N

N

ASYMPTOTIC DECOMPOSITION OF SOLUTIONS
TO RANDOM PARABOLIC OPERATORS WITH
OSCILLATING COEFFICIENTS

Marina Kleptsyna, Andrey Piatnitski, Alexandre Popier

» To cite this version:

Marina Kleptsyna, Andrey Piatnitski, Alexandre Popier. ASYMPTOTIC DECOMPOSITION OF
SOLUTIONS TO RANDOM PARABOLIC OPERATORS WITH OSCILLATING COEFFICIENTS.
2020. hal-02954085

HAL Id: hal-02954085
https://hal.science/hal-02954085v1

Preprint submitted on 30 Sep 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02954085v1
https://hal.archives-ouvertes.fr

ASYMPTOTIC DECOMPOSITION OF SOLUTIONS TO
RANDOM PARABOLIC OPERATORS WITH
OSCILLATING COEFFICIENTS

MARINA KLEPTSYNA, ANDREY PIATNITSKI, AND ALEXANDRE POPIER

ABSTRACT. We consider Cauchy problem for a divergence form second
order parabolic operator with rapidly oscillating coefficients that are
periodic in spatial variable and random stationary ergodic in time. As
was proved in [25] and [13] in this case the homogenized operator is
deterministic.

We obtain the leading terms of the asymptotic expansion of the solu-
tion, these terms being deterministic functions, and show that a properly
renormalized difference between the solution and the said leading terms
converges to a solution of some SPDE.
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1. INTRODUCTION

This work is devoted to obtaining an exact asymptotic development (as
e — 0) of solutions to the following Cauchy problem

(1.1) %UE = div [a<§afa%>Vu1 = A%y in R? x (0,7

uf(x,0) = o(x).

Here ¢ is a small positive parameter that tends to zero, o > 0, a # 2, a(z,y)
is periodic in z variable and § = (&5, s > 0) is a diffusion stationary ergodic
process.

It is known (see [25, 13]) that this problem admits homogenization and
that the homogenized operator is deterministic and has constant coefficients.
The homogenized Cauchy problem takes the form

guo = div(a°TVu?)
(1.2) ot
u®(z,0) = 2(x).

The formula for the effective matrix a®ff

also [13]).

In the existing literature there is a number of works devoted to homog-
enization of random parabolic problems. The results obtained in [16] and
[19] for random divergence form elliptic operators also apply to the parabolic
case. In the presence of large lower order terms the limit dynamics might
remain random and show diffusive or even more complicated behaviour. The
papers [5], [20], [15] focus on the case of time dependent parabolic operators
with periodic in spatial variables and random in time coefficients. The fully
random case has been studied in [21], [2], [3], [10].

One of the important aspects of homogenization theory is estimating the
rate of convergence. For random operators the first estimates have been
obtained in [12]. Further important progress in this direction was achieved
in the recent works [9], [8].

Problem (1.1) in the case of diffusive scaling a@ = 2 was studied in our
previous work [14]. It was shown that, under proper mixing conditions, the
difference uf —u? is of order ¢, and that the normalized difference ! (uf —u®)
after subtracting an appropriate corrector, converges in law to a solution of
some limit SPDE.

However, for positive a # 2, the situation becomes much more intriguing.
The random solution u¢ admits an asymptotic decomposition as € — 0, that
is a sum of terms each of which scales as a power of €. Our main result,
Theorem 2.1 below, provides such a description; we will start by its brief
description.

Heuristically speaking, this theorem can be thought of as follows. First,
as € — 0, the random solution u® converges to the deterministic limit u°.
Considering the difference v® — «® and dividing it by an appropriate power

is given in (2.1) in Section 2 (see



EXACT ASYMPTOTIC DECOMPOSITION 3

of €, one can pass to the limit; if the limit is deterministic, we iterate this
procedure until at some stage we reach a random limit. Returning to u¢, we
obtain its expansion being a sum of terms of increasing order of e, with all
but the last terms being deterministic, and the random term coming with
the scaling factor e%/2.

A first remark here is that the powers of € appearing in the expansion are
not all integer, but also of the form &%, where § = |a — 2|.

An important observation is that for o > 2 the final power of €, the one
associated to the random limit, is greater than 1. And that looks very sur-
prising (even next to impossible) due to the following handwaving argument.
The solution to the Cauchy problem at some ¢ is naturally connected to the
diffusion process on a compact at the e2-rescaled time t/c?. Now, if we were
considering behaviour of the averages of the type

t
[' st
0

where z; is a sufficiently well-mixing ergodic process and g is a function, we
would have convergence to the integral of the space average fg g(s)ds (where
g(s) is the expectation of g(s,-) with respect to the stationary distribution
of z.) with the Central Limit Theorem-governed speed Ve2 = ¢ In our
problem, the natural rescaling is (z; JERS /ea), 50 one would naturally expect

that the randomness occurs at the scaling £% | However, it is not the case:
for @ > 2 the randomness occurs not at the power e!, but still at the
power £%/2.

1.1. Organization of the paper. The paper is organized as follows. In
Section 2 we introduce the studied problem and provide all the assumptions.
Then we formulate the main result of the paper (Theorem 2.1) and distin-
guish how this result can be written in the different cases a < 2, 2 < o < 4
and a > 4. We also define the numerous correctors and auxiliary problems
required to state the main result.

In Section 3 we give the formal expansion £° of u®. Formally we define
the function £° such that

RE(z,t) = e=/% [uf(2,1) — E%(a, 1)]

converges in a suitable space to some non trivial and random limit ¢°. The
major result of this section is given by Propositions 3.1 and 3.6. To sum
up, this formal expansion of u® gives the sequences of constants a**% and
ak*ff and of smooth functions v* and w*. Note that the functions w* in the
definition of v* will be left as free parameters in this first part. The rest R®
contains with large parameters (as € tends to zero), both in its dynamics
and, for a > 2, in its initial condition (3.26). Therefore R® is split into five
terms R = r¢ + 7 4+ 7 + 7 4 p°+ such that:

e The dynamics of ¢ contains a large martingale term with a power

el=ifa<2and e lifa>2.
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e 7 appears only for a < 2 and converges to ¢° (see Proposition 3.2).
e 7 (resp. 7°) converges in a weak (resp. strong) topology to zero.
e The last term p® deals with the initial condition on R® and contains

large order terms when a > 2.

Let us emphasize that in this section the dimension d plays no role and some
terms in £ may be negligible depending on the value of a.

Section 4 focuses on the proof of the convergence of r¢. In the dynamics of
R, there is a martingale term with large parameters, at least when « > 1.
The free parameters w® are used here to obtain the weak convergence to
zero if a < 2 or to the limit ¢° if & > 2. Roughly speaking, we need w* to
obtain a uniform bound in H!(R) of the indefinite integral of R°. Here we
widely use the fact that d = 1.

In Section 5 the trouble comes from the initial condition on R® when
a > 2. Again we give a development of these terms (see Eq. 5.3) together
with the properties of these expansions (Lemmata 5.2, 5.3 and 5.4). We
prove that from our particular choice of the initial condition on u*, it is
possible to define the constants Z; such that the initial condition of R* does
not contribute in the limit equation, that is p® converges to zero in a strong
sense (Proposition 5.5). Again in this section the dimension d could be any
positive integer.

To summarize, the conclusion of Theorem 2.1 follows from

e For a < 2: Propositions 3.1, 3.2 and 4.8.
e For a > 2: Propositions 3.6, 4.9 and 5.5.

Finally, in the Appendix we provide some straightforward but cumbersome
computations.

2. PROBLEM SETUP AND MAIN RESULT

In this section we provide all the assumptions for Problem (1.1), introduce
some notations and formulate the main results.

2.1. Assumptions. Concerning the coefficients of Equation (1.1), we as-
sume that:
(al) The initial condition 2 belongs to space’ C§°(R).
(a2) Function a is periodic in z and smooth in both variables z and y.
Moreover, for each N > 0 there exists Cy > 0 such that

lallevrxrny < Cn-

Here and in what follows we identify periodic functions with func-
tions on the torus T.

(a3) Coefficient a = a(z,y) satisfies the uniform ellipticity condition:
there exists A > 0 such that for any z € T and any y € R™:

A <a(zy) <N

Im fact, this condition can be essentially relaxed (see Remark 2.4).
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The random noise § = (&, s > 0) is a diffusion process in R" with a
generator

£ = S Tla(y)D?] + b(y).-¥

(V stands for the gradient, D? for the Hessian matrix). Moreover we suppose
that matrix-function ¢ and vector-function b possess the following properties:

(a4) The matrix ¢ = ¢(y) satisfies the uniform ellipticity condition:
there exists A > 0 such that

AP <a@)¢ - C< AP, v, CER™
Moreover there exists a matrix o = o(y) such that ¢(y) = o*(y)o(y).

(a5) The matrix function ¢ and vector function b are smooth, that is
for each N > 0 there exists Cy > 0 such that

lollev@ny < Cn,  blley@ny < Cn.
(a6) The following inequality holds for some R > 0 and Cy > 0 and
p>—1:
b(y) -y < —Coly[f forally € {y € R" : |y| > R}.
We say that Condition (A) holds if (al) to (a6) are satisfied.
Let us recall that according to [22, 23] under conditions (a4) and (a6)

a diffusion process £ with generator £ has an invariant measure in R” that
has a smooth density p = p(y). For any N > 0 it holds

(1+y)Vply) < Cn

with some constant C'yy. The function p is the unique up to a multiplicative
constant bounded solution of the equation L£*p = 0; here L£* denotes the
formally adjoint operator. We assume that the process £ is stationary and
distributed with the density p. In the rest of the paper

e f denotes the mean w.r.t. the invariant measure p;
e (f) is the mean on the torus T.

a® and af denote the matrices:

T
a€:a<—,§i), aE:a<z,§t )
& e ea—2

From [13] under Condition (A), we know that u® converges in probability
in the space

Vi = Ly, (0, T3 H' (R)) N C(0, T; Ly (R))
to u?, the solution of (1.2)
u? = div (a*Tvu®),  uO(x,0) = o(x),
where the effective matrix a° is defined by:
(2.1) 2t = (a 4+ aV,xY).

The symbol w in the definition of V3 means that the corresponding space is
endowed with its weak topology.
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The corrector XV is different if o < 2 (Equation (2.2)) or o > 2 (Equation
(2.4)), thus the function u° is not the same for a > 2 and a < 2. More
precisely, for a < 2, the function x* = x%(2,%) is a periodic solution of the
equation

(2.2) div, (a(z,y)VzXO(z,y)) = —div,a(z,y);

here y € R™ is a parameter. We choose an additive constant in such a way
that

(2.3) /Txo(z, y)dz = 0.

When a > 2, the corrector ¥ is the solution of
(2.4) A" = div [aVX°] = —div @

where a is the mean value of a w.r.t. y:
a(2) = [ alvp(u)d.

It is known that matrix a® is positive definite in both cases (see, for instance,
5, 13)).

2.2. Main result. In the rest of the paper we denote
e f=|a—2/>0,
o Jo = |55] + 1, where |-] stands for the integer part,
o 1=|5]
Let us remark that: min(é + 1, J; +1,3Jp) > a/2. For technical reasons, we
also use Ny = 2Jy + 2.
For any o # 2, we construct a sequence of constants a**f, £ > 1, and a
sequence of functions u/, j > 1, as solutions of problems

o . o J 92 4
(2.5) —u) = div(aeﬁVuj) + Z ak’eﬁ—Qujfk + w’
ot P ox

with initial condition w/(x,0) = 0. The definition of the sequence a*<f

depends on the sign of o — 2 (see Eq. (2.14) and (2.31)). The functions w?
are smooth functions and defined recursively.

e For o > 2
(2.6) VE >0, wtl(x Z CrmUpy(,1) Z w™(z,t).

e For a € (0,2), we define w’ recursively by w! = 0 and

k
(2.7)  VE>0, wti(z Z Crmtulfy(z,t) = > w™(x

m=1
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The triangular array of constants (Cy m)o<m<k is defined by (4.9). Note that
these constants are not the same if « > 2 or if & < 2 since the correctors
used in (4.9) are different. Somehow the function w* for a > 2 is equal to
the function w*t! for & < 2; there is a shift between them.

For o > 2, to obtain the desired convergence we need a second sequence
of functions with a different scaling. We construct two other sequences of
constants (a®°T);~; and (Z;,)x>1 such that we can define v = u° and

(2.8) vl =l + 57, 0(,0) = Z;00u’(x,0),
with for j > 1

J
(2.9) S t) = abeM(9F 20 7F)

The sequence of constants (Zy)r>1 are such that Zy = 1, Z; = 0, and defined
by (5.20) for & > 0. In the expansion of u®, we need to take into account
the initial value of the remainder. For o < 2, this additional term is neg-
ligible. But for o« > 2, it contains negative powers of € and thus it should
be controlled. This is the role of this sequence Z;,. Finally the correctors x7
are defined by (2.20).

