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Abstract
Current speaker recognition systems, that are learned by us-
ing wide training datasets and include sophisticated modelings,
turn out to be very specific, providing sometimes disappoint-
ing results in real-life applications. Any shift between train-
ing and test data, in terms of device, language, duration, noise
or other tends to degrade accuracy of speaker detection. This
study investigates unsupervised domain adaptation,when only a
scarce and unlabeled “in-domain” development dataset is avail-
able. Details and relevance of different approaches are de-
scribed and commented, leading to a new robust method that
we call feature-Distribution Adaptor. Efficiency of the proposed
technique is experimentally validated on the recent NIST 2016
and 2018 Speaker Recognition Evaluation datasets.
Index Terms: Speaker recognition, speaker embeddings, x-
vectors, unsupervised, domain adaptation

1. Introduction
As any application of machine learning, effectiveness of the
automatic speaker recognition relies on extensive model train-
ing datasets. The term big data often used in machine learn-
ing implicitly means that these datasets are comprised of huge
amounts of labeled observations but, also, span a wide variety
of real settings (for utterances: channel, device, duration, lan-
guage, type and level of noise, reverberation, etc.). Actually,
these requirements about the “scope of domain” are not fulfilled
and this fact can explain the disappointing results of some real-
life speaker recognition applications.

We focus here on the challenge of unsupervised domain
adaptation, when the methods have to transmit information
about domain shift from a small unlabeled in-domain develop-
ment dataset to the wide out-of-domain training dataset used for
modeling.

Methods can be model-based, adapting parameters of a
model by a mix of techniques as interpolation [1, 2], nuisance
attribute projection [3], Bayesian maximum likelihood [4] or /
and eigenvectors and eigenvalue-spectrum regularization [2, 1].
The methods can also be feature-based, transforming out-of-
domain data to better fit the in-domain distribution [5, 6].

For model-based methods, the unsupervised domain adap-
tation can also be dealt with by carrying out a clustering of
the in-domain development dataset, identifying the clusters with
speaker-classes then performing supervised domain adaptation
with these new speakers labels [7, 8]. On the one hand, it is
shown in [5] that these model-based methods perform better
when they are preceded by a feature-based unsupervised adap-
tation (CORAL in [5]). On the other hand, scores provided
by a PLDA remain the best metric for clustering [9, 7, 10, 11]
and unsupervised methods can be useful to better estimate the
PLDA parameters. These remarks show the usefulness of unsu-
pervised domain adaptation.

Our contributions are as follows: we describe the most ef-

ficient unsupervised domain adaptation methods in section 2,
in particular the algorithm implemented in Kaldi 1. This code
has been used by many participants during NIST-SRE18 [12]
and no documentation is available. In section 3, details about
the methods are reviewed and discussed, leading to propose
a new method, intended to enhance accuracy and increase ro-
bustness of the adaptation. We call this new method “feature-
Distribution Adaptor”. Section 4 reports experimental results
and we conclude in section 5.

In what follows, the terms in-domain and out-of-domain are
abbreviated by inD and ooD.

2. Domain adaptation methods
Figure 1 details the steps of different speaker recognition
backend processes with embeddings (i-vector or x-vector) and
feature- or model-based domain adaptation. For comparison,
the first row describes a system without domain adaptation. We
call it standard as it is the most commonly implemented: af-
ter LDA dimensionality reduction, the vectors are whitened by
centering (subtracting the mean vector of the training dataset)
and standardization by the within-class covariance matrix (W-
norm [13, 14]), then length-normalized. Gaussian-PLDA model
is estimated, following [15], usually with full-rank speaker and
nuisance covariance. Vectors are scored by using this Gaussian
model.

The second system in Figure 1 describes the example recipe
in Kaldi. As no documentation of its backend process is avail-
able, we detail it here. The process uses many specific steps:
first, the version of PLDA is the one proposed by Ioffe [16].
This PLDA includes a post-modeling normalization: given
the estimated between and within class covariance matrices
(B,W), W-normalization is applied then rotation by the B-
eigenvectors. This additional step makes diagonal both matrices
but is is worth noting that it modifies the within-class covari-
ance after modeling. Then, a first step of domain adaptation is
carried out (“by-domain mean adapt”): each vector is centered
around the mean of its specific domain (its own mean for ooD,
the mean computed from unlabeled development data for inD).

