ASYMPTOTIC DECOMPOSITION OF SOLUTIONS TO RANDOM PARABOLIC OPERATORS WITH OSCILLATING COEFFICIENTS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

ASYMPTOTIC DECOMPOSITION OF SOLUTIONS TO RANDOM PARABOLIC OPERATORS WITH OSCILLATING COEFFICIENTS

Résumé

We consider Cauchy problem for a divergence form second order parabolic operator with rapidly oscillating coefficients that are periodic in spatial variable and random stationary ergodic in time. As was proved in [25] and [13] in this case the homogenized operator is deterministic. We obtain the leading terms of the asymptotic expansion of the solution , these terms being deterministic functions, and show that a properly renormalized difference between the solution and the said leading terms converges to a solution of some SPDE.
Fichier principal
Vignette du fichier
KPP_HAL_1D.pdf (484.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02954085 , version 1 (30-09-2020)

Identifiants

Citer

Marina Kleptsyna, Andrey Piatnitski, Alexandre Popier. ASYMPTOTIC DECOMPOSITION OF SOLUTIONS TO RANDOM PARABOLIC OPERATORS WITH OSCILLATING COEFFICIENTS. 2020. ⟨hal-02954085⟩
54 Consultations
33 Téléchargements

Altmetric

Partager

More