Our main result is the following.

Theorem 2.1. Under Condition (A), there exists a non-negative constant
A (defined by (2.16) for a < 2 and (2.37) for o > 2), such that the normal-
ized functions

qazé_—a/Q{ (l‘t ngé k:
—Za [v x,t) —|—er 1( )8[ k= Z(x,t)]}

converge in law, as € — 0, in L2 (R x (O,T)) to the unique solution of the
following SPDE

2
dq° = div(a®®Vvq®) dt + (AV/?) (;x ) AW,
¢°(z,0) = 0;

driven by a standard one-dimensional Brownian motion W.

(2.10)

Note that the values of Jo = | 55| + 1 and of « are related as follows:
o o <2 and

2
_ < 9_ = .
-1 95,11

e 2 < <4, Jy>2and

<2

9 < .
T 1Y%, 3
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e a>4and Jy=1.

In other words, Jy becomes large when « is close to 2. Let us precise a little
bit what happens for ¢° in the four cases: o < 2, a <4, a =4 and «a > 4.

e o< 2: J; =0 and ¢° can be written as follows:

qe _ 6—&/2 {’UJE(ZE,t) - ngzd k: } )

Here the sequence v* is not involved.

e 2<a<4: J=1and

= 6—&/2{1118(1,’75) _ nga Kz
—£ {’ul(:r,t) +x° (g) D’ (%t)} }

e o« =4: Jy=1and J; = 2. Thereby ¢° becomes

¢ = 52{u5(x,t) —ul(x,t) —¢ [vl(a:,t) +x° (g) O’ (x,t)}

—2 [ul (2, ) + 02 (2, 8) + X° (g) 0240 () + " (g) o0t (2,1)] }

a = 4 is a kind of critical value, since here u! and v? coexist.
e a>4: Jy=1 and for any m > 2

Ji=m&2m<a<2im+1).

Hence

¢ = 5_0‘/2{u5(:1:,t) —ul(z,t) — oul(x, t)

Ji

~Y [ (2,1) +ZX()84”(M)”.

k=1

Remark 2.2 (When Jy = 1). For o > 4 or a < 4/3, we have § > /2 and
Jo = 1. Thus we may remove u! in the quantity ¢: £9=%/2u! tends to zero
for the strong topology and thus does not contribute directly to the limit
¢° of ¢°. Nevertheless we emphasize that u! and w! are used to obtain the
weak convergence of ¢°.

Remark 2.3 (When o < 1). In this range for a, we have a stronger con-
vergence and the result can be extended to any dimension d, that is a is
periodic in z with the period [0, 1]% and we identify periodic functions with
functions defined on the torus T¢.
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Remark 2.4 (Regularity of ¢). The regularity assumption on ¢ given in con-
dition (al) can be weakened. Namely, the statement of Theorem 2.1 holds if
1 is max(Jy + 1, J1) times continuously differentiable and the corresponding
partial derivatives decay at infinity sufficiently fast.

Remark 2.5 (Dimension d). All results in Sections 2.3 and 3 are valid if
the dimension of the problem is any integer d > 1, that is if 2 € T¢. However
the trick used in Section 4 is correct only in dimension 1.

2.3. Auxiliary problems. If (A) holds, since a®ff is positive, the problem
(1.2) is well posed, uniquely defined, smooth and satisfies the estimates

NO¥uO (z, 1)
Otko dzkr
for all N > 0 and all multi index k = (ko, k1), k; > 0.

(2.11) (1+ =) < Cnk

Correctors and constants for o < 2. We begin by considering Problem (2.2).
This equation has a unique up to an additive constant vector periodic solu-
tion. By the classical elliptic estimates, under our standing assumptions we
have for any N > 0 there exists Cy such that

(2.12) IX°llew (rxrny < Cn-

Indeed, multiplying equation (2.2) by x°, using the Schwarz and Poincaré
inequalities and considering (2.3), the estimate follows from [7].
Higher order correctors are defined as periodic solutions of the equations

(2.13) div, (a(z,y)vzxj(z,y)) =L Hzy), i=1,2,...,J.

Notice that fT Y "Hz,y)dz = 0 for all j = 1, 2,...,J9 thus the compati-
bility condition is satisfied and the equations are solvable. By the similar

arguments, the solutions y’/ defined by (2.13) satisfy the same estimate as

X’

We introduce the real numbers for k£ > 1:
(2.14) b = / /T a(2,9)VaxF(2,9) + Ve (alz, v)x"(2,9)) |p(y) dzdy.

Arguing as for u°, solutions u/ and w’ of problems (2.5) and (2.7) are smooth
functions and they satisfy also the estimate (2.11).
Now we define:

(z,y) = alzy) +a(z,9)Vx"(2,0) + Va(alz,9)x°(2,9)),
@0 = [ @y -
and we consider the equation

(2.15) LQ"(y) = (a)°(y).
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According to [22, Theorems 1 and 2], this equation has a unique up to an
additive constant solution of at most polynomial growth. The constant A is
defined by:

e16) A= [ [FL@w]en)

2

B, (QO)(y)}p(y) dy.

Note that the matrix A is non-negative. Consequently its square root Al/2
is well defined.

Correctors and constants for o > 2. The first auxiliary problem (2.4) Ax" =
—a, reads

div(&(z)VXO(z)) = —diva(z), zeT,
where

a(2) = [tz

It has a unique up to an additive constant periodic solution. This constant
is chosen in such a way that (2.3) holds, namely [;x%(z)dz = 0. By the
classical elliptic estimates (see [7]), under (A), we have

(2.17) IX°N ooy + IX° Nl ery < C.
Then we can define recursively
Flzy) = a—a+ (ax? + (ax")),
Axt(z) = f°
fHzy) = Xa—a") + (ax: + (ax')s) -

Note that here we use (f9) = 0 to obtain the periodic solution x!. Now we
define the constant al*f by:

alet = (1)
and the corrector x? by:
AP (z) = f1—(f1).

Let us also define by induction the following quantities for k > 2

(2.18) ey = X a—a) + (ad + axh)s),
(2.19) abet = (7F),

k—1
220 A = T+ (Y an

j=1

All functions x*, k > 1, are solution of an equation of the form Av = F,
where F' is a periodic with zero mean value and bounded function. Hence
all functions x* are well defined on T and satisfy (2.3) and (2.17).
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Finally from x°, we can define x° as the solution of:
(2.21) Lx%(z,3) = (divsa(z,y) - div.a(2)) +diva((a(z, 5) - 3(2) Vax(2)),
To be precised, x° satisfies for any y € R”
Lx(z,y) = (div,a(z,y) — div,a(2)) + div.((a(z, y) — a(2))V.x"(2)),

z € T being a parameter. Since the right-hand side has a zero mean value
(w.r.t. y) and is bounded, according to [22], this equation has a unique up
to an additive constant (w.r.t. y) solution of at most polynomial growth:

(2.22) K0(2,9)| < C(L+[ylP), V(zy) € T x BY.

Moreover we can impose that

(2.23) /]TIQO(Z, y)dz = 0.

Finally the right-hand side of (2.21) being a smooth function w.r.t. z with
bounded derivatives, again according the representation of [22], z +— £%(z, )
is smooth. Indeed the operators £ and derivative w.r.t. z are commutative.
Then by induction, we introduce a sequence ¥, k > 0 defined by:

(2.24) Left(zy) = (A= AT+ (fF = f).

k

for K =1,2,...,J1 + 2. These higher order correctors k" exist and satisfy

Estimates (2.22) and (2.23).

We will also use the next functions or constants:

(2.25) A (z) = —(ArY),

(2.26) P°(zy) = alk’+7°):+ (a(s® +7°))s,
(2.27) abt = (o) = (a(k® +70),),

Now for any k > 1

(2.28) Ark(z) = —Ayk-T,

and

(2.29) LYz, y) = (A—A)70 + (ALY — ArD),
(2.30) Ly (zy) = (A= D78+ (AP = AyhoT),
For k > 2 we put

(2.31) b = (a(r=1(2) + 75 72(2,y))2).

By the same arguments, the set of correctors 7% and 7* defined respectively
by (2.25), (2.28), (2.29) and (2.30) verify again Estimates (2.3), (2.17), (2.22)
and (2.23). Roughly speaking, they are smooth in both variables, bounded
in z and in polynomial growth in y.
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To obtain the result in Lemmata 3.4 and 3.5, we introduce two sequences
of functions

(23 e =alt 495 A = (44 ),
and 7*(2) and ¢*(z,y), k > 1, solutions of

(2.33) Ant = —(ArT) = (¢° — (¢%),

(2.34) L = (A=A + (At — AxD) + (¢° — ¢0),

and for k£ > 2

(2.35) Ant = —(ACET) = hET— (gh=T — (gh 1)),

(236) L = (A=t (ACT - AT
(AT = W) 4 (6 = g,
Again the same arguments show that 7* and ¢* defined by (2.33), (2.34),

(2.35) and (2.36), exist and are smooth.
Finally the constant A is defined by

(2.37) A = (x0719)2 > 0,
where Y0 is given by:
(2.38) (z,9) = —ry(2,9)q(v).

Here /18 stands for the gradient of k° w.r.t. y (this notation is used in the
sequel of the paper).

3. FORMAL EXPANSION FOR THE SOLUTION

In any case o # 2, we begin with a first formal expansion of u®, where
the functions w”* in the definition of u* will be left as free parameters in this
first part. This development leads to a rest R® with large parameters (as
€ tends to zero) in its dynamics and in its initial condition. Moreover this
development gives the main part of ¢°.

Note that we denote by B the n-dimensional standard Brownian motion
driving the process &.

3.1. The case o < 2. For k > 1 we define
(3.1) a*(z,y) = alz,9)VXF(2,9) + Va(alz,9)x"(2,0)),
62 @ = [ @) -

T

We consider the following expression:

Jo Jo—k
_ ks, k Go+1) . (T k
Ss(x,t)—kzos (u (:c,t)+jz;)63+ Xj(e,fs%)Vu (x,t))

where x7(z,y) and u¥(z,t) are defined in (2.13) and (2.5), respectively.
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Proposition 3.1. If we define:

R (z,t) = 2 [uf (2, t) — E(2, )],
then R® is the sum R® = r° +7° +7° + p° where:

e The dynamics of ¢ contains the terms with large parameters:

(3.3) = (Ar®)dt — a/zz€k5 e
Jo Jo—k . .
_gl—ocz Z 5(k+])5g(§s%)vyxﬂ (gaés%)vuk(ﬂf,t) dB;
k=0 j=0

with r¢(x,0) = 0.
e The dynamics of 7 is given by:

Jo Jo—j

(384) O — A =02y Z‘E(Hj)é Fg(ggs%) ok eff} %;L;

j=0 k=0

with 7 (x,0) = 0.
o The last terms © and p® satisfy:

(3.5) El[7|132 @x 0.1y + Bl 72 @x 0.1y < CE°-

Proof. We substitute R® for v° in (1.1) using It6’s formula:

AR — div[a(Z, ¢, ) VR dt

Jo Jo—Fk
= _—¢"% ZEM [@uk + Z glidti-a) (Lyx7) (E,g%)Vuk
k=0 j—() € -
+ Z Ui (2,64 )orvut|at
Jo Jo—k z
3> 6(1_a+(k+j)6)a(§s%)vyxj<—,§£>Vuk(m,t) dB,
k=0 j=0 <
Jo - Jo—k T
_a ké—1 . L . 36 (33 j - . k
te2 kzos [(dwa)(g,ﬁ?a) + jZZ:O 7 (div(aVx ))(8,557)]Vu
b= (k o
+e7 % Z Z +9)8 G zm f )(%Zzﬁxmu dt
k=0 j=0
Jo Jo—

_ ok
+e QZ Z (k+7) 6+1 a X )( 5 )ax B kdt
k=0 j=0 veem
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Due to (2.2) and (2.13)

Jo Jo—k

=DM DT I (L) (e ) Wt
k=0  j=0 € -
Jo Jo—Fk

+3 R wiva) (2,64 ) + Y & (div(avid)) (5.6, | Vot

k=0 j=0

Jo
— _(Jo+1)s-1 Z (nyjo_k) (gg
k=0

mg‘**

k.eff

Considering equations (2.5) and the definitions of a and a%(z,y), we

obtain

(3.6)  dR:(x,t) — div [a(g,gg%)vm] dt

N Jo Jo—J ST o im 9%
_ (6 /z; kZ:O (k)5 [ak<§ L) _ gk ff} 8%;%) gt
Jo Jo—k
—Z Z E(lfa”kﬂ')é)a({e%)vyxj (g,fe%)Vuk(x,t) dBy
k=0 j=0

Jo
— Z ek0=e/2pk (1) dt
k=1

Jo
+elma/2 Zej%j( §%>3J (z,t) dt,
j=0 5
with a®ff = af and with periodic in z smooth functions b7 = b7(z,y) of at

most polynomial growth in y, and §/ satisfying (2.11), that is
|1+ [2))Y D*37] < Ciow.