The Kaldi recipe contains an algorithm of covariance adap-
tation, referred to as PLDA unsupervised adaptor, that we detail
in Algorithm 1. In step (i), eigenvalue decomposition is carried
out, P is the eigenvector matrix and ∆ the diagonal matrix of
corresponding eigenvalues. Then parameters are transformed
as shown in step (ii). Let us note that applying the transforma-
tion of step (ii) to inD and ooD total covariance matrices would
make them simultaneously diagonal, equal to ∆ and the identity
matrix respectively. Therefore, in this space, the dimensional
variances (eigenvalues) of the ooD distribution are all equal to
1. The method assumes that the inD variances higher than 1 are
specific to this domain. During step (iii), only diagonal values
of the model parameters are updated and the result is interpo-

1https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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Figure 1: Details of some systems with unsupervised domain adaptation. For better comparison, the first one corresponds to a baseline
without domain adaptation.

Algorithm 1 Kaldi PLDA unsupervised adaptor

Given PLDA matrices (B,W), compute covariance matrices
Σi and Σo = B + W of inD and ooD data.
(i)

Compute SVD of Σ
− 1

2
o ΣiΣ

− 1
2

o = P∆Pt

(ii)

W← PtΣ
− 1

2
o WΣ

− 1
2

o P

B← PtΣ
− 1

2
o BΣ

− 1
2

o P
(iii)
for i = 1 to r do

if ∆i,i > 1 then
Bi,i = Bi,i + αb (∆i,i − 1)
Wi,i = Wi,i + αw (∆i,i − 1)

(iv)

W← Σ
+ 1

2
o PWPtΣ

+ 1
2

o P

B← Σ
+ 1

2
o PBPtΣ

+ 1
2

o P

lating between initial and transformed parameter. The positive
parameters αb, αw are such that αb + αw = 1 and allow to
freely weight the initial ooD and pseudo-inD covariances. The
last step brings back the transformed parameters in the initial
space.

After adaptation, Ioffe’s PLDA post-normalization must be
applied for a second time, that further modifies features and
PLDA parameters. Lastly, a supplementary normalization is
performed (“specific L-norm for test”) before scoring. The test-
vectors are modified as follows :

x←− x∥∥∥xtΣ̂−1
o x

∥∥∥ (1)

where Σ̂o = B + W is the total covariance matrix of the
pseudo-inD data after adaptation. Experiments show that this
transformation is required to achieve competitive performance.
We did not find theoretical justification of this post-modeling
normalization. The system ends up by the specific scoring of
Ioffe’s PLDA model.

The third system is the unsupervised Bayesian adaptation
proposed in [4]. The authors apply the supervised Bayesian
adaptation of PLDA [8] to unlabelled inD datasets. The inD
development data do not need clustering: the observations are
assumed to be speaker-independent, ie. that each sample is pro-
vided by a unique speaker. This assumption eliminates the re-

quirement of speaker labeling. The interesting results of this
approach, competitive to those of the supervised version, may
be due to the fact that the inD development dataset of the ex-
periments NIST SRE16 [17] contains few samples per speaker
(about 2).

The fourth system in Figure 1 includes the CORAL domain
adaptation presented in [18] and introduced for speaker recog-
nition in [5]. This feature-based method is inserted as initial
step of the process. Given the covariance matrices Σi and Σo

of the inD and ooD domain, the authors aim at finding a matrix
A that minimizes the distance between Σi and AtΣoA, using
the Frobenius norm metric. The analytical solution is equal to :

At = Σ
+ 1

2
i Σ

− 1
2

o (2)

Actually, the authors apply a regularization term to this solution:

At = (λI + Σi)
+ 1

2 (λI + Σo)−
1
2 (3)

where I is the identity matrix and λ a positive scalar. Each ooD
vector x becomes x← Atx. In [18], the regularization factor λ
is introduced in order to avoid complications when matrices are
not full-rank, that is for the sake of efficiency and stability. The
authors arbitrarily set this parameter to 1. This value is retained
in [5] for speaker recognition.

