h, t ∈ H, f h,t = f t,h .

Proof. Since K h (x) = (1/h 2 )K (x/h), we can write

K h f t = K h   2a n +∞ k=0 N + i=1 (K t ) (x -(2k + 1)a -Y i )   = 2a n +∞ k=0 N + i=1 K h (K t ) (x -(2k + 1)a -Y i ) Using that K h (K t ) = (K h K t ) = (K h ) K t , we obtain K h f t = K t f h .
In the same way, we can prove K h ft = K t fh and then K h f t = K t f h .

Proof of Theorem 2

Remember that ĥ := argmin

h∈H A(h) + c √ N + nh 3/2 , with A(h) := max t∈H f t -f h,t 2,T - c √ N + nt 3/2 + . For any h ∈ H, f ĥ -f X 2,T ≤ A 1 + A 2 + A 3 , with A 1 := f ĥ -f ĥ,h 2,T ≤ A(h) + c √ N + n ĥ3/2 , A 2 := f h -f ĥ,h 2,T ≤ A( ĥ) + c √ N + nh 3/2 , and A 3 := f h -f X 2,T .
By definition of ĥ, we have:

A 1 + A 2 ≤ 2A(h) + 2c √ N + nh 3/2 .
Therefore, by setting

ζ n (h) := sup t∈H ( f t,h -E[ f t,h ]) -( f t -E[ f t ]) 2,T - c √ N + nt 3/2 + ,
we have:

A 1 + A 2 ≤ 2ζ n (h) + 2 sup t∈H E[ f t,h ] -E[ f t ] 2,T + 2c √ N + nh 3/2 ≤ 2ζ n (h) + 2 sup t∈H K h K t f X -K t f X 2,T + 2c √ N + nh 3/2 ≤ 2ζ n (h) + 2 K 1 K h f X -f X 2,T + 2c √ N + nh 3/2 . Finally, since (α + β + γ) 2 ≤ 3α 2 + 3β 2 + 3γ 2 , E[(A 1 + A 2 ) 2 ] ≤ 12E[ζ 2 n (h)] + 12 K 2 1 K h f X -f X 2 2,T + 12c 2 E[N + ] n 2 h 3 ≤ 12E[ζ 2 n (h)] + 12 K 2 1 K h f X -f X 2 2,T + 12c 2 f X 1 nh 3 .
For the last term, we obtain:

E[A 2 3 ] = E[ f h -f X 2 2,T ] = E f h -E[ f h ] 2 2,T + K h f X -f X 2 2,T = aT f X 1 K 2 2 2nh 3 + K h f X -f X 2 2,T .
Finally, replacing c with its definition, namely

c = (1 + η)(1 + K 1 ) K 2 aT 2 ,
we obtain: for any h ∈ H,

E[ f ĥ -f X 2 2,T ] ≤ 2E[(A 1 + A 2 ) 2 ] + 2E[A 2 3 ] ≤ 2(1 + 12 K 2 1 ) K h f X -f X 2 2,T + C 1 aT f X 1 K 2 2 2nh 3 + 24E[ζ 2 n (h)] ≤ C 1 E[ f h -f X 2 2,T ] + 24E[ζ 2 n (h)],
(7.1) by using Lemma 1 and by denoting

C 1 = 2 + 24(1 + η) 2 (1 + K 1 ) 2 . It remains to prove that E[ζ 2 n (h)
] is bounded by 1 n up to a constant. We have:

ζ n (h) ≤ sup t∈H f t,h -E[ f t,h ] 2,T + f t -E[ f t ] 2,T - c √ N + nt 3/2 + ≤ sup t∈H ( K 1 + 1) f t -E[ f t ] 2,T - c √ N + nt 3/2 + ≤ ( K 1 + 1)S n , with S n := sup t∈H f t -E[ f t ] 2,T - (1 + η) K 2 √ aT N + √ 2nt 3/2 + .
For α ∈ (0, 1) chosen later, we compute:

A n := E[S 2 n 1 {N + ≤(1-α) 2 n f X 1 } ].
Recall that (see the proof of Lemma 1)

f t (x) = a nt R L t (x -u)dN Y u , with L t (x) = 1 t ∞ k=-∞ s k K x -(2k + 1)a t . Since At ≤ a, R +∞ k=-∞ s k K x -(2k + 1)a -u t dN Y u 2 = N + i=1 ∞ k=-∞ s k K x -(2k + 1)a -Y i t 2 ≤ N + N + i=1 ∞ k=-∞ K x -(2k + 1)a -Y i h 2 ≤ N 2 + K 2 ∞ ,
which yields