The initial condition for R® is given by:

Jo Jo—k

RE(z,0) = ¢'7*/? Z Z 10y (gfo) Vuk(z,0).

k=0 7=0

By the linearity of (3.6), we represent R® as the sum R® = 1€ +7 +7° + p°
where 7¢ and 7 are given by (3.3) and (3.4) and r° contains all negligible
terms:

Jo
e ffF — plma)2 jopi (L j — 5
07 — A°F = ¢ Z;e b<€,£€%>$(x,t) BE (2, 1)
J:
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together with 7%(x,0) = 0. We have

T
<7sla/2jﬁ (A;JQ (1 + g™ (1 + [2))~2"p(y) dydudt

< CelTo2,

IN

E[B°(122&x(0.1))

Similarly, E||7=(, )HL2 Rd) < Cel=2/2. Therefore, 7° satisfies (3.5) and thus
does not contribute in the limit. Finally p® satisfies the dynamics
8tp6 _ Aapa

with the initial condition p°(x,0) = R*(z,0). Since a < 2, we deduce that
E|p(-,0)]1%, ®Y < Ce'=®/2. Thereby this term also does not contribute in
the limit. O

The second term 7¢ gives the limit in Theorem 2.1.

Proposition 3.2. The solution 7 of Problem (3.4) converges in law, as €
goes to 0, in L?(R x (0,T)) equipped with strong topology, to the solution of
(2.10).

Proof. Recall that from the very definition of @ (3.1) and (a)¥ (3.2) the
problem

At (z,y) = @ (2 y) — (@)

has a unique up to an additive constant periodic solution. Letting ©%(z, 1) =
V(¢k(z,y), we obtain a vector functions ©F such that

div O (z,y) = (@ (2,9) — (@5 (1), 105 Ysprmny < Cive
It is then straightforward to check that for the functions

Jo Jo—j

He(x,t) = g—a/zjg0 kzzo o(k+4)8 [ak(gge%) B <a>k(€$)}(‘§;§
L Jodo 02
— 13 JZ:; kZ:O c(k+5)8 {dlv [@k<x’ ;)@“J(%ﬂ]

02 5)9 (g e0)

the following estimate is fulfilled:
(3.7) E|H 201wy < C¥°

We split 7€ = 751 + 752, where

e 1 solves (3.4) with H® on the right-hand side; it admits the
estimate:

E|r e 00,0 (ry) < Cc’.
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o 2 solves also (3.4), but with

Jo Jo—J

8—04/22 Z c(k+)3 [<a>k;(£%) _ ak,eff} 682;;

§j=0 k=0
on the right-hand side.

According to Assumption (a6) and to [22, Theorem 3] (see also [11, Lemma
VIII.3.102 and Theorem VIII.3.97]), the processes

AK(t) = / () (€,) — ab<)ds

satisfy the functional central limit theorem (invariance principle), that is the
process

eh(p) — o3 = A (E,) — a"T)ds
A5k (1) /0 () (&) — ab*T)d

converges in law in C([0,T]; R) to a one-dimensional Brownian motion with
covariance coefficient

100 = [ (5o @] ) [ @Y plw)
with QO defined in (2.15) and Q* given by
(38) LQMy) = (@) (y), k=1,
Denote by 7 the solution of the following problem
(3.9) 00— AT = 72 ()0 (¢, ) — o] Gy
t e Ox?

Obviously if 7 converges, then 72 also converges to the same limit. We
consider an auxiliary problem

} 0%

sy — div [aeﬂrVrqu} [<a>0(§i) —a°ff 52

(3.10) e ==
rex(2,0) =0,

aux
and notice that this problem admits an explicit solution
7 =2 A0 (i) Gl = A%0(t) 82u0'
anx e@/) Qx? 0z

Since u” satisfies estimates (2.11), the convergence of A= implies that < .
converges in law in C((0,7); L?(R)) to the solution of problem (2.10).

Next, we represent 750 as ¥9(z,t) = Z°(x,t)+ 75, (7,t). Then Z¢ solves
the problem

o 0,2 — Az = div([a(Z, Sia) o Vit )
Z%(x,0) = 0.

The conclusion of the proposition can be deduced from the next result. [
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Lemma 3.3. The quantity Z° goes to zero in probability in L?((0,T) x R),
as € tends to 0.

Proof. The arguments are the same as in the proof of [14, Lemma 5.1]. For
completeness, they are reproduced in the appendix.

To finish the proof of Theorem 2.1, we need to control r¢, solution of

problem (3.3).

3.2. When « > 2. Contrary to the previous case, the asymptotic of u® is
less easy to describe. The following notations will be used after for k > 1:

(3.12) oF (g,x,t) = an 1<6>6” k= (x,t),

(313) @ (L6 at) = Zn"—l (5.6 ) 20t (@.1).
n=1

and
(3.14) k(x )_ek( ,t)+x°(§)U’£(w,t)

[ "(2) ure )| +x° (2) uk(a. ),

/\

(3.15) 1 &tjes T t) ek (g,ft/sa,x,t> + & (g,gt/5a> ub(z,t)

k—
1 (T n x
:Zryk ! (gvgt/ea> Ux(ﬁ,t)+1€0 (gvét/s‘J)ug(xat)
n=0
Remember that v = u°. Finally

(3.16) 4" (f z, t) — gt (g z, t) +x (g) uk (2,1)

9
k-1 T

=2 (3) it + 7 () ) 41! (3) il
n=0

(3.17) W (g,ft/sa,x,t) _ ok (g,ft/ea,x,t> + k! (g,gt/ea) b (2, 1)
= :gc’f—” (560 ) e 495 (S 670 ) st
! (208 ) w1

The functions ¢*, 6%, ¢* are bounded and smooth functions, whereas the
random functions ®*, ©F and ¥* are bounded and smooth w.r.t. z with
polynomial growth w.r.t. & /.a.



18 M. KLEPTSYNA, A. PIATNITSKI, AND A. POPIER

As in [14], Eq. (21), we consider a first principal part of the asymptotic
of u® of the form:

Ji1+1
(3.18) &f(x,t) =ul(x,t) + Y v (x,t)
k=1
J1+2 J1+2

x x
+ Z €k¢k (g,.r,t) + Z €k+5¢k (g,gt/€a7x,t)
k=1 k=1
+ edul (z,t) + ot1g!l (E, x, t)
3
i X X
+526+1@1 <g,€t/€a,I,t> +56+2¢1 (g,ﬂ;t) +526+2\I’1 (g,é-t/ea,ﬂj,t) .

with ¢* and ®F defined by (3.12) and (3.13). The functions v* are given as
the solution of Eq. (2.8).

Lemma 3.4. The decomposition of the quantity S5 = (0, — A%)(E5) is given

by:
J1+2

(319) Sf — Z 5k}+5—a/2q):l]j‘ + 82(5-&-1—0&/2@; + 626—&-2—04/2\1]31! O-(gt/ga)dBt
k=1

i |:6J1+1ra,1,5 +€6+1ra,2,e] dt + Swldt
— [27a0" + 2 (a0l + (a°O)).) + P AT

where the two remainders r®%¢ = r®Le(z t) and r®%€ = r®2¢(z,t) only
contain non-negative powers of €, and are bounded and smooth functions.

Proof. To prove this claim, we simply apply the It6 formula. Using the defi-
nitions of the objects introduced in Section 2.3, and after some computations
(see Appendix), we obtain this equality (also see the beginning of the proof
of Proposition 3.1). Boundedness and smoothness are consequences of the
properties given in Section 2.3. O

Since we need to control the last term in (3.19), we consider a second
expansion:

N
(3.20) &5(x,t) = Ze’fé e )+is’“”19’“ (g:zt)
k=2

i Z c(k+1)3+1 gk (%, E4/eor T, t)

k=2
No

n igmwwk (g,x,t) T Z (k+1)6+2 gk ( &y oo @ t)

k=2
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where Ny = 2Jy + 2. Adding the last term in (3.19) we define
S5 = (O — AVE; — [P 740! + X (0L, + (a76)).) + P AW | dt

In &5 there is a martingale term of the from

No No
[ Y ehterimaligry y et R Y 6 (¢, 0)dBy
=2 k=2
a/ No
— > Mojo (ét/aa)dBmLéa/HéZg(k V0o €z B

k=2 k=2

Lemma 3.5. For a given sequence of smooth functions wF, there exists a
unique sequence of correctors u*, 0%, OF ¢k and WF given respectively by
(2.5), (3.14), (3.15), (3.16), (3.17) and a unique sequence of constants a*
such that

e The sequence a*°% | given by (2.27) and (2.31), does not depend on
the choice of w*.
o The absolutely continuous part of S5 is given by

ngd k L OHlpade 4 (20043)0-1 0

where the two remainders r&3¢ = r®3¢(x,t) and r@* = roe (2, 1)
only contain non-negative powers of € and are smooth and bounded
in (x,t).

Proof. Again the proof is a long and awkward application of the It6 formula.
The definition of all correctors leads to the cancellation of a lot of terms (see
Appendix). O

Using the definition of Jy, J1 and 4, the absolutely continuous term
/2 [Nitlpale 4 641026 | 5+1 a3e 8(2J0+3)§—1,r_a,4,5]
will tend to zero as e tends to zero in probability? in C/(0,T; LP(R™)) for any

p= 1L
Assume again that we represent u® as follows:

ut = & + & +*/2R°

where £ is given by (3.18) and &5 by (3.20). Recall that from the definition
of 9, Jy and Jy, we have

v =min(J; + 1, Jod,0 + 1) > a/2.

2Even in L%(Q) for ¢ > 1.
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From the definition of ¢* given by (3.12), we obtain the development:
3.245(z,t) = t) t) -1 ( ) Pt (2t
( §($, ) 73 + Z € ['U x, —|‘ Z X - (l‘, )

+ Za“ Bz, t) + 2R (x,t) + 2 R° (x, 1),

From Section 2.3, the residual Re (z,t) converges to zero when € goes to zero
(at least) in probability in C(0,7"; LP(R™)) for any p > 1.
Let us state our result on R°.

Proposition 3.6. The discrepancy R® can be split in four parts:
(3.22) RE =1 + 7 +7° + pf
such that

e the dynamics of r¢ contains the terms with large parameters:

No
—a 1 T
(3.23) dr® = (Ar)dt + ;eké Pk (a, tydt - 2 [m;j (g,gt /Ea) W0z, 1)

+Z€k5@k ( &/ea T t)] O‘(ft/aa)dBt,

r¢(x,0) =0,
e the dynamics of 7¢ contains all other terms:
(3.24) di* = (AP)dt — (kyuy + Koud,) 0(&/e0)dBy
726(51770) = 0,
e p° satisfies
(3.25) dp® = (A%p°)dt,

and has the initial condition p®(x,0) = R§(x) with
(3.26) p°(x,0) = RE( )

_ _ng a/2 Ik+sz o 1( )] ak o(x 0).

e ¢ contains all neglzgzble terms and satisfies

E||7A“€||%2(Rx(o,T)) < Ce”.
Moreover if r¢ has a limit, then 7 defined by (3.24) converges to zero.

Proof. Indeed, gathering Lemmas 3.4 and 3.5, the remainder R¢ satisfies:

No
(3.27) dRF = (ATR%)dt — M0(§)ea)dBy — Y M7 2wk (2 t)dt
k=1
= (mq(&§te0 )W + r*=dt)
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with

e a martingale term M°® with “large parameters”:

c 1., 1 al kS ok | a2
M= -0+ - 0y + 0]
=1

e a martingale term m® of order smaller than £/

J1+2 No
mt = |e Z Ek_3<I>§ + &l Za(k_l)‘slllz
k=3 k=1

)

e and a negligible term r*¢ of order O(¢”) (that is, convergence to
zero in strong topology).