A new domain adaptation method has been recently in-
troduced and tested for SRE18, referred to as CORAL+ [1].
Unlike CORAL and like Kaldi adaptor, this method (fifth sys-
tem of Figure 1) is model-based. In the same way as step (ii)
of Kaldi PLDA unsupervised adaptor (but separately for each
PLDA parameter B and W), a simultaneous diagonalization of
the parameter and of its pseudo-inD covariance version is car-
ried out. The result is a combination of the two matrices (the
latter is beforehand thresholded to 1 in terms of eigenvalues).
The parameter-dependent scalars for interpolation are experi-
mentally tuned, to optimize performance.

3. Feature-Distribution adaptor
We tested during and after NIST-SRE18 evaluation some vari-
ants of the previous methods. They are based on the following
arguments.

First, speaker embeddings as i-vector or x-vector have
proven to be very efficient for speaker detection but these low-
rank representations are not “ready” for modeling and scoring.
They can be used provided that they are first whitened and



normalized. Transformations like discriminant dimensionality
reduction (LDA), whitening and length-normalization are re-
quired to make these representation consistent with the usual
and well controlled Gaussian probabilistic framework. All
these techniques rely on parameters learned by using ooD data.
Hence, InD data follow transformations driven by ooD parame-
ters. Specific information of the target domain can be degraded
during these stages. It could be more relevant to adapt ooD data
to the target domain before any of these techniques.

Second, it is known that the mean shift due to the mismatch
between training and test data can be partially solved by cen-
tralizing the datasets to a common origin [19]. Also in [19], a
severe misalignment is observed between the i-vectors for En-
glish and for other languages. The Kaldi recipe contains a by-
domain mean adaptation (step 5 in Figure 1), performed after
normalization and PLDA. We propose to apply this adaptation
at the same time as LDA. Indeed, length-normalization, which
is done before the mean adaptation in Kaldi code, is critically
depending on the location of the origin.

Third, as explained above, the practical implementation of
CORAL does not use the analytical solution of the minimization
problem of eq. (2) but a regularized version (eq. (3) with λ = 1),
in which the identity is added to the covariances. The resulting
matrices have the same eigenvectors that the initial covariances
matrices and the same eigenvalues increased by 1. By this way,
the impact of the residual components is mitigated, avoiding
to take into account inaccurate information during adaptation.
This precaution is especially useful for inD covariance, which
is estimated by using a small development dataset (in our ex-
periments, about 2000 observations for estimating a 512× 512
matrix).

As noticed in Section 2, after step (ii) of Kaldi adaptor Al-
gorithm 1, inD and ooD total covariances matrices would be
simultaneously diagonal, equal to ∆ and the identity matrix re-
spectively. In this intermediate space, it can be presumed that
the inD variances (eigenvalues) higher than 1 are specific to this
domain and, also, that low eigenvalues are unreliable -keeping
in mind the low amount of the inD development data-. The best
way for adaptation is to carry out an eigenvalue-spectrum regu-
larization of the ooD matrices.

By synthesizing all these remarks, it can be of interest to
propose the following Algorithm 2. As shown in Figure 1, this
algorithm has just to be added as first step to a standard sys-
tem without adaptation. We refer to this method as “feature-

Algorithm 2 feature-Distribution Adaptor

Apply by-domain mean adaptation to inD and ooD vectors.
Compute covariance matrices Σi, Σo of inD and ooD data.

Compute SVD of Σ
− 1

2
o ΣiΣ

− 1
2

o = P∆Pt

Compute matrix ∆̂ such that ∆̂i,i = max (1,∆i,i)

For each ooD vector x do x←
(

Σ
+ 1

2
o P ∆̂

1
2P tΣ

− 1
2

o

)
x

Distribution Adaptor” by analogy with Kaldi PLDA unsuper-
vised adaptor. The transformation avoids to adapt axes of vari-
ability higher than those of inD data, by applying a flooring of
1 to the estimated inD-eigenvalues in a whitened space. Let us
note that, if ∆̂ = ∆, the resulting ooD covariance becomes Σi.