S 2 n ≤ 2 sup t∈H f t 2 2,T + 2 sup t∈H E[ f t ] 2 2,T ≤ sup t∈H 2a 2 n 2 t 4 T 0 R +∞ k=-∞ s k K x -(2k + 1)a -u t dN Y u 2 dx + 2 sup t∈H K t f X 2 2,T ≤ sup t∈H 2a 2 K 2 ∞ T N 2 + n 2 t 4 + 2 sup t∈H K 2 2 f X 2 1 t . Therefore, since t ∈ H ⇒ t -1 ≤ δn 1/3 , A n ≤ 2δ 4 a 2 K 2 ∞ T n 4/3 + 2δ K 2 2 n 1/3 f X 2 1 × P(N + ≤ (1 -α) 2 n f X 1 ).
and since n ≥ 1

A n ≤ (2δ 4 a 2 K 2 ∞ T + 2δ K 2 2 )n 2 f X 2 1 P(N + ≤ (1 -α) 2 n f X 1 ).
To bound the last term, we use, for instance, Inequality (5.2) of Reynaud-Bouret (2003) (with ξ = (2α -α 2 )n f X 1 and with the function f ≡ -1), which shows that there exists α > 0 only depending on α such that

P(N + ≤ (1 -α) 2 n f X 1 ) ≤ exp(-α n f X 1 ).
This shows that there exists a positive constant C α such that

A n ≤ (2δ 4 a 2 K 2 ∞ T + 2δ K 2 2 ) C α n f X 1
.

We now deal with

B n := E[S 2 n 1 {N + >(1-α) 2 n f X 1 } ].
We take α = min(η/2, 1/4). This implies

(1 + η)(1 -α) ≥ 1 + η 4
and

B n = E sup t∈H f t -E[ f t ] 2,T - (1 + η) K 2 √ aT N + √ 2nt 3/2 2 + 1 {N + >(1-α) 2 n f X 1 } ≤ E   sup t∈H f t -E[ f t ] 2,T - (1 + η/4) √ aT K 2 f X 1 √ 2nt 3/2 2 +   ≤ +∞ 0 P   sup t∈H f t -E[ f t ] 2,T - (1 + η/4) √ aT K 2 f X 1 √ 2nt 3/2 2 + ≥ x   dx ≤ t∈H +∞ 0 P   f t -E[ f t ] 2,T - (1 + η/4) √ aT K 2 f X 1 √ 2nt 3/2 2 + ≥ x   dx.
To conclude, it remains to control for any x > 0 the probability inside the integral. For this purpose, we use the following lemma.

Lemma 8 Let ε > 0 and h ∈ H be fixed. For any x > 0, with probability larger than 1 -exp(-x),

f h -E[ f h ] 2,T ≤ (1+ε) K 2 aT f X 1 2nh 3 + √ 12x K 1 f X 1 (T + 4a) 4nh 2 +(1.25+32ε -1 )x K 2 nh 3/2 a(T + 4a) 2 .
Proof. We set:

U (t) = f h (t) -E[ f h (t)] = a nh 2 +∞ k=-∞ s k R K t -(2k + 1)a -u h dN Y u -nf Y (u)du = a nh R L h (t -u) dN Y u -nf Y (u)du , with L h (x) := 1 h +∞ k=-∞ s k K x -(2k + 1)a h .
Let D a countable dense subset of the unit ball of L 2 [0, T ]. We have:

U 2,T = sup g∈D T 0 g(t)U (t)dt = sup g∈D R Ψ g (u) dN Y u -nf Y (u)du , with Ψ g (u) := a nh T 0 L h (t -u)g(t)dt = a nh ( L h g)(u)
and L h (x) = L h (-x), where the convolution product is computed on [0, T ]. We use Corollary 2 of [START_REF] Reynaud | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF]. So, we need to bound E[ U 2,T ] and

v 0 := sup g∈D R Ψ 2 g (u)nf Y (u)du.
We also have to determine b, a deterministic upper bound for all the Ψ g 's. We have already proved in the proof of Lemma 1 that