With 7o = 1, Z; = 0, we have for any k > 1, v¥(2,0) = Z;,0%u"(z,0) and
thus:

Ji
St i)+ o0 ()t o)
k=1 =1
J1 k .
= Z ¥ | 7ok (z, 0) + ZIk,gngl (E) oFu® (x,0)
k=1 =1

€

Ji
S
k=1
Since u’(x,0) = u®(x,0) = o(x), we deduce that R® satisfies the initial
condition:

R (z,0) = RG(z) + (=)
J1 k

= Zsk*aﬂ Iy + sz—exefl <§>] Ohu’(z,0) + rf().
k=1 =1

where r§ = O(¢”). By the linearity of this equation (3.27) we obtain the
desired decomposition. In particular 7 satisfies

dre = (AT%)dt — (m°q(§;/ea)dW; + r@2dt),  7°(x,0) = 75(x).

k
Ty + 3 Tpgx!™ (1’)] Opu’(2,0) = —e*/*R5(a).
(=1

Very classical arguments and standard parabolic estimates prove that 7¢

goes to zero when & goes to zero: EH?EH%Z(RX(O ) < Ce”.
For the last assertion, we can apply the result concerning r¢ to (1/e)7=.
This last quantity will converge in the same sense as r°. U

Note that the term R contains negative powers of €. Hence this term
could have a priori a non trivial contribution in the behaviour of p* and thus
of R®. Nevertheless in Section 5 we show that we can choose the constants
T}, such that the remainder p° converges strongly in L2(R x (0,T)) to zero.
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4. LIMIT BEHAVIOUR OF THE REMAINDER

Let us evoke that in any case r°(z,0) = 0 and that the dynamics of 7€ is
given by (3.3) for a < 2 and by (3.23) for > 2. We can summarize these
equations as follows:

Ko
(4.1) drf = (ArF)dt — P Pub(a,t) dt
k=1

Ko
g@ 1 Zak‘sTk(g,ﬁ%)ug(x,t)a(&%)dBt
k=0

where
e Ky is a integer such that: (Ko + 1)§ > max(2,a/2),
e Y% are defined on T x R™ and smooth functions satisfying (2.12)
and such that (T*) =0,
e w=max(2—a,0) > 0.
If w>1,ie. a <1, we obtain a stronger convergence result (see Part 4.3).

Let T* be a function such that 8ZT]" = T* with zero mean value w.r.t.
z. And @w¥ = w”*. Define v° as the solution of

Ko
dv® = a (g, £t/€a) v dt — Zsk‘s_aﬂ{ﬁk(x, t)dt
k=1

Ko
(4.2) — Ty ey (g gt/ga) a2, )0 (€ 1 )dBy.
k=0

In the rest of this section, g~’“, for k=0,..., Ky, are defined by
(4.3) G* (zy,m,t) = TF(z9)uf(z,1).

Then v = r° 4 ©° where
x K sk (T
dv® =a (g7 ft/sa) T);zdt —e” kz_ogk&rk (gv gt/aa) u];z(xa t)U(fa%)dBt
Since r¢(z,0) = 0, we assume that v®(x,0) = 0°(x,0) = 0. Note that the
behaviour of ¢ depends only on v°.

Lemma 4.1. ©° tends to 0 in L*(R x (0,7T)) and in probability.

Proof. If r¢ converges in law in L2(R x (0, T)), then Slutsky’s theorem gives
the convergence for ¢ to zero in probability. O

4.1. Construction of correctors. The correctors P* and QF are given by
the equations

(44)  (@(=)P’(2):2 =0, (P =1, L= ((a—a)P’).
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and for £ > 1
(45)  (a(z)P"(2)).2 = —(Q'a).., (P¥)=1,
(4.6) £Qk(za y) = ((a— a)Pk)zz +(QFa),, — (Qkila)zz-

Lemma 4.2. The functions P* are smooth periodic functions defined on T
and QF are smooth functions on R x R™, bounded in z and with linear growth
w.r.t. y.

Proof. Indeed let us begin with £ = 0 (Equation (4.4)). Py satisfies:
(a(z)PY),, =0, (P% =1.
Hence P? = 1 + ! and classical computations for the dimension one show
that .
PO — eff .
() =
Next for Q° we have:
EQO(Z;Q) = ((a - a)PO)zz-
Again here z is a parameter of the equation. The right-hand side has zero
mean value w.r.t. y and is a smooth bounded function of the two variables
y and z. Hence we already have shown that there exists a unique solution
Q° which is smooth w.r.t. v and z, is bounded w.r.t. z and of at most linear

growth w.r.t. y. Then from (4.5) and (4.6) and by recursion we obtain the
desired result. (]

Let us introduce the following notations: for £k > 0 and m >0
(4.7) = (5, 8) = (Qh () G (2, 1) ()-
The correctors UM are solution of the problem:
(4.8) LUR (2., y) + 2(Q% (,y) G (y, 2, )a(y) — EF(x,1) = 0.

Moreover

PE=pPk_(P*Y=PF -1 and QF=QF
The correctors Y* verify the inequality (2.22)
THz )| <O+ yP), Y(zy) €T xR
Thereby from the previous lemma, we deduce immediately the next result.

Lemma 4.3. The functions U* given by (4.8) are well defined and smooth
and also satisfy (2.22).

Finally we define the constant C, ,,, 0 < k < m by
(4.9) Cram = (@5 () TH(,)o ().

4.2. Convergence of the antiderivative v°. We first prove boundedness
in H'(R), then a tightness result and finally we identify the weak limit.
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4.2.1. Bound in H'(R) for v°. Let us consider the quantity

Ve = fské [(P*(2) (0,07 (0 ) + 2 QF (£, 6gen ) w7010, 0° (1) ]
k=0
Ko Ko

+em YIS e (R g ), 07 (1) )

k=0 ¢=0

where P*, Q¥ and U** are the correctors defined respectively by (4.4), (4.5),
(4.6) and (4.8). The bracket (.,.) stands for the scalar product in L?(R).
Again by It6’s formula and the very definition of all correctors, we deduce:

Lemma 4.4. Then quantity V¢ satisfies:
(4.10) dV; = B;dt + M;o(§ + )dB,

_t
za

_|_€(K0+1)5—2<<(QK0 (g’ §t/ea) a%)500° (1), 05 (., t)>>dt

Ko
—2l§5k5<<(13’f (2) +°QF (£o6en ) ) w51, a%0i () at
Ko Ko—1
) Z Z 6(k+m+1)5—a/2 <<,wm+1 (.7 t) + €wEk’m(., t), ,UE(', t)»dt
k=0 m=0
HNTHE 1), 07 (L))t — (NT22(, 1), 05 1))t
where:

o M€ stands for the integrand in the stochastic integral w.r.t. the
Brownian motion B:

(4.11) My = ie(k+1)55_0‘/2<<625 (é,gt/ea) v° (., 1) ,UE(.,t)>> + »sw]\Ajt6
k=0

where in ME, all powers of € are non-negative.
o term B3¢ does not depend on v¢ and is bounded uniformly w.r.t. €:
for any p > 1, there exists a constant p > 1 such that

E|Bf|” < CE(1 + [&/.«[")

e there exists v > 0 such that for any N > 0 the two terms N'T ¢
and N'T*¢ (and their derivatives w.r.t. x) satisfy

Ce 5
—E(1 «|P).

The constant C here does not depend on €.

(4.12) ENT#(z,t)]P <

Proof. The proof is based on the It6 formula and the definitions of the
correctors and is postponed in the appendix. O
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The last double sum in (4.10) can be written as:

Ko Ko—1

23 3 elbbmeamalzgamzhon ) g g 1), 0% (1))
k=0 m=0
Ko—1

-9 Z (b+1)6—a/2 Z wHZ mm )+wm+1( t),UE(.,t)»
<</\/T3€(., )705(-7t)>>7
with
(413) NT3(,t)=2 Y eltminiza/2 (ewEk’m(.,t)+@m+1(.,t)>.

k+m>Kg

Again since (Ko + 1)d > a/2, all powers of ¢ in (4.13) are positive and thus
NT3# also verifies (4.12).

If for £ >0
L
(4.14) ACHED Y-
m=0
then
Ko Ko—1
22 Z 6(k+m+l)6—a/2<<€w ( )+wm+1( t),va(.,t))
k=0 m=0
-1
-9 Z 5(ZJrl)é a/2 wZE + Z ~m+1 .,t)>>

=0

HNT3E(,1),0°(.,1)).

Here we distinguish two cases.

Case o < 2.: Then w = § and choosing w' = 0 yields to

Ko—1
Z e (L+1)6— a/2 wZE Z ~m+1 .,t)>>
=0
Kop—1 14
_ Z 6(2—1—2)6 a/2 ZZ + Zwm+2 .,t)>>.
=0 m=0

k

Let us remark that from the definition of the sequences w” and

Ck,m by (2.7) and (4.9), we have:

Z%z,t) = Q) () YO ())o() ul(at)

= —Cooup(z,t) = —w*(z,1).
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And for 4 =2,...,Kg—1
{+1

0
o't? = — Z Comu (z,t) — > @™

m=2

/-1
= —Z Q) ()T (L))o (! (a,t) = Y @™+
m=0
4 -1
= @GN o m)e() = D = z~m+2.
m=0

Thereby we obtain immediately that for any £ =0,..., K¢ —1

+ Z ~k+2

Case «a > 2.: Then w = 0 and the same arguments lead to

_|_ Z ~k+1

In both cases, the equation (4.10) can be written as:

(4.15) dV§ = Bidt + Mio(€ 1 )dB,
pe(Kot1)o- 2<<(QK0 (;,gt/aa) ae)zzva(.,t),vg(.,t)>>dt
—zie“((zﬂ (g) +OQF (é,gt/ea)) 05 (1), a v (1) Dt
+<</li/’0fl’€(-,t) FNTH( 1), 0% (L ))dt — (NT2(, ), 05 (-, 1) )dt.

Proposition 4.5. The quantity v° is bounded in L*((0,T) x €; H'(R)),
uniformly w.r.t. €: there exists a constant Cg1 independent of € such that

T
(4.16) E/O 0 )22yt < Ci.

Moreover v is also bounded in L>°(0,T;L?(R)) in mean w.r.t. w: there
exists a constant Cre again independent of € such that

(4.17) E

sup \\ve(.7t)llim>] < O
te[0,T
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Proof. Using (4.15), we have for any s € [0, T]
Vi + 22 Al R e

/ Bidt + / Mo (& )dBy + Fot1)o=2 / ((Q"°a)..v°,v°)dt

0
+/ <<NT178(.,t)+NT378(.,t),v€(.,t)>>dt—/8<<NT%(, t),vE(., 1)) dt.
0 0

Remember that Vj = 0 since v°(.,0) = 0. Hence

(POwF, %) +2 / (POaus, ooyt

0

Pyoe (P [P

k=1

+Ze(k+1 [ (QFv%,v%) + 2 /0 5<<Qku;,a%;>>dt]

Ko Ko
4@ Z Z E(k+€+1)5+a/2 <<Ulc,€7 ’UE>>

k=0 £=0

/ det+/ Mo (& )dBy + Fot1)o- 2/ ((Q%0a%) 0%, v%)dt
0

/O(WT“(., )+NT35(.,t),vf(.,t))>dt—/OS«NT?‘E(, t),v(., t))dt.

We can take the expectation and we deduce that there exists a constant K
such that for any ¢ € [0,7]

E [<<PO (g) va(.,t),va(.,t)>> +/Ot<<P° (g) ae(.,s)u;(.,s),v;(.,s)>>ds] <K

Since a is bounded and uniformly elliptic and P°(z) = gfj), this proves that
v® is bounded in L2((0,T) x Q; H'(R)).

To obtain (4.17), note that in the martingale term M?¢ given by (6.11),
all powers of ¢ are non-negative except for the first sum:

Ko
Zg(k+1)§fa/2<< l;veﬂjs».
k=0

Nevertheless define @5 = Q”yf (recall that <Q§) = 0) and make an integration
by parts:

Ko

Ko
ZE(k+1)5_a/2<<Q];U5, U5>> -9 Z 6k§+6—a/2+1 <<@k:va7 ’U;»
k=0

k=0
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In any case 0 — a/2+ 1 > 0. The conclusion follows from the Burkholder-
Davis-Gundy inequality. O

4.2.2. Weak convergence of v°. Here we prove that the sequence v° is tight
in

Vp = L3,(0,T; H'(R)) N C(0, T; Ly, (R)).
Remenber that the index w means that the corresponding space is equipped
with the weak topology. For any function ¢ € C3°(R) we define

(4.18) V¢ = ZEM [<< ( )¢, (1) >> <<Qk<€ §t/ea> ¢ (. )>>]
+ng6+l [(B*(2) 67 (.0)) + (@ (28170 ) b0 1) )]
+awzig’f+”1>5+a/2<<tf“ t&iyen) 6)

k=0 £=0
where P¥, Q¥ and U"* are defined again by (4.5), (4.6) and (4.8).

