Heavy range of the randomly biased walk on Galton-Watson trees in the slow movement regime - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2022

Heavy range of the randomly biased walk on Galton-Watson trees in the slow movement regime

Résumé

We consider the randomly biased random walk on trees in the slow movement regime as in [HS16], whose potential is given by a branching random walk in the boundary case. We study the heavy range up to the $n$-th return to the root, i.e., the number of edges visited more than $k_n$ times. For $k_n=n^\theta$ with $\theta\in(0,1)$, we obtain the convergence in probability of the rescaled heavy range, which improves one result of [AD20].
Fichier principal
Vignette du fichier
heavy range v2.pdf (437.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02945656 , version 1 (22-09-2020)
hal-02945656 , version 2 (28-09-2020)
hal-02945656 , version 3 (12-09-2022)

Identifiants

Citer

Xinxin Chen. Heavy range of the randomly biased walk on Galton-Watson trees in the slow movement regime. Stochastic Processes and their Applications, 2022, ⟨10.1016/j.spa.2022.04.018⟩. ⟨hal-02945656v3⟩
137 Consultations
53 Téléchargements

Altmetric

Partager

More