E[ U 2 2,T ] = aT f X 1 K 2 2 2nh 3 , which implies E[ U 2,T ] ≤ K 2 aT f X 1 2nh 3 . (7.2) If we denote I(h, u) := {k ∈ Z : -u -Ah -a ≤ 2ka ≤ Ah + T -u -a}, then Ψ 2 g (u) = a 2 n 2 h 2 T 0 L h (t -u)g(t)dt 2 ≤ a 2 n 2 h 2 T 0 L 2 h (t -u)dt × T 0 g 2 (t)dt ≤ a 2 n 2 h 4 T 0 k∈I(h,u) K t -u -(2k + 1)a h 2 dt ≤ a 2 n 2 h 3 K 2 2 × card(I(h, u)) ≤ a 2 n 2 h 3 K 2 2 × (T /(2a) + Ah/a + 1)
and we can set, under the condition on H,

b := a nh 3/2 K 2 T + 4a 2a ,
which is negligible with respect to the upper bound of E[ U 2,T ] given in (7.2). We now deal with

v 0 := n × sup g∈D R Ψ 2 g (u)f Y (u)du.
We have:

v 0 = a 2 nh 2 sup g∈D R T 0 L h (t -u)g(t)dt 2 f Y (u)du ≤ a 2 nh 2 sup g∈D R T 0 |L h (t -u)|dt T 0 |L h (t -u)|g 2 (t)dt f Y (u)du. Since T 0 |L h (t -u)|dt ≤ 1 h T 0 k∈I(h,u) K t -u -(2k + 1)a h dt ≤ K 1 card(I(h, u)) ≤ K 1 (T + 4a) 2a , we obtain v 0 ≤ a 2 nh 2 K 1 (T + 4a) 2a sup g∈D R T 0 +∞ k=-∞ 1 h K t -u -(2k + 1)a h g 2 (t)dtf Y (u)du ≤ a 2nh 2 K 1 (T + 4a) sup g∈D T 0 1 h K t -v h +∞ k=-∞ f Y (v -(2k + 1)a)dv g 2 (t)dt ≤ a 2nh 2 K 1 (T + 4a) sup g∈D T 0 1 h K t -v h dv f X 1 2a g 2 (t)dt ≤ f X 1 4nh 2 K 2 1 (T + 4a).
Inequality (5.7) of [START_REF] Reynaud | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF] yields, for any x > 0,

P U 2,T ≥ (1 + ε)E[ U 2,T ] + √ 12v 0 x + (1.25 + 32ε -1 )bx ≤ exp(-x).
Setting

RHS := (1 + ε)E[ U 2,T ] + √ 12v 0 x + (1.25 + 32ε -1 )bx, we obtain RHS ≤ (1 + ε) K 2 aT f X 1 2nh 3 + √ 12x K 1 f X 1 (T + 4a) 4nh 2 + (1.25 + 32ε -1 )x K 2 nh 3/2 a(T + 4a) 2 .
The previous lemma states that for any sequence of weights (w h ) h∈H , setting x = w h + u, with u > 0, with probability larger than 1 -exp(-u) h∈H exp(-w h ), for all h ∈ H,

f h -E[ f h ] 2,T ≤ M h + √ 12u K 1 f X 1 (T + 4a) 4nh 2 + (1.25 + 32ε -1 )u K 2 nh 3/2 a(T + 4a) 2 with M h := (1 + ε) K 2 aT f X 1 2nh 3 + √ 12w h K 1 f X 1 (T + 4a) 4nh 2 + (1.25 + 32ε -1 )w h K 2 nh 3/2 a(T + 4a) 2 = K 2 aT f X 1 2nh 3 1 + ε + 12w h h K 1 K 2 √ T + 4a √ 2aT + (1.25 + 32ε -1 )w h n f X 1 T + 4a T ≤ (1 + η/4) √ aT K 2 f X 1 √ 2nh 3/2 ,
for ε = η/8 and for n large enough, by taking w h = h -1/2 | log h| -1 for instance, since in this case,

w h h = o(1) and h -1 = O(n f X 1 ).
Therefore,

B n ≤ h∈H +∞ 0 P f h -E[ f h ] 2,T -M h 2 + ≥ x dx.
By setting u such that

x := (g(u)) 2 = √ 12u K 1 f X 1 (T + 4a) 4nh 2 + (1.25 + 32ε -1 )u K 2 nh 3/2 a(T + 4a) 2 2 , so dx = 2g(u) × √ 12 2 √ u K 1 f X 1 (T + 4a) 4nh 2 + (1.25 + 32ε -1 ) K 2 nh 3/2 a(T + 4a) 2 du
and using that