Lemma 4.6. If P* and @k are solutions of:
(a(2)PY).. = —2(Pra).,
and R R
LQ" =2((a~a)P*): + ((a—a)P")..
then V¢ has the following dynamics

Ko
VE _ kS Sk §+1 Ak €,.€
(4.19)  dV; kzzog <<(€ Q¢ +11Q ¢$> . vm>>dt

Ko

+y 5k5<<(Pka5)¢m + 2(P*a%). ¢y + £(PFa) fnaa, v5>>dt
k=0

+ (NTP (1), @)dt + Bidt + M;o(¢e )dB.

where the terms N'T*¢ and B° verify (4.12). The stochastic integrand is
given by:

Ko
(420) M;=>" €(k+1)6_0‘/2<<QZ¢ +eQbga, 17 (., t)>>
o Ko _
+7y Y 5(k+m)5<<Pk¢> +e°Q ¢ + ePr o, + T QR Qm>>
k’;OO T;L{:O
+e7 Y > e EHEVNURE( 1, € ea), 6.

k=0 ¢=0
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Proof. The arguments are very similar to the proof of the lemma 4.4 and
are postponed in the appendix. O

Now we get a tightness result.

Proposition 4.7. There exist two constants v > 0 and C > 0 such that for
any € and any 0 <t <7< T,

(4.21) E [ sup |17;‘—175|] < CV/|r —t|+ Ce.

t<s<t

Proof. Indeed the absolutely continuous terms of order € in (4.19) are

(P %) b, v°)t + 2((P0%) 0, 0%t
And from (4.20),

Ko

Mp = eWHDme2¢Qky oo (1))

k=0

Ko ~
L. kZ:O 8(k+1)6fo¢/2<<Qlyc¢x7 e t)>>

Ko Ko

+ €% Z Z 5(k+m)5<<Pk¢ +5QF¢ + ePF g, + 91 QF ¢y, Q~m>>
o1

L@ Z Z 6(k+€+1)6<<U;:,é(.7 £ €y en), ¢>>.

k=0 ¢=0

The last three sums are multiplied by a positive power of €, since d—a/2+1 >
0. Note that later, for a > 2, we have to keep the first term (P%¢p, T0ul).

For the first sum, define QF = QZ (recall that (Q’;> = 0) and make an
integration by parts:

(Qye,0°) = —e(QF, (¢v°)2).
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Hence
—~ KO
Mp = = erhiri-al2gak (g (., 1),)
k=0
Ko
n S(k+1)5+1— a/2<<Q ¢x,v€(.,t)>>
k=0

i 5w<<Po¢7 Tou2>> 4@t Z 5(k+m—1)5<<Pk¢’ §m>>

0<k,m<Ko; k+m>1

Ko Ko
X sz Z 8(k+m)5<<€§Qk¢+d3k¢x +€5+1@k¢x7§m>>

k=0 m=0

Ko Ko
ey D IR 1,6y yee), )

k=0 ¢=0

= “M; + 6w<<PO¢, T0u2>>

where v = min(d + 1 — @/2,w + d,w + 1) > 0. In other words for any
0<t<s<T:

um%—%zjﬁﬂwfmmf»w«@wmmwﬂw

+ev /t M:a(geta)dBmt/: Bidr + & /:<<P°¢, T0u2>>a(£€%)dBr.

Thereby

Cllv®l 2o,y <2 ®)) X VT — ¢

E[mww—wﬂ

t<s<t

IN

+ E[sup / B\adu}
t<s<t
+ [ sup / ME ]
t<s<rt
+ ¢“E [ sup / <<P0¢), T0U2>>O'(§t)dBu:| .
t<s<t |Jt e

Note that for a > 2, w = 0. From BDG inequality

/ts<<p0gz5, TO“2>>U(5E%)dBu ]

IN

CE

< /t T<<P0¢, T0u2>>2du> 1/2]

< Cy/I|T—t

E [ sup
t<s<rt
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From BDG and Young’s inequalities we have

[ ot am |
(f stduf“]

< CE [ sup (1 + ‘fu/sa\p)] +CE [/ HUEH?Lfl(R)d“}
t

t<u<r

[ sup
t<s<rt

<CE

for some p > 1. We know that for any 8 > 0
1. 6E 1 feY p -
lim e LEEET (1 + [€useal )]

(see Proposition 2.6 in [5]). Thereby since B° satisfies (4.12), we deduce the
estimate (4.21). O

Therefore from (4.16), (4.17) and (4.21), together with Theorem 8.3 in [4]
and Prokhorov criterium, the sequence v¢ is tight in V. Now we identify
its limit as the law of the solution of a SPDE. Here we distinguish the two
cases a < 2 and o > 2.

Proposition 4.8. For o < 2, the sequence v¢ weakly converges in Vr to
zero.

Proof. Again let ¢ be a C3°(R) test function. From the definition (4.18) of
V¢, we deduce that

Vi= (P (1) o)+

where V*? is bounded in L2((0,T) x Q). Hence since (P°) = 1, if B is such
that B = PY — 1, then

= (0,07 (D) + (B2 (2) 0071 ) + V5"
With an integration by parts, we deduce that:
(4.23) Vi = (6,0°(s0) +(B° () . (00 (D)) + 2V

Since v¢ is bounded in L2((0,T) x Q, H*(R)), the middle term converges to
Zero.

Now from (4.21) the sequence V* is also tight in C(0,7;R). Recall that
for « < 2, w > 0. Using (4.22) we have for some v > 0 and for any
0<t<s<T

@21) BB = [ ()07 + 2(P0) 07 dr

+ /ME + )dB, + &Y / Badr
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For the first integral we define
P’(z,y) = P(2)a(z,y) — (P’a)(y) + 2(P a)=(z,y)

which has zero mean value in z. We can define again %0 such that ‘i?g = po
and thus

(4.25)/:<<(P0a5 +2(P%f), ) e, v5>>dr

= /:<<<P0a>(§7"/5a)¢mvvg>>dr+€/ts<<q§g¢m,v€>>dr
= /ts<<<%>¢m,v€>>dr+ /ts<<(<P0a>(§r/5a) — (P70)) e,
+e /ts<<‘$2¢m,va>>dr.

For the term

€)= [ {(Pa)€/e) — (PO Y

the uniform bound (4.17), together with the mixing property implied by

assumption (A), lead to the convergence to zero of this term, a.s. and in

L2(92) by the dominated convergence theorem, uniformly w.r.t. ¢ € [0, 7.
Combining (4.23), (4.24) and (4.25), we obtain for some v > 0

Ft?) = (00 0) [ (P)uese” i
— / t M:o(€. )dB, +"V;" + € (t).
| Mrle,

Let ©% be any continuous (in the sense of the topology of V) and bounded
functional of {vs, 0 < 7 < s}. We have proved that for 0 < s <t

higﬂﬂ [(Fy(t,v%) — Fy(s,v%))O5] = 0.
€.

If we compute the quadratic variation® of the process Ve we have

-], = e /t ] ote i

Recall that for a vector v € R™, ||v||? = Trace(vv*) is the Euclidean norm.
We deduce that

B [(Fott,o9) = Fotsv9)ex] = imm [|[V7]], - [>] |

is equal to zero. Passing through the limit, we deduce that {F,(¢,v%), 0 <
t < T} is a square integrable martingale with respect to the natural filtration

3Denoted by [[.]] to be distinguishable from the mean over a period or the scalar product
in L2,
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of v°, with a null quadratic variation process. In other words we proved that
the sequence v° weakly converges in Vi to the unique solution v¥ of the PDE:

dv® = (PYa)0? dt

with initial condition zero. Hence v = 0 and this achieves the proof of the
Proposition. [l

For a > 2, the preceding result has to be modified since w = 0, which
implies that there is a zero order term in the martingale part M€ in (4.19).

Proposition 4.9. If a > 2, the sequence v weakly converges in Vp to the
unique solution ™ of the SPDE:

_ —_——1/2
d7° = (POa),dt + (| (POY0)or|2) " uSady.

Proof. We argue almost as in the proof of Proposition 4.8. In particular the
beginning of the proof is the same. But now (4.24) becomes:

(420) V: =95 = [ [((P0)60e, 1) + 2(P0) 600,17
+ /t S<<P°<zb, Toug»a(fs%)dBT +&” /t ) Mfo(gs%)dBr + /t ) Bedr.
Now we obtain for some v > 0
ty
Foltv?) = (0,070 = [ ((PPaygus,”)ar

- / t<<p0¢, TOul)o(¢ )dB, + " / t Mo(€2 )dB, + V" + € ().
0 : ) :
The term .
&(t) = [ ((UP°a)& o) = (P v .

can be handled as before and we have proved that for any continuous (in the
sense of the topology of V1) and bounded functional ©% of {vZ, 0 <7 < s}
and any for 0 < s <t

liﬁ)lE [(Fp(t,7) — Fy(s,7))05] = 0.
€.

Concerning the quadratic variation of the process ]75, we have

.-, = [ (e Toont ) ot o

Recall that for a vector v € R™, ||v||?> = Trace(vv*) is the Euclidean norm.
Again if we denote

B(y) = (P°TO(y),  Q%zy) = P(2)T (z,y) — B(y)

2, |~
+ e |M;
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the mean of POY? w.r.t. z and the periodic antiderivative of POYO &, then

([ 700 ) ot Par = [0 T outate )| ar

= | [PT7 - &) duc) e ar
(6,42) B (&, )0 (€ ) f dr.
And we have
/: [(PoT0 — 6(e ), 0udote )| dr < &2 / |26, wtyate || ar
Moreover again using assumption (A), we obtain that
(60286 0ol )| dr

converges a.s. and in L2(Q) to

S 2 s
/ 6(57’/60‘)‘7(56%)«(25, udW || dr = /
t t
We deduce that

i (Rt 09— Fotoves] = timm ([ [7]], - []] [e3)

r

Passing through the limit, we deduce that {Fy(t,70), 0 <t < T} is a square
integrable martingale with respect to the natural filtration of ¥, with the
associated quadratic variation process given by

I(POYO)o|2( g, ul)*t

This achieves the proof of the Proposition. O

(P70 | (9, u2)dr

is equal to

(PTO)0 | (,u0)?r

Let us remark to conclude this part that P? = 14 x?, thus (P%) = a°.
Moreover

(PYTO) = —(x°1°).
Hence

1/2
L (H<X0T0>UH2) WA
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4.2.3. Conclusion. Now we know that there exists a constant C' independent
of € such that

E (vac||%2((o,T)xR)) =C.

By Tchebychev’s inequality for any § > 0, there exists a constant K such
that

P(|[v5 11320y wm) > K) < C?/K? <6

provided K is large enough. In other words, v, is tight for the weak topology
on L*((0,T) x R). Using the dense set of C§° functions and Propositions
4.8 and 4.9, we deduce that for o < 2, r® weakly converges to the solution
of:

e For a < 2:
0 ff 0
dr” = a®'r, dt,

with initial value 0, that is, 70 = 0.
e For a > 2:

. \1)2
i = a1, dt + (T 0]?)  ul,dWs

again with initial value zero.

The proof of Theorem 2.1 is now complete in the case a < 2, using
Propositions 3.1 and 3.2 and the preceding results on the convergence of €.
For a > 2, using Proposition 3.6, the proof will be complete after the study
of p®, which is the aim of the next section 5. Before, let us consider the case
a < 1, for which an easier proof can be done.

4.3. Case a < 1. Here the assumption that d = 1 is unnecessary for our
arguments. In the problem (4.1), we now have w —1=1—a > 0. Let us
take w* = 0 for any k :

Ko
drt = (A°rf)dt — Zek‘s—aﬂwk(m,t) dt
k=1

Ko
T
Y o (5.6 )uba o) dBy
= (A°rf)dt + 51*0‘(95(%, £t ,, t) dB.
g e@
Let us define

Uf :/ ra(m,t)de = ||r6(.,t)‘|%2(Rd).
Rd
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It0’s formula leads to

t
vy = //Rdra(x,s)div a(f,f%)VTe(x,s)]dxds
+ 10‘// (z,8) ft,azt)d:ch
R4
n 52(1_a)//
0 JRd

An integration by part shows that

vg —I—/t Vre(z, ){a(i £ )Vr (, )}dxds

1a)// (z,s) §t,xt>dde

Rd

2(1— a)//
Rd

From Condition (a3), taking the expectation, there exists a constant C
independent of ¢ such that

f,fi,x,t>H dx ds.
g e

ft ST, t)H dx ds.

