Large deviation principle for the streams and the maximal flow in first passage percolation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Large deviation principle for the streams and the maximal flow in first passage percolation

Marie Théret

Résumé

We consider the standard first passage percolation model in the rescaled lattice $\mathbb{Z}^d$ for $d\geq 2$ and a bounded domain $\Omega$ in $\mathbb R ^d$. We denote by $\Gamma^1$ and $\Gamma^2$ two disjoint subsets of $\partial \Omega$ representing respectively the source and the sink, i.e., where the water can enter in $\Omega$ and escape from $\Omega$. A maximal stream is a vector measure $\overrightarrow{\mu}_n^{max}$ that describes how the maximal amount of fluid can enter through $\Gamma^1$ and spreads in $\Omega$. Under some assumptions on $\Omega$ and $G$, we already know a law of large number for $\overrightarrow{\mu}_n^{max}$. The sequence $(\overrightarrow{\mu}_n^{max})_{n\geq 1} $ converges almost surely to the set of solutions of a continuous deterministic problem of maximal stream in an anisotropic network. We aim here to derive a large deviation principle for streams and deduce by contraction principle the existence of a rate function for the upper large deviations of the maximal flow in $\Omega$.
Fichier principal
Vignette du fichier
ULD.pdf (924.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02963113 , version 1 (09-10-2020)
hal-02963113 , version 2 (26-02-2021)

Identifiants

  • HAL Id : hal-02963113 , version 1

Citer

Barbara Dembin, Marie Théret. Large deviation principle for the streams and the maximal flow in first passage percolation. 2020. ⟨hal-02963113v1⟩
108 Consultations
110 Téléchargements

Partager

More