∞ 0 e -u (D √ u + Eu) 2 u -1 du ≤ 2D 2 + 2E 2 , we obtain B n ≤ h∈H +∞ 0 e -(w h +u) × 2g(u) × √ 12 2 √ u K 1 f X 1 (T + 4a) 4nh 2 + (1.25 + 32ε -1 ) K 2 nh 3/2 a(T + 4a) 2 du ≤ 2 h∈H e -w h +∞ 0 e -u (g(u)) 2 u -1 du ≤ 4 h∈H e -w h 12 K 2 1 f X 1 (T + 4a) 4nh 2 + (1.25 + 32ε -1 ) 2 K 2 2 n 2 h 3 a(T + 4a) 2 .
Since h∈H e -w h h -2 and h∈H e -w h h -3 are bounded by an absolute constant, say C, we can write, still for ε = η/8,

B n ≤ 4C 12 K 2 1 f X 1 (T + 4a) 4n + (1.25 + 32(η/8) -1 ) 2 K 2 2 n 2 a(T + 4a) 2 ≤ 12C K 2 1 (T + 4a) f X 1 n + 2C(1.25 + 256/η) 2 K 2 2 a(T + 4a) 1 n 2 .
Finally, we obtain

E[ζ 2 n (h)] ≤ ( K 1 + 1) 2 E[S 2 n ] ≤ ( K 1 + 1) 2 c 1 n f X 1 + c 2 f X 1 n + c 3 n 2 , with c 1 = C α (2δ 4 a 2 K 2 ∞ T + 2δ K 2 2 ), c 2 = 12C K 2 1 (T + 4a
) and c 3 = 2C(1.25 + 256/η) 2 K 2 2 a(T + 4a). This concludes the proof of the theorem, with

C 2 = ( K 1 + 1) 2 c 1 f X -1 1 + c 2 f X 1 + c 3 . (7.3)

Proof of Theorem 5

To prove Theorem 5, without loss of generality, we assume that T is a positive integer. We denote a ∧ b = min(a, b) and a ∨ b = max(a, b). The cardinal of a finite set m is denoted by |m|.

As usual in the proofs of lower bounds, we build a set of intensities (f m ) m∈M quite distant from each other in terms of the L 2 -norm, but whose distance between the resulting models is small. This set of intensities is based on wavelet expansions. More precisely, let ψ be the Meyer wavelet built with with C 2 -conjugate mirror filters (see for instance Section 7.7.2 of [START_REF] Mallat | A wavelet tour of signal processing[END_REF]). We shall use in particular that ψ is C ∞ and there exists a positive constant c ψ such that

1. |ψ(x)| ≤ c ψ (1 + |x|) -2 for any x ∈ R, 2. ψ * is C 2 and ψ * has support included into [-8π/3, -2π/3] ∪ [2π/3, 8π/3],
where ψ * (ξ) = e itξ ψ(x)dx is the Fourier transform of ψ. Observe that this implies that the functions

ξ → ψ * (ξ), ξ → ψ * (ξ)ξ -1 , ξ → ψ * (ξ)ξ -2 , ξ → (ψ * ) (ξ) and ξ → (ψ * ) (ξ)ξ -1
are bounded by a constant. Without loss of generality, we assume that this constant is c ψ .