T
(4.27) B [V (8) [faguay ds < €070
0
Moreover by Burkholder-Davis-Gundy inequality, we have
(4.28) E| sup vi| =B | sup [r°(,8)|20) | < C=2072).
t€[0,T] t€[0,T]

Hence if o < 1, the convergence of r¢ to zero holds in L2([0, T] x Q; H'(R9))
(and in ([0, T]; L2(R%)) in mean w.r.t. w).
5. ROLE OF THE INITIAL CONDITION IN THE DISCREPANCY

Let us note that this part* only concerns the case & > 2 and the behavior
of p°. Recall the setting concerning p®. It satisfies:

dp® = (A%p°)dt
with initial condition (3.26):
J1
_ Z ka2
k=1

By linearity we can write:

k
Te+ > T (2 ]a’;uo(x,O).
k ; k—{ (€>

Ji

(5.1) () = 3 PP ()

k=1

Aet us emphasize that all results of this section hold in d > 1, that is for z € T
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where the functions p¥ have the same dynamics (3.25), dp™® = (A% ph<)dt,
but with initial condition

(5.2) PP (,0) = —eber?

k
T + ZIk_gXZ_I (:)] 8§u0 (2,0).

/=1

Recall that from (1.2), u° is a smooth function such that u? = a®fu?_, with
initial condition u°(x,0) = o(z).

To lighten the notation, let us fix k = 1,...,J; and define o° = "< as
the solution of (3.25) with initial condition

k
—_ x x
F@.0) = [T+ 3 Ty (5)] Ok’ (,0) = Ay (Z) 9fu® (,0).
(=1
Thus pk,s — _Ekfa/2 £ _6kfoz/2gk,€'

Lemma 5.1. The function ¢° admits the following expansion:

(5.3) &°(z,t) = B°F <§;> a0 (2, )

+ T Re(a, 1),

The functions 8%, Mm% and u%° are defined by the following equations:

(5.4) B (z,t) = (a°p29)., BY(2,0) = A* (2)
(5.5) m0e(t) = (&) B2 (1)

(5.6) omPe(t) = mP(t), Mm>(0)=0

(5.7) WOS(2,t) = @ B%(z 1) — mO= (1)

(5.8) OB (zt) = (@B): + (1% + (57).).

with 3Y¢(2,0) = 0. The other quantities are given by:

(5:9) om0 = (&) B (L 0) + {07 — a0,
(5.10)  gm'e(t) = m'e(t),
(5.11) a1 = @B —m!E() + (o —a a0



38 M. KLEPTSYNA, A. PIATNITSKI, AND A. POPIER

And for £ > 2, the relations are defined recursively by:

(512) A% = (a°B%). + (T (H)al + p T 4 (a7671)z),
B4 (z,0) = 0,

(513) m"(t) = (a°B2%) + ((a° —a)(@m" 2 4 g1,

(5.14) oym = (t) = m"e(b),

(5.15) pe(z,t) = a°B%° —mb (1) + (a° — a°F) (i =25 + pgile).

The last term in expansion (5.3) is of order " with v > /2 — k.

Let us emphasize here that all terms defined in this lemma depend on k.

Proof. Let us define on T x (0,00), %€ by (5.4). Since A;, is periodic, 3%¢
is well-defined. Let us assume that

¢ (1) = B0 (”5 2) oL (2, 8) + T (2, 1)

Then I'%¢ satisfies: I'%¢(z,0) = 0 and

OTOF = (ATTOF) T (a8 + (a7"9).) 02 (a1

€
+ (a —a*™)p%a3u0 (z,1).

We define m®(t) by (5.5) as the mean value w.r.t. z of the function a®3>*,
m%(t) by (5.6) and p®¢ by (5.7) such that the mean value of u*¢ w.r.t. z
is zero. Hence we can define on T x (0, 00) the function 3¢ by (5.8). Now
we assume that

% (x,t) = ¢ [ﬁzo»f (;) +phe (‘: ;)] 92’ (z,t) + T4 (2, ).
To study the behaviour of T''¢, let us remark first that
DTS = (ATH) 4 [mO=(t/e)as + (a°BLF + (a2B).)] O3l (1)
+ (af — aEH)ﬁO’EG;Z’uD (z,1)
+ e [mO(t/e?) + 1] (af - a*m)atul (z, 1) .
Let us do the same trick again. Using (5.9), (5.10) and (5.11) yields to:

oL = (ATHE) £ mbe(t/e?) 03P (x,t)
3 .
b [t (2 5) A0 + @] i

+ e [mPe(t/e?) + 4] (af — a®™)opu® (,1).
If %€ is the solution on T¢ x (0,00) of (5.12) and if

~ t t
rbe(z,t) = &2 [ml"s <€2> + B¢ <§, 52” O3 (z,t) + T25(x, 1),
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then
T3 = (AT + e [ (t/e?)as + (a°B2° + (a°B*).)] 03u° (2,1)
+ e [mOe(t/e?) + 8] (af — a0t (w,1)
+ 2 [mME(t/e2) + 8] (aF — )P0 (1) .
And
) = (L5 ) obu ()

~ t r t
+ € |:TTl075 (82> + 51’8 <67 82>:| 8§+1’U,O (.T,t)
2| ~1e( t 2 (T T k42, 0 26
+ e |m = + 7 -2 o (x,t) + T (z,t).

And then we iterate the arguments. For £ = 2,...,J; — k, we can iterate
this procedure with 8¢, m%¢, m®¢, u given by (5.12), (5.13), (5.14), (5.15)
and

~ t t
Fé,a — Z_:Z—‘,-l |:m€,e <52> + ﬁé-ﬁ-l,a <'§’ E2):| aé:—&—f—&-luo (:L',t) + Fé+1’€(x,t).

The last term will be of the form

F‘Il*k’g(:c, t) = I“h*k*l’s(m, t)

4efi—k+l [mhk,e <t2> +/3J1*k+1,€ (x t)] agl+lu0 (z,1)
9

g’ &2
and
atrh—k-i-l,s — (Aerl—k—i-l,s)
+€J1—k [mJl_k78(t/52)a§ + (aaﬁgl—k+178 + (a85k7jl—k+1)z>i| 85611+2u0 (x’w
_+_€J17k: [fﬁJlfkfl,s(t/€2) + ﬁJlfk:,s} (as o aeff)a;1+J17k+2u0 (:Eﬂf)

+€J1_k;+1 |:mJ1—k,a(t/52) + 5J1—k‘+1,8:| (aa N aeff)a;ﬁh—f—ZuO (.%',t) .

All powers of € are greater than «/2 — k. Thus the proof of the Lemma is
achieved. 0

Now let us precise the behaviour of the correctors €. For £ = 0, since

k
A(2) =T+ D DX (2),

m=1

one can easily deduce that

50,6(2) =Tp + EO,E(Z)
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where 3% satisfies (5.4), but with initial condition a periodic function with

zero mean value. The key point in the sequel is that: 82° = B2, And in
(5.5) and (5.7), only the derivative is implied. We also denote

k 2
Z Ik—meil
m=1

The next result is an immediate consequence of Poincaré’s inequality.

R =

L2(T)

Lemma 5.2. There exists a constant € depending only on the uniform el-
lipticity constant of the matrix a, such that

Vs >0, Hﬁoﬁ (.75)) ;(w) < Rpe .

Rie

For simplicity for ¢ > 1, let us rewrite Equations (5.8) and (5.12) as:
(5.16) 98" = (alz,&/e) B2 + (M35 (0)as + p~h° + (0787 17),)
= (a2, &) B2%): + 0.
Lemma 5.3. For{=1,...,J; — 1 we have:

ﬁke_es.

2
Vs> 0, 6% () o

Proof. Recall that X is the ellipticity constant of a (Condition (a4)). Again
by Poincaré’s inequality, we deduce that

R
(5.17) mOe(t)] = |(0° (162 ) 82 ()] = SEe,
And
(,01’6 — MO,E + (aE/BO,E)Z _ aslBS,s o mO,s 4 (a650,6)z

satisfies a similar inequality: Hcpl’s(.,t)HiQ(Td) < Rre . From (5.8), we

deduce that HBL‘E (., 8) HiZ('ﬂ‘d) < Rre . By recursion, this achieves the proof
of the Lemma. O

We also have to control the terms m®< for £ =0,1,..., Np.

Lemma 5.4. For any 5 < d/2, the quantity

At/ — [ (a() B (s)ds

0

876

converges in probability to zero, uniformly in time, where
k
(5.18) 0B = (@(2)B)z, B(2,0) =D T X’ (2),
j=1

and for any £ > 1
(5.19) OB’ = (a(z)B): + ¢f(=,1),  B'(2,0) =0.
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Proof. The function B\O is well defined and do not depend on . Moreover it
also satisfies

N 2
HBO (.,8)‘ < Rpe ¥,

L2(T4)

We assume that
B (2,8) = Bz, ) + WO (2,5, € pes) + RO,
Then from (5.4) and (5.19) we obtain
dB%¢(z,5) = (a(2)B2).ds + €% |e LU ds + e~ 2 W0 (E, s ) AW
+T0eds| + dRO*
= (a2 €es)BD)=ds + (a2, €4/ W2°)ods + (a(z, € o6)R2)ds.
If we define W0 by:
£3% = ((a(z,y) ~ a()3?)-.
the residual :¢ satisfies the equation:
ARV = (a(z, €yyea)RI%)s + PP WPG(E, oo ) AW, + "B s
where B%¢ is bounded. The initial condition is:
ROE(2,0) = —0W0e,
Coming back to (5.5) we have
m(t) = (a2 (1)) = (a7 82 (,6) = B (,)])
= (a7 1,6y e0)) + (@RI 1,6y o))

Note that W2¢ is bounded in L2(T%) by fe~* and the quantity RY° is
bounded in any space LP(Q) by €%/2R,e~t. Hence we deduce that

050 - [ o (¢5)

0
gl\m%@»—m(fﬁ)@cﬁ»ws

BY(.,s))ds

t t
§A55/0 ﬁke—ESds+A/O IR2°(., 5, &5 e0) |2 (payds.

Therefore for any p > 1, there exists a constant C (independent of €) such
that for any ¢t > 0

E ( M0 (1) — /Ot<a (n€5) B o))ds

In particular the previous inequality holds when we replace t by t/e2. More-
over from the estimate of 50, there exists a constant C' such that a.s. for

P
) < 0e%/2,
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any e >0and t >0

tet +oo
/0 <a<-,€5)§2(.,s)>ds_/o <a<.75€%)

Let us consider for a fixed T" > 0

/OT((a (n&5) —a()B (. )ds = /OT/E(S«CL (&) —a()B (&%) ds.

Our assumption (A) implies that £ satisfies a strong mixing condition (see
[24]). Thus from the ergodic theorem, this quantity converges a.s. to zero
(see [18], chapter 4 or [6], chapter 1). Moreover the rate of convergence is
of order £%/2 = ¢*/2=1 that is for any v > 0 the following quantity

= | N (265) o) s

= [55/2 /OT/aé«a (&) — ()" (.,555)>ds]

tends to zero in probability as € goes to zero. Indeed it is a consequence of
the central limit theorem (implied by our assumption (A) and the mixing
property, see [18], chapter 9) together with Slutsky’s theorem. To finish the
proof we have:

S Ce—et/EQ

R

(.,8))ds

| @ (s B [T @R (. snas

< ‘/OT«a (+€5) —a)B (. s))ds
/oo<(a (ST) —a()BY(.,s))ds|.

T

+

The first part converges a.s. to zero when ¢ tends to zero (with a rate of
convergence of order £%/2 in probability) to a fixed T', whereas the second
part converges to zero when T' tends to +o0o in any LP(Q).

Then by recursion we can complete the proof of the lemma. U

We introduce again the constant k in all functions. Since Z; = 0, gathering
all previous Lemmata, we deduce that the expansion (5.3) of o' can be
written:

x t

o (z,t) = BLO< <7 2) Ot (1)
g ¢
_ t !
+ e I:ml,O,E (Ez) + 6171,5 (§7 52>] 8§u0 (.Qj,t) +F1,1,€(x,t)7

where '€ = O(¢”) (which means €” times some bounded term) with
v > a/2—1and g%¢ and 51 converge exponentially fast to zero. Now
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let us come again to
,01"5(1‘, t) — —61_a/2Q1’6

~ t _
_ _52—a/2m1,0,€ <62> aiu() (SL‘,t) + O(€V+1 a/2)'

We have proved that the remainder p' converges strongly in L2(R?x (0, T'))
and in probability to zero.