Unlike Kaldi, the method is feature-based, and works on
the whole covariance matrix (not only its diagonal values). No
specific SVD per within- or between- covariance is carried out,
as done in model-based CORAL+. We presume that the limited

size of the inD development dataset may make their estimation
inaccurate. There is no interpolation between the original and
the resulting matrix, as in [7, 4, 2, 1]. The latter is considered
as the best pseudo-inD estimation of the covariance, given the
available inD and ooD data.

To better assess the relevance of the previous approach and,
also, the gain of accuracy involved by the “first step” feature-
based adaptation compared to a post-normalization model-
based adaptation, we also propose a modified version of the
PLDA unsupervised adaptor of Kaldi. This new version is de-
scribed in Algorithm 3. Following the same arguments as those

Algorithm 3 Modified-Kaldi

Apply by-domain mean adaptation to inD and ooD vectors.
(...)
Apply step (i) of Algo. 1
Replace steps (ii) to (iv) of Algo. 1 by:
Compute matrix ∆̂ such that ∆̂i,i = max (1,∆i,i)

B =

(
Σ

+ 1
2

o P ∆̂
1
2P tΣ

− 1
2

o

)
B

(
Σ
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1
2P tΣ
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2

o

)
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Σ
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2

o P ∆̂
1
2P tΣ

− 1
2

o

)
W

(
Σ

− 1
2

o P ∆̂
1
2P tΣ

+ 1
2

o

)

set out above, about the flooring of eigenvalues to 1 in a specific
space, the Kaldi adaptor can be improved by replacing steps (ii)
to (iv) of Algorithm 1 as done in Algorithm 3. As for the ini-
tial PLDA unsupervised adaptor, the intermediate inD and ooD
covariance matrices are simultaneously diagonal but, here, the
adaptation is performed on the whole matrix and not only on
the diagonal values. Let us note that this modification can be
implemented in Kaldi with very small changes.

4. Experiments
4.1. Configuration

X-vector and i-vector have been trained using data collected
from NIST SRE2004, 2005, 2006, 2008 and from Switchboard
II phase 2,3 and Switchboard Cellular Part1 and Part2.

For x-vectors, we use MFCC feature withe 23 cepstral co-
efficients. The window length and shift size are 25-ms and
10-ms respectively. A cepstral mean normalization is applied
with a window size of 3 seconds. Next, non-speech frames are
discarded using energy-based voice activity detection. The x-
vector extractor is a variant of Kaldi toolkit [2] in which we im-
plemented attentive statistics pooling layer [20] . The attentive
statistics pooling layer calculates weighted means and weighted
standard deviations over frame-level features scaled by an atten-
tion model. This enables x-vector to focus only on important
frames. The setting of x-vector network follows the example
recipe in kaldi : sre16/v2 except the number of epochs that is
fixed to 6 and the size of mini-batch that is fixed to 128. The
extracted x-vectors are 512-dimension. The system employs the
data augmentation included in Kaldi.

For i-vectors, we use MFCC feature with 20 cepstral coeffi-
cients appended with the first and second order. A 4096-mixture
full covariance UBM has been trained. The extracted i-vectors
are 400-dimension.

Experiments were conducted on the NIST SRE16 [17] and
SRE18 datasets. The training set consists primarily English
speech, the enrollment and test segments are in Tagalog and
Cantonese for SRE16, in Tunisian Arabic (cmn2) for SRE18.
The unlabeled development sets comprises 2272 and 2332 seg-



Table 1: Comparison of x-vector systems with distinct domain adaptation methods.

system eval SRE18 eval SRE16
By-domain cmn2 tagalog cantonese

mean adapt. eer dcf eer dcf eer dcf

standard (no adapt.) - 10.67 0.669 20.96 0.996 6.89 0.561
Kaldi X 7.61 0.544 11.04 0.734 3.48 0.359

Kaldi (without by-D mean adapt) - 9.76 0.587 15.52 0.835 5.12 0.451
Unsupervised Bayesian adaptation - 10.15 0.628 19.97 0.837 7.14 0.529
CORAL - 11.94 0.618 17.52 0.859 8.55 0.544
CORAL+ - 9.88 0.587 17.43 0.842 5.62 0.472