Let

f 1 (x) = c 1 1 + x 2 ,
where c 1 is a positive constant small enough, which is chosen such that f 1 belongs to S β (L/2), where we denote

S β (L) := S β (L, 0, +∞) = g ∈ L 2 : +∞ -∞ |g * (ξ)| 2 (ξ 2 + 1) β dξ ≤ L 2 .
Indeed, note that

c β 2 := |c -1 1 f * 1 (ξ)| 2 (ξ 2 + 1) β = π 2 exp(-2|ξ|)(ξ 2 + 1) β < ∞ (7.4) so that it is sufficient to choose c 1 = c -1 β L/2. With this choice we also have r ≤ f 1 1 = c 1 π ≤ bL since we have assumed rL -1 ≤ π/(2c β ) ≤ b; then f 1 ∈ S β (L/2, r, b).
We recall a combinatorial lemma due to Birgé and Massart (see Lemma 8 in [START_REF] Reynaud | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF], see also Lemma 2.9 in Tsybakov ( 2008)). Here we choose Γ := {0, . . . , D -1} with D := T 2 j-1 where j is an integer to be chosen later (so, we take T 2 j-1 ≥ 1), and we denote M := M D given in the previous lemma. Thus log |M| ≥ σT 2 j-1 and for all m, m ∈ M : τ T 2 j-1 ≤ |m∆m | ≤ T 2 j-1 . Now, for a j > 0 to be chosen, for m ∈ M, for x ∈ R, we set

f m (x) := f 1 (x) + a j k∈m ψ jk (x),
where we have denoted, as usual, ψ jk (x) := 2 j/2 ψ(2 j x -k).

We compute ψ * jk (ξ) = 2 -j/2 e iξk2 -j ψ * (ξ2 -j ), which gives

|(f m -f 1 ) * (ξ)| 2 (1 + ξ 2 ) β dξ = a j 2 -j/2 ψ * (ξ2 -j ) k∈m e iξk2 -j 2 (1 + ξ 2 ) β dξ = a 2 j ψ * (t) k∈m e ikt 2 (1 + t 2 2 2j ) β dt ≤ ψ,β a 2 j 2 2jβ 3π -3π k∈m e ikt 2 dt ≤ ψ,β 2 2jβ |m|a 2 j ≤ ψ,β T 2 j(2β+1) a 2 j ,
using Parseval's theorem and |m| ≤ D = T 2 j-1 . We assume from now on that T 2 j(2β+1) a 2 j ≤ C(ψ, β)L 2 (7.5)

for C(ψ, β) a constant only depending on β and L small enough, so that (f m -f 1 ) belongs to S β (L/2) and then f m ∈ S β (L).

Let us verify that f m is non-negative, and then is an intensity of a Poisson process. Since

f m 1 = f m (x)dx = f 1 1 ∈ [r; bL], this will also ensure that f m ∈ S β (L, r, b). For any real x, f m (x) -f 1 (x) f 1 (x) = c -1 1 (1 + x 2 )a j 2 j/2 k∈m ψ(2 j x -k).
Recall that ψ(x) ≤ c ψ (1 + |x|) -2 . Let us now study 3 cases.

1. If 0 ≤ |x| ≤ T + 1, we have:

(1+x 2 ) k∈m ψ(2 j x -k) ≤ (T 2 +2T +2)c ψ k∈m (1+|2 j x-k|) -2 ≤ 2c ψ (T 2 +2T +2) +∞ =1 -2 ,
and the last upper bound is smaller than a finite constant only depending on T and c ψ .

2. If x ≥ T + 1, since |m| ≤ D = T 2 j-1 , we have:

(1+x 2 ) k∈m ψ(2 j x -k) ≤ c ψ T 2 j-1 (1+2 j (x-T )) -2 (1+x 2 ) ≤ c ψ T 2 -j-1 sup x≥T +1 1 + x 2 (x -T ) 2 ,
and the last expression is smaller than a finite constant only depending on T and c ψ .

If

x ≤ -T -1, (1 + x 2 ) k∈m ψ(2 j x -k) ≤ c ψ T 2 j-1 (1 + 2 j (-x)) -2 (1 + x 2 ) ≤ c ψ T 2 -j-1 sup x≤-T -1 1 + x 2 (-x) 2 ,
Finally we obtain that there exists C(T, c ψ ) a constant only depending on T and c ψ such that