Now the preceding results imply that the expansion (5.3) of o<

z
Qk7€(x7t) = 6k7076 (67 €2> a];uo (x7t)

Ji—k
kel t Tz t _
+ ) e [m“ Le <€2> + phte (E, 62)] U0 (2, 1) + TR (2, 1),
=1
can be written:

o (z, ):zka’f " (1)
n Z U () BEE1 (L 73)>d5] IO (2, 1) + 8 (, t).

Again the remainder t° converges in L2(R¢ x (0,T)) and in probability to
zero. Denote by
o
Cuemr = [ @) B (s)ds
0

and note that €, depends only on Zg = 1,71 = 0,...,Z;_1. Therefore
we obtain, up to some negligible term of order O(e"):

Ji J1
p(x,t) = — Zsk_a/Q Tk u® (1) + Z € 10800 (x,t)]
k=1 =1
J1 m—1
= = L+ ) ¢m_u_1] O uC (z,t) .
m=2 (=1

Then for k£ > 2, if we choose
k—

k—1 o
(5200  Ty=-3 Cpp=- / (@ <><Z/3 61 (L s))ds
=1 0

provided this sequence is well defined, we deduce that p®(x,t) = O(g").
To complete the proof we need to show that the sequence 7y, for k > 2 is
well-defined. We have

(5.21) Ty — - /Ooo<a () B (., 5))ds
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with
k—1
%k _ Zﬂk*@,é*l'
/=1
Thus 7, is wellposed if B* only depends on Zy,Zi, ..., Z,_1. But for k =2

Cr = —C1g = — /0 T @) B0 (. 9))ds

and B 1.0 depends only on x°. Then the function B* satisfies the equation
(5.22) oBF = (a(2)B5), + 1*(2,1)

with initial value

k—1
BF (2,00 = 102,00 =Y Trinx" 7 (2)
n=1

and with
k—1
Hk(za t) = Z d)k—é,é—l(z, t)'
/=1
We can prove by recursion that ¢*~%¢~1 only depends on Ts,...,Zy_¢_1,

which leads to the well-posedness on Z;. Finally we obtain:

Proposition 5.5. There exists a sequence (i, k > 2) such that the residual
p° converges strongly in 1L2(RY x (0,T)) and in probability to zero.

6. APPENDIX: PROOFS OF THE TECHNICAL RESULTS

Proof of Lemma 3.3. We consider one more auxiliary problem that reads

I N )
Ye(z,0) = 0.

If the vector function = € L?((0,T) x R), then this problem has a unique
solution, and, by the standard energy estimate,

1V 20,11 )y + 105 |2 0,751 )y < ClIZ | L2((0,1) xR)-

According to [17, Lemma 1.5.2] the family {J¢} is locally compact in L2((0,T') x
R). Combining this with Aronson’s estimate (see [1]) we conclude that the
family {J°} is compact in L2((0,T) x R).

Assume for a while that Z is smooth and satisfies estimates (2.11). Multi-
plying equation (6.1) by a test function of the form ¢(z, t)+ex” (2,£ 2+ ) Ve(x,t)

€
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with ¢ € C§°((0,T) x R) and integrating the resulting relation yields

(6.2) / /3)6 Orp + ex’ ( 53)015V<p(33,t)>dxdt
[ [ (et E ) i)
o JR . € =
_51a/2/ /yf:‘ (VyXO)(g)gs%)V(p)a(fs%)d:cht

T
+

—

[ @)% [0up + (00) (2.6 om0+ 2x (£, )02 o
0 R

x x 0%
= // [a —a ff]: |:axg0+ (aa;XO) (gjgg%)axgo—i-sxo(g?ge%) 8x2:| dxdt.
0 R
Considering (2.2) we obtain

/T/(&zyf)aa [396(/9—1— (8xxo)(§75%)3xtp}dxdt
=—/T/y [+ (00 (21} S boat

and

T
etz 0@ L vt o
// @ = aME 0o+ (0x°) (. ) Oap + X (5, ) 5 5
0R
T
//{a I+ VX (:C %)]— eff}_ odadt
e e
0 Rd
T
//a E g,g%)&cgodxdt

ORd
£ __ eff:*O‘/E t 8290
+5// o a2y, )9 Lt
0 Rd

From (2.1) and since (x°(-,y)) = 0, we deduce that all terms in (6.3) tend
to zero as ¢ — 0. Since (x°(-,y)) = 0, we have

1(LyX°) @/, &/ Vel 201 () < Ce.
Therefore, 1= fOT Jz ya(ﬁyxo)(f, 5%)V<pdxdt tends to zero, as € — 0.
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Denoting by Y the limit of )¢ for a subsequence, coming back to (6.2),
we conclude that

T 82
of _eff P —
/0 /Ry ( Orp —a —axQ)dxdt =0.

Therefore, Y° = 0, and the whole family J* a.s. converges to 0in L?((0,7) x
R). By the density argument this convergence also holds for any E €
L%((0,T) x R). Since 7¢,, converges in law in C((0,T); L?(R)), the solu-
tion of problem (3.11) converges to zero in probability in L?((0,T) x R),
and the statement of the lemma follows. (]

Proof of Lemma 3.4. A direct application of the It6 formula implies that

(6.4) S5 = MedW, + (I5 + I5 + I5) dt
where
1-52-: — E(5+1,ra,2,€ _ 62571./45@1 _ 526(a€@;2 + (aeei)z) _ 526./48‘1’1
and
1 1 1
T — 7‘6@1_750_7/{51
1 c gaz T c (b
Ji+1 J1+2 J1+2
+ Zs + k¢f+25k 2Lok
k=0 k
Ji+1 Ji+1
— Z ek=lasoh — ebasok
k=1 k=0
J142 Ji+1 J142
_ Z eh=2 fe gk Z k-1 (aagbl;z a¢k ) Z gkaegb
k=2 k=1

Thus in Z§ we have a term of order 1/e:
LT — as, u — Aot = [( 0) —af — (AEXO)] u?
From the particular choice of X" and x° (see Eq. (2.4) and (2.21)), we have
(Lr") = as — (AX") =0,

and we cancel this term. From (3.12) and (3.13) the next term in Z7 of order

€0 can be expressed as follows:

uf + L8% — aSv) — a®ul), — A°¢* — (a*¢y, + (a°¢}):)
= ) + (Lr')uy (a +(a°X2 + (@°X°)2) Juge — (A ug,
+[(Lr%) —af — (Aaxo)] U
= uf = aul, + |2 — (0 + (a"x + (@*X"):))|
+[Ln! = A, + [(£R7) — af — (AX0)] o}
= u) —aug, + [Lr' — ATX! = flug, + [(£h%) — a — (AX)] v
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But with (2.4), (2.21), and (2.24) and the definition of x!
(Lr") = ag = (AX") = Lr! = A = f° =0,

and from (1.2) and since (f°) = 0 this term of order £ is also equal to zero.
In order to understand the recursion let us focus on the term of order :

vp + ¢y + L — aZvp — afug, — A% — (0765, + (a%9)):) — 0%y,
Once again using (3.12) and (3.13) we have:
of — ool 4 [0+ < > (4] o}

[ LK) +aeffX0 AS?) — (a5t + b)) - asXO] 830

+ (LK) — af — (A° 0)] V2.

0

x5 kY, k1, we have only:

v — aug, + [(LR) = (A°XP) — f1] 93,

From the previous choice made for x

with
F1=x00" —a™) + (@x: + (ax):) -
Since v! satisfies (2.8) for k = 1:
ul = aoffyl a3 0 — qeffyl Ty 93,0,
we obtain:
[(£r%) = (A) = 1+ ()| O

From the very definition of x? by (2.20) and &2 by (2.24), the term of order
€ is also cancelled.
The next J; — 1 terms of order €¥, k = 2,..., Jy, are of the following form:

of +f +LOM — gl —atul, — AT — (a0l + (a*0h ). ) —adl,

Using (3.12) and (3.13) and the definition of f* given by (2.18), we obtain
the following equation:

[( ) (Aa 0)} k+1
[( AE 1) fo] UI;x + ’Uf - aeﬁv’;x

Z [ k+1 m (Aaxk-i-l—m) _ fk—m] 8I;+2—mvm

wS
o

-1

k—m—1q9k—m/ m eff, m
=+ X az (vt —a Umm)'
=0

3
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From the definition of v™ (Eq. (2.8)), the previous expression becomes:

vf — aefka

+ Z |: k+1 m (Asxk—i-l—m) _ fk:—m] al;+2—mvm

k—1 m—1
+ Z kamflalgfm (Z amf,eﬁ(8;n5+21)€)>
£=0

m=0
_ .k eff  k
=V —a Uy,
—1

+kz[(

ﬁﬁk+1*m) _ (AEXkJrlfm) _ fkfm] a’l;Jermvm
k

m=0
k—1 -1
+ ( Z Xk—m—lam—f,eff> 8§+2_€’U€
{=0 \m=/(+1
k— k
:’U eff k Z —meff Bk m—+2 m) + an,k—magn—lavk—m‘
m=0 m=1
where for m=1,...,k
m—1
nk,k—m _ (,CK,H_m) _ (A€X1+m) _ (fm + Xg m—j,eff
j=1

Since (x*) = 0, using the expressions of a®f, \* and x* (Eq. (2.19), (2.20)
and (2.24)), all terms 1**~™ are equal to zero. Then in Zf it remains only
a term of order /11,
Coming back to It6’s formula in (6.4), in the last part Z5, there is a term
of order £~ given by:
L0 —aful — AT — A% = £O! — aSul — (ATK)ul — A%0.
From (3.14) and (3.15) with k£ = 1, it disappears:
£e' = (L% + (E/-e Jul
= (A—A)7%L + (A" — A2 + (a, — a)ul + (A — A)x ul
A0 + (AU + a ul.
Then using the definition of f© and (3.13) for ®! and ®? we have a term of
order £° in (6.4):
utl eff 1 <g > 0 1 —i—ﬁ‘l’l _Aswl
(AE 0) (Aa 1) — (9" = (9")ugs-
Since

LS — At — (A" — (8" = (9°) =0,
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the particular choice (3.16) and (3.17) with k = 1, together with the expres-
sion of u! given by (2.5), implies that in (3.19), there is only one absolutely

continuous term of order €°, namely £2w!. The other terms in r®2 come

directly from the Ito formula. This achleves the proof of the lemma. U

Proof of Lemma 3.5. Again we apply Itd’s formula to £5 and we obtain a
non martingale part of the form:

No No No
E(S—&—lra,S,a + Z 6k6uf + ngd—lﬁ@k + Z gk5ﬁ\1/k
k=2 k=2 k=2

N() NO
_ ngéflai k Zeké € k ng(SflAsek
k=2
_ Zské 60k EHI;)Z)
. Z {g(kJrl)ﬁflAs@k +€(k+1)6(a5(_)§z + (CLE@];)Z)

No No
. Z€(k+1)6./46‘1]k o Z€k§y4€¢k.
k=1 k=2
where

No No No
(6.5) e Zs(k_l)éé?f + Zsk‘s@f + Zsk‘S“\Ilf
=2

No
+ ZE k 1)5+1¢k ZE k 1 ) Eek‘ ng(sasegx
k=2
No
- Z [z—:k‘s(aa\lffgz + (a*TF),) + 6k5+1a5\11§4
k=2
No

= > [* Tk, + @tk + T Tk, |

k=2
If we compare the terms of the same order, we have
o for " k=2 ... No:
(6.6) uf + LU — afub, — (a%0F, + (a°0F),)
_(aaglez—l + (aa@I;—l)z) _AE\I/k_l —Aalbk,
o for -1 k=2 .. 2N +2:
LOF — aul — A% — 470k
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Remember that £x° — a, — Ax® = 0. Moreover from (3.14) and (3.15)
together with (2.28) and (2.30) we obtain

A — Ao T
LOF = (A— Ak + (A@k‘l . W)
and therefore for any k
LOF — auf — A% — AT0F 1 = 0.
Moreover the expression (6.6) becomes:
(6.7) uf — 2ty — flub Lok — A=k
—(a°0y. + (a°05):) — (O, + (a"OF 1)) — ATTH

From (3.16) and (3.17), together with the definition of x!, (2.24) for k = 2,
Equation (6.7) becomes

(6.8) vF —acffyk —(Tk)y 4 LUF — A5gF
+(TFY — (a50F, + (a0%).) — (a°OF 7! + (aOF 1)) — AWk

where
(6.9) TF = af*, + a®F 1.

