On robustness of unsupervised domain adaptation for speaker recognition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

On robustness of unsupervised domain adaptation for speaker recognition

Pierre-Michel Bousquet
  • Fonction : Auteur
  • PersonId : 1078752
Mickael Rouvier

Résumé

Current speaker recognition systems, that are learned by using wide training datasets and include sophisticated modelings, turn out to be very specific, providing sometimes disappointing results in real-life applications. Any shift between training and test data, in terms of device, language, duration, noise or other tends to degrade accuracy of speaker detection. This study investigates unsupervised domain adaptation,when only a scarce and unlabeled "in-domain" development dataset is available. Details and relevance of different approaches are described and commented, leading to a new robust method that we call feature-Distribution Adaptor. Efficiency of the proposed technique is experimentally validated on the recent NIST 2016 and 2018 Speaker Recognition Evaluation datasets.
Fichier principal
Vignette du fichier
LIA_interSp2019.pdf (217.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02960015 , version 1 (09-10-2020)

Identifiants

  • HAL Id : hal-02960015 , version 1

Citer

Pierre-Michel Bousquet, Mickael Rouvier. On robustness of unsupervised domain adaptation for speaker recognition. InterSpeech, Graz University of Technology, Sep 2019, Graz, Austria. ⟨hal-02960015⟩

Collections

UNIV-AVIGNON LIA
224 Consultations
347 Téléchargements

Partager

More