|f m (x) -f 1 (x)| f 1 (x) ≤ c -1 1 a j 2 j/2 C(T, c ψ ).
We take a j such that

c -1 1 a j 2 j/2 C(T, c ψ ) ≤ 1 2 . (7.6) This ensures that f m ≥ 1 2 f 1 ≥ 0. Another consequence is that f ε f m ≥ 1 2 f ε f 1 . This provides f ε f m (x) ≥ 1 2 a -a 1 2a c 1 1 + (x -t) 2 dt ≥ 1 2 c 1 1 + (|x| + a) 2 ≥ 1 2 c 1 1 + 2a 2 + 2x 2 ≥ c -1 2 1 + x 2 , denoting c 2 = c 2 (a, β, L) = max(4, 2 + 4a 2 )/c 1 .
Finally, we evaluate the distance between the distributions of the observations N Y when N X has intensity nf m and nf m . We denote by P m the probability measure associated with N Y , which has intensity g m := f ε nf m , and we denote by K(P m , P m ) the Kullback-Leibler divergence between P m and P m . Using [START_REF] Cavalier | Poisson intensity estimation for tomographic data using a wavelet shrinkage approach[END_REF], we have

K(P m , P m ) = g m (x)φ log g m (x) g m (x) dx where for any x ∈ R, φ(x) = exp(x) -x -1. Since for any x > -1, log(1 + x) ≥ x/(1 + x), we have 
K(P m , P m ) ≤ (g m (x) -g m (x)) 2 g m (x) dx = n ((f ε f m )(x) -(f ε f m )(x)) 2 (f ε f m )(x) dx.
For m and m in M, denote

θ(x) = a -1 j (f ε (f m -f m ))(x) = k∈m∆m b k (f ε ψ jk )(x) with b k = 1 if k ∈ m and b k = -1 if k ∈ m .
Denote also θ * (ξ) = e iξx θ(x)dx its Fourier transform, and (θ * ) (ξ) = ixe iξx θ(x)dx the derivative of θ * . Parseval's theorem gives

θ 2 2 = 1 2π θ * 2 2 , and xθ(x) 2 2 = 1 2π (θ * ) 2 2 . Thus 1 n K(P m , P m ) ≤ ((f ε f m )(x) -(f ε f m )(x)) 2 (f ε f m )(x) dx ≤ c 2 (1 + x 2 )(f ε (f m -f m )(x)) 2 dx ≤ c 2 a 2 j (1 + x 2 )θ(x) 2 dx ≤ c 2 2π a 2 j θ * 2 2 + (θ * ) 2 2 .
We recall that ψ * jk (ξ) = 2 -j/2 e iξk2 -j ψ * (ξ2 -j ), which gives

θ * (ξ) = k∈m∆m b k f * ε (ξ)ψ * jk (ξ) = k∈m∆m b k f * ε (ξ)2 -j/2 e iξk2 -j ψ * (ξ2 -j ) = 2 -j/2 f * ε (ξ)ψ * (ξ2 -j ) k∈m∆m b k e iξk2 -j .
Thus, remembering that for ξ ∈ R,

|f * ε (ξ)| = sin(aξ) aξ ≤ min(1, |aξ| -1 ), (7.7) we have θ * 2 2 = 2 -j/2 f * ε (ξ)ψ * (ξ2 -j ) k∈m∆m b k e iξk2 -j 2 dξ = f * ε (u2 j )ψ * (u) k∈m∆m b k e iku 2 du ≤ min(1, |a2 j u| -2 )|ψ * (u)| 2 k∈m∆m b k e iku 2 du ≤ 8π/3 -8π/3 min(1, |a2 j | -2 )c 2 ψ k∈m∆m b k e iku 2 du
using the properties of ψ. Parseval's theorem gives

1 2π π -π k∈m∆m b k e iku 2 du = k∈m∆m b 2 k = |m∆m | ≤ T 2 j-1 . Then θ * 2 2 ≤ 3πc 2 ψ T 2 j (a -2 2 -2j ∧ 1). Let us now bound (θ * ) 2 2 . First (ψ * jk ) (ξ) = 2 -3j/2 e iξk2 -j ψ * (ξ2 -j )ik + (ψ * ) (ξ2 -j ) , then (θ * ) (ξ) = k∈m∆m b k (f * ε ) (ξ)ψ * jk (ξ) + f * ε (ξ)(ψ * jk ) (ξ) = k∈m∆m b k (f * ε ) (ξ)2 -j/2 e iξk2 -j ψ * (ξ2 -j ) + b k f * ε (ξ)2 -3j/2 e iξk2 -j ψ * (ξ2 -j )ik + (ψ * ) (ξ2 -j ) = α 1 (ξ) + α 2 (ξ) + α 3 (ξ)
where