Now remark that

k—1
it 4 a0k = a[Tk<z>u2+ZTk-n<z>u:]
xrz

n=1
k—2
S A ) e o N U C2 ) ks I R T
n=1 Tz
k—2
— Z a [Tk_”(z) 4 yFImn(g, y)} u, 4 a(tt 4 k) uk
n=0 z
k—2
= > ¢ "zl +a(rt + !
n=0
and
k—2
(@bf +a0f ™). = D By, + (alrt 4 KY) 2l
n=0

where by convention v° = u° and ¢g* and h* are defined by (2.32). Moreover

Tx”®

k—1
) k—1 k,eff k—n,eff
(ab%, + a0k Y)Y = aFeMyl + E a” eyl
n=1
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From (2.35) and (2.36), we can check that

AQF = AT — (a(fE + OF)). - (TF - T%)
LIF = (A—A)r 4+ AT — Agh-1
+(a(0F + 0571, — (a(fk + ©57Y)), + TF — TF.

Thereby, using Equation (2.5) for u*, Expression (6.8) is equal to w¥. There
is still another remaining term of order g(No+1)0-1

(6.10) rahe = — 420N — £(afON0 + (afO1"), + ATWN),

which achieves the proof. O

Proof of Lemma 4.4. We apply 1t6’s formula to V°:

dVi = (QF)jdt + (LT)idt + Bidt + Mo (€ 1, )dB.

Let us now detail the exact expression on all terms. From time to time
we omit the variables in the scalar product to lighten the notations. The
stochastic integrand M?® is given by:

(6.11)MF = Z (k+1)5 —a/2<<Qk (?&/w) o (1) 7v£(.’t)>>

27 f): i 5(k+m)6<<Pk (E) v (1), G" (é’ft/‘f“’ t>>>

k=0 m=0

+2e¥ f: go: 8(I<:+e+1)6<<Qk (?ft/aa) Ua(wt)’(jm <?§t/aa’ -,t)>>

’;(OOT;;O ~m
2wzzsk+6+l S+a/2 Z<<Uké t gt/ea) (é,ft/s”‘"’t)>>
[];0 0;;00

+€wzzg(k+z+1 5402 —a/2<< Lt Eyjen), v (.,t)>>.

k=0 ¢=0
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The term B¢ does not depend on v°:

(6.18;

= 2@ i g (k+m+0)8 [<<Pk (g) cm (;Q/aa’ .,t) ’ge (é’gt/ea, .,t>>>

k,m. =0

55<<Qk (é7§t/50‘) gm (éaét/so‘a -,t) N (é7§t/50‘7 -775) >>}

4@ f: g(k+e+m+1)5+a/2<<Uk,e(,,t,gt/ea),QNm <é,€t/5a,.,t)>>

k,£,m=0
@ Z (k4-0+1)8 i <<Uk€ t,&ye0), ~m(‘7t)>>.
k,6=0 m=1

This term contains only positive powers of €. Now we detail the quadratic

form (QF)c:

(QF) = isk‘; [2<<Pk <g> vs(.,t),asvix(.,t)>>
k=0
e (L@t (L6 ) v (07 (11))

+ 22 Q8 (£.6ee ) v (1) a0 (1))

Then by integration by parts

(Pv®, 0”05, ) = —(Pravf, vg) — ((PFa%)av”, 0F)
= —(Pra*vs,v5) — %«(Pkaa)m (%))}

—(P*a*vg, v5) + %<<(Pka€)m»(va)2>>

1 3 3
—(Pravg,v5) + 52 ((PFa%)zz, (v)%).

The same equalities hold for Q. Then

Ko
(QF); = =23 &M [(Pratuz,vf) + 2 (QFa%v5, v5) |
k=0
5 [0PPa) e, (0F)2) + (LQPF, 0%)] 4+ 0T D2 (0., (°)2)

Ko

+ ;2251“5 |:<<(Pk(15)zz, (1)) 4+ ((Q%1af).., (v°)2) + (LQFv5,v%) | .

k=1
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From the very definition (4.4), (4.5) and (4.6) of P°, Q°, P* and QF, the
quadratic form is reduced to

(QF); = 2}3&5[P% 05, 05) + e Qs afes)

+ A“HWQ«Q%a»mwﬂw.
Finally we study the linear part:

Ko Ko
(LT = 225’“5Z5m5_a/2<(ka5(.,t),{Dm(.,t)))
k m

Jo Ko

+ 9™ Z Z €(k+m+1)5—a/2<<Q’;Ua(,,t), Gm (;,gt/aa, .,t) >>a(§t/ga)

k=0 m=0
Ko Ko

+ Ew Z Z 8(k+f+1)5—0&/2 <<£Uk’e(‘7 tv 515/6“)7 UE('? t)>>
k=0 ¢=0
Ko Ko

+ Zg(k—i—l Z mé—a/2 Qk: 5( )@m (,t)»

k=0 m=
Ko Ko

+ &% Z Z o(ktHi+1)6+a/2 <<Uk’£(., t, ft/sa)a afvs, (., 1))

k=0 ¢=0

Ko Ko
+ ¥ Z Zg(k+£+1)6+oc/2<<Utk,é(', t, gt/aa% e t)>>.

k=0 ¢=0
The last three double sums contains only positive powers of . Indeed

(Q v, @™ (.. 1)) = e(Qkv®, @™ (-, 1)),
and d — /241> |1 — /2| > 0. For the last two sums we can integrate by
parts:

(UMt Erjen), auge (1)) = —<<Uk’e( t, &), a0z (1))
- <<Uk£(’ta§t/50‘)v av z( t)>>

and thus
iig(kﬁ-é—kl)é—i—a/? [<<Uf’€(.,t,§t/aa),va(.,t)>> i <<U’“f(.,t,§t/ga),a‘fv;x(.,t))]
k=0 £=0
_ Z ig(meﬂ 6+a/2<< ( €y o) 0 t)>>
k=0 £=0

Ko Ko

_Zzgk+£+1)6+a/2<<Uk€( t, &t /ea)a® + = U Lt & jea)al, vE t)>>

k=0 ¢=0
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withd+a/2—1=¢6/2>0fora<2and §+a/2—-1=36/2> 0 for a > 2.
Then we have to control

Ko Ko

3 2€(k+m+1)5—a/2<<QZ§m (?gt/ga, _,t) ,v‘f(.,t)>>a(§t/ga)

k=0 m=0
Ko Ko

+ Z Z 5(k—l—@—i—l)6—o¢/2 <<£Uk’£(., t, ft/ga), ’Ug(., t)>>

k=0 ¢=0
We define

Lz y,2,t) = Q) (2,9) G (2., 2,1) — (Q (1 9) G (g 2. t)).

The mean value w.r.t. z of this function is zero. Hence we can define LF™
such that

o.Lkm = pkm,
Thus

<Qﬁm(£maw0 >U@w

= (LR )0 (€yen) + {(Qh (e G (- Eyjens 1)) 07 Yr(€isce)
=€<<E]§’mav >>U(€t/sa) <<<Qy (- &jea) G™ (-,ft/sa,-»t)>0(§t/ea)ave>>
= e((Thm, 0 Yo Gyyee) + (EH7(,8),0)

+<<<Q]§ (&rea) G™ (1 Erjeas 1)) (Epjea) — Ek’m(-at)yvg>>,

where =% is defined by (4.7). From the definition (4.8) of U**:

2§ io: e("’+m+1)6—a/2<<62]§§m (g,gt/s‘%xvt) ,v€>>a(§t/€a)

k=0 m=0

Ko Ko
+ Z Z €(k+e+1)6—a/2<<£Uk,e(_7 £ €y en) v (. t)>>

k=0 £=0
Ko Ky

) DECCa Y (72 W

k=0 m=0
Ko Ko

+2 Z Z 6(k+m+1)6—a/2 <<Ek’m(.%', t), ,Ua>>.

k=0 m=0
For the term

Ko Ko
9 Z€k6 Z €m6_a/2<<Pk’UE, o™ (.7 t)>>
k=0

m=1
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we decompose it:

Ko Ko
) Z Z 8(k+m)§—a/2<<(Pk _ <Pk>)1)€, o™ (.’ t)>>
k=0m=1
Ko Ko
+2 Z Z E(k+m)6—o¢/2 <<’U£, am (" t>>>
k=0m=1
Ko Ko
-9 Z Z E(k+m)6+17a/2 <<ﬁ£37 Uswm»
k=0m=1
Ko Ko
+2) )y eIl (1)),

k=0m=1

where P¥ = P¥ — (P*) and recall that (P*) = 1. Hence gathering all terms
we obtain

Ko Ko—1
([’7—)5 - 9 Z Z 8(k+m+1)6—a/2 <<U€(., t), amtt ('7 t) + 5wEk’m(,, t)>>
k=0 m=0
+ (NTHE 0,07 1) — (NT2E(8),v5(, 1)
where
Ko
(6.13) NTHE(, 1) = 2e@ ) eWHRothiza/2ghKo( 4)
k=0
Ko Ko -
+ 2% Z Z gltm+1)i—a/2+1Tkm () o(€y/ee)
k=0 m=0
Ko Ko ~
+ 2 Z Z €(k+m)6+1fa/2P£ () ™ (.’ t)
k=0m=1
Ko Ko _
+ ZE(k—I—l)(S Z 6m6—o¢/2+1Ql£ (-a&t/aa) am (.,t)
k=0 m=1
Ko Ko
+ = Z Z E(k+£+1)5+a/2Uf,€(', t, ft/ga),
k=0 ¢=0
and
Ko Ko
6LONT>(,1) = 7Y > glbttritar
k=0 ¢=0

1
x <Ua]:€7é('7t7§t/eo‘)a8 + EUk7e('>ta§t/aa)ai) :
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Now let us rewrite the Ito formula as follows:

Ko
AVe = Bidt+ M;dB, — 2 (P + LQF) g, auf)dt

k=0
Ko Ko—1
2 0 Y elbEmaNa g gy @M (L t) + eFERT( 1))t
k=0 m=0

+ 6(Ko+1)672<<(QK0a€)ZZ7(U5)2>>dt
FNT 0,0 D) — (NT2( ), 05 (. ).

This achieves the proof of the Lemma. O

Proof of Lemma 4.6. Once again we apply 1to’s formula
av; = Y F((PH Qg+ (ePF 4 QN0 ) e, b
k=0

+ f: eI ((£QR6 +££Q0, ) o7 )t
k=0

+ Lidt+ Bidt+ Mfo(¢. )dB,

_t
where the stochastic integrand ME is given by (4.20) and

Ko Ko

L= =) clmial2(phy im (s, 1))
k=0m=1
Ko Ko

— TN a2 G o (€4 .0)
k=0 m=0
Ko Ko

+ Ew Z Z E(k+£+1)6ia/2 <<£Uk’£(-7 ta ét/so‘)a ¢>>

k=0 £=0

From the definition (4.8) of U®™ and (2.6) or (2.7) of w*, arguing as in the
proof of Lemma 4.4, we have

P = (NTP(, 1), 0)
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where N'T3¢ is defined by (4.13). With P* = P¥ — (P*) and Q% = Q*
Ko Ko

Z Z 8(k+m)6+1—a/2<<ﬁk¢x + 55@’“%, {Em>>

k=0m=1
Ko Ko

D ID IR (R EO)

k=0m=1
Ko Ko

+oem S mita2(Gho G Yo (6 )

k=0 m=0

Ko Ko
4+ @ Z Z 5(k+£+1)6+1<<Utk,é(" ¢, £t/5a), gb>>.

k=0 ¢=0

iRE
B;

Note that B¢ contains only positive powers of e. Then an integration by
parts gives:

(P*6,002,) = ((P*0)uay 0°) + 20(PH ), v7) + (P07, 07)
= SU(PR).:6,7) + (P00 7) + (PHa) 00, 7).

The same holds with ]qubx. Thereby

Ko JO
YR atug,) + Y M FITA(LQ S, v)
k=0 k=0

Ko Ko
_ Z€k672<<<Pkas)ZZ¢7,Us>> + Z€k572<<£Qk¢7vs>>
=0 k=0

Ko
2
#3020, 00007) + (P00
k=0
From the definition of P¥ and Q¥ (Eq. (4.5) and (4.6)), the first two sums
of the right-hand side disappear. Hence we obtain:
AV = (NT>(.,t),¢)dt + Bidt + M:dB,

Ko
kéo—1 ANk k e Sk e c
T I;)€ <<(£Q +2(P a )Z+ (P a )zz>¢x7v >>dt

Ko
ké 5§k S+1 Ak €€
+ kz:%s ((=2Q 0 +™1Q%0, ) ,avs, at

+ i@“(@kaf)% + 2(P*a%), ¢y + £(P*a%) b va>>dt,

k=0

From the definition of P* and Qk , the first sum is null. Hence we obtain
the desired result. (|
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