Unsupervised Bayesian adaptation X 7.73 0.600 13.19 0.806 3.89 0.404
CORAL X 8.12 0.581 11.24 0.710 4.16 0.412
CORAL+ X 8.47 0.565 13.16 0.791 4.49 0.401
CORAL+ with specific L-norm. X 7.32 0.549 10.94 0.735 3.33 0.359

feature-Distribution Adaptor X 7.22 0.508 10.31 0.688 3.31 0.335
Modified-Kaldi X 7.35 0.544 10.92 0.732 3.28 0.350

ments respectively. Robust error measures are computed by us-
ing the NIST toolkit, that delivers averages of EER and DCF
from many partitions.

4.2. Results

Results of the different approaches using x-vector system are
reported in Table 1. The first two lines show the benefit of the
Kaldi recipe, for all the experiments. Next four lines show re-
sults of Kaldi, unsupervised Bayesian adaptation, CORAL and
CORAL+ without initial by-domain mean adaptation (with only
centering during the standard whitening step). The disappoint-
ing results suggest that some of these methods may include un-
mentioned mean adaptation, at one of their stages.

The last six lines of Table 1 confirm the benefit of the ini-
tial by-domain mean adaptation proposed in Section 3. For
CORAL+, as the results of this method were disappointing
(compared to those obtained by the authors during NIST-SRE18
and in [1]), we tested the method with the last specific length-
normalization of eq. (1), performed after modeling, that is in-
cluded in Kaldi. With this addition, the method provides a sig-
nificant gain of performance for all the experiments.

The last two lines show results of our contribution. Feature-
distribution Adaptor confirms the assumptions of Section 3 and
the relevance of the approach in terms of robustness. The
method yields better performance than the previous ones, for all
the experiments and error measurements. Lastly, the modified-
Kaldi approach confirms the effectiveness of the matrix trans-
formation of Algorithm 3 but, as presumed in Section 3, per-
forming domain adaptation after normalization leads to lower
accuracy than the previous approach.

Table 2: Comparison of i-vector and augmented x-vector based
systems on NIST-SRE 2016 (standard without adaptation then
feature-Distribution Adaptor).

tagalog cantonese
eer dcf eer dcf

standard i-vector 23.07 0.972 10.32 0.698
f-D Adaptor i-vector 16.09 0.823 6.51 0.544
f-D Adaptor x-vector 10.31 0.688 3.31 0.335

Results reported in Table 2 compare performance of two
representations: i-vector vs x-vector, on the same evaluation
SRE16. The Table allows to better assess the benefit of the
new augmented x-vector approach, but also that of the domain
adaptation: for EER, about half of the gain is brought by the
embedding and the other half by the adaptation of mean and co-
variance. This recalls the importance of an optimized backend
process in robust speaker recognition.

5. Conclusion
In this study, we focused on unsupervised domain adaptation
with recent speaker embeddings (i-vector, augmented x-vector).
These low-size representations turn out to be very efficient, but
have the major drawback of not being “ready” for scoring. Nor-
malizations are required for preparing data to modeling and
scoring. As highlighted in this study, domain adaptation could
improve its relevance to be included as initial step of the system,
before any type of normalizations (all being learned by using
out-of-domain information). The adaptation procedure we pro-
pose is relevant, since done on features and as initial step. Deal-
ing with unsupervised domain adaptation merely boils down to
adding a preliminary step to a “standard” backend system.

Our experiments highlight the substantial share of perfor-
mance brought by an appropriate mean adaptation. The by-
domain mean adaptation has already been implemented in some
systems, but not necessarily as initial step before normaliza-
tion. We think that this point deserved to be experimentally con-
firmed. For covariance, the proposed regularization procedure,
based on comparison of eigenvalue-spectra in a “whitened”
space, appears to be more efficient than all other approaches,
especially when performed as first step. As explained in the in-
troduction, the feature-Distribution Adaptor can also be used to
refine the prior clustering of supervised adaptation methods.

This method appears to us quite simple and relevant enough
to be robust and, thus, to be tested in future work for other mis-
match of domain than language.
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