α 1 (ξ) = 2 -j/2 (f * ε ) (ξ)ψ * (ξ2 -j ) k∈m∆m b k e iξk2 -j , α 2 (ξ) = 2 -3j/2 f * ε (ξ)ψ * (ξ2 -j ) k∈m∆m ikb k e iξk2 -j , α 3 (ξ) = 2 -3j/2 f * ε (ξ)(ψ * ) (ξ2 -j ) k∈m∆m b k e iξk2 -j .
Reasoning as before, and using that

|(f * ε ) (ξ)| = cos(aξ) ξ - 1 ξ × sin(aξ) aξ ≤ 2 |ξ| , (7.8) 
we can write

α 1 2 2 = (f * ε ) (u2 j )ψ * (u) k∈m∆m b k e iku 2 du ≤ 4 u 2 2 2j |ψ * (u)| 2 k∈m∆m b k e iku 2 du ≤ 4c 2 ψ 2 -2j × 6π|m∆m | ≤ 12πc 2 ψ T 2 -j .
In the same way, using (7.7), Finally, since a is smaller than an absolute constant and T is larger than an absolute constant, we have that K(P m , P m ) ≤ Cc 2 c 2 ψ na 2 j T 3 2 j (a -2 2 -2j ∧ 1), for C an absolute constant. Now, let us give the following version of Fano's lemma, derived from [START_REF] Birgé | A new look at an old result: Fano's lemma[END_REF].

α 2 2 2 = 2 -2j f * ε (u2 j )ψ * (u) k∈m∆m ikb k e iku 2 du ≤ 2 -2j (1 ∧ a 2 2 -2j u -2 )|ψ * (u)| 2 k∈m∆m ikb k e iku 2 du ≤ 3c 2 ψ 2 -2j (a -2 2 -2j ∧ 1) π -π k∈m∆m
Lemma 10 Let (P i ) i∈{0,...,I} be a finite family of probability measures defined on the same measurable space Ω. One sets

K I = 1 I I i=1
K(P i , P 0 ).

Then, there exists an absolute constant B (B = 0.71 works) such that if Z is a random variable on Ω with values in {0, . . . , I}, one has inf 0≤i≤I P i (Z = i) ≤ max B, K I log(I + 1) .

We apply this lemma with M instead of {0, . . . , I}, whose log-cardinal is larger than T 2 j-1 up to an absolute constant. We take a j such that Cc 2 c 2 ψ na 2 j T 3 2 j (a (1 -B).

Now, we choose a j > 0 as large as possible such that (7.5), (7.6) and (7.9) are satisfied, meaning that a 2 j T 2 j = C(ψ, β)L 2 2 -2jβ ∧ c 2 1 T C(T, c ψ ) -2 4 ∧ C(ψ)2 j nT c 2 (a 2 2 2j ∨ 1) .

Since c 2 = max(4, 2 + 4a 2 )/c 1 and c 1 = c -1 β L/2, it simplifies in

a 2 j T 2 j = T,ψ,β,a L 2 2 -2jβ ∧ L 2 ∧ L2 j n (2 2j ∨ 1) .
We can take j such that T 2 j-1 ≥ 1 and 2 j ≤ (Ln)

1 2β+3 < 2 j+1
for n larger than a constant depending on r and T (since L is larger than 2rc β /π), which yields inf

Zn sup f X ∈S β (L,r,b) E Z n -f X 2 2,T ≥ T,ψ,β,a L 2β+6 2β+3 n -2β 2β+3 .
Similarly, we can also take j a constant depending on T so that and Theorem 5 is proved.

Proof of Corollary 1

To prove Corollary 1, we combine the upper bound (4.1) and the decomposition (3.5) to obtain for any f X and any h ∈ H,

E f -f X 2 2,T ≤ C 1 E f h -f X 2 2,T + C 2 n = C 1 (B 2 h + v h ) + C 2 n ,
where C 1 depends only on η and K and

B h = K h * f X -f X 2,T , v h = aT f X 1 K 2 2 2nh 3 ,
and 

C 2 = ( K 1 + 1) 2 c 1 f X -1 1 + c 2 f X 1 + c 3 ,

Notations.

  We denote by • 2,T , • 1,T and • ∞,T the L 2 , L 1 and sup-norm on [0; T ], and • 2 , • 1 , and • ∞ their analog on R. Notation means that the inequality is satisfied up to a constant and a n = o(b n ) means that the ratio a n /b n goes to 0 when n goes to +∞. Finally, a; b denotes the set of integers larger or equal to a and smaller or equal to b.

Figure 1 :

 1 Figure 1: Mean squared error (square root) obtained on 30 simulations with our estimator for different values of η and with an oracle estimator (dotted line). The mean squared errors are computed as mean values on 30 simulations and over all different Beta scenarii (blue line) and Laplace scenarii (orange line)

Figure 2 :Figure 3 :

 23 Figure2: Estimated intensity obtained with our estimator (unif deconv), with the true intensity (true int) and the fDKDE estimator (normal deconv) and with a density estimator without deconvolution (no deconv) with Epanechnikov kernel. Each reconstruction is obtained with a generated dataset that verifies the median MSE over 30 simulations.

Figure 4 :Figure 5 :

 45 Figure 4: Estimation of the intensity of human replication origins along chromosome 16(N + = 874), for 3 procedures: our procedure (Epanechnikov kernel calibrated by our data-driven procedure, black plain line), the two procedures implemented in the fDKDE package (red dashed line) and the procedure implemented in the R density function (Epanechnikov kernel) with the bandwidth calibrated by cross-validation (green dashed line).

Lemma 9

 9 Let D an integer and Γ be a finite set with cardinal D. There exist absolute constants τ and σ such that there exists M D ⊂ P(Γ ), satisfying log |M D | ≥ σD and such that for all distinct sets m and m belonging to M D the symmetric difference of m and m , denoted m∆m , satisfies |m∆m | ≥ τ D.

ikb k e iku 2 du≤

 2 6πc 2 ψ 2 -2j (a -2 2 -2j ∧ 1) 2j (1 ∧ a 2 2 -2j u -2 )|(ψ * ) (uψ T 2 -j (a -2 2 -2j ∧ 1).

E

  m∈M P m (Z = m) ≤ B. Now, inf Zn sup f X ∈S β (L,R) E f X Z n -f X 2 2,T ≥ inf Zn sup m∈M E fm Z n -f m fm f m -f m 2 2,T .(7.10)For the last inequality, we have used that if Z n is an estimate, we definem ∈ arg min m∈M E fm Z n -f m 2 2,Tand for m ∈ M,f m -f m 2,T ≤ f m -Z n 2,T + f m -Z n 2,T ≤ 2 f m -Z n 2,T .Since f m -f m = a j k∈m∆m b k ψ jk and (ψ jk ) is an orthonormal family, we have form = m , = (f m (x) -f m (x)) 2 1 {|x|>T } dx 1 {|x|>T } dx. Then, since 0 ≤ k ≤ T 2 j-1 , ψ 2 jk (x)1 {|x|>T } dx = ψ 2 (u)1 {|2 -j (u+k)|>T } du ≤ c 2 ψ (1 + |u|) -4 1 {|2 -j (u+k)|>T } du 11), for j larger than a constant depending on T and c ψ , and for m = m ,f m -f m 2 2,T ≥ C (ψ)a 2 j T 2 j ,for C (ψ) a constant only depending on ψ. Finally, applying (7.10) and Lemma 10, we obtain:inf Zn sup f X ∈S β (L,R) E Z n -f X

  where c 1 , c 2 and c 3 only depend on δ, a, K, T and η. Assuming f X ∈ S β (L, r, b), we haveC 2 ≤ δ,a,K,T,r,η,b L.

  a constant only depending on ψ small enough. Thus if Z is a random variable with values in m, inf

			-2 2 -2j ∧ 1) log |M|	≤ B,
	which is satisfied if	a 2 j ≤	C(ψ) nT 2 c 2	(a 2 2 2j ∨ 1),	(7.9)
	with C(ψ)				
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Under Assumption 2, we have for any f X ∈ S β (L, r, b)

for M a positive constant depending on K and β. Indeed, the space S β (L, r, b) is included into the Nikol'ski ball H(β, L ) with L equal to L up to a constant. We refer the reader to Proposition 1.5 of Tsybakov ( 2008) and [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF] for more details. Now, we plug h ∈ H of order (Ln) -1 2β+3 in the previous upper bound to obtain the desired bound of Corollary 1 thanks to Lemma 1.