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Abstract

We consider the randomly biased random walk on trees in the slow movement regime as in
[HS16], whose potential is given by a branching random walk in the boundary case. We study the
heavy range up to the n-th return to the root, i.e., the number of edges visited more than k; times.
For k, = n® with 8 € (0,1), we obtain the convergence in probability of the rescaled heavy range,
which improves one result of [AD20].

MSC: 60K37, 60]80, 60G50
Keywords: randomly biased random walk, branching random walk, Seneta-Heyde norming.

1 Introduction

Let T be a supercritical Galton-Watson tree rooted at p. And to any vertex x € T \ {p}, we assign
a random bias Ay > 0. For any vertex x € T, denote its parent by x* and denote its children by
x1,x2,. .-, xNr where N, denotes the number of its children which could be 0 if there is none. Now for
given the environment & = {T, (Ay)er\ {0} }, let (Xu)n>0 be a nearest-neighbour random walk on T,

started from Xy = p, with the biased transition probabilities: for any x,y € T,

Ay

——l—, ify = x/ forsome j € {1,..., Ny}
1 Nx A i’ 1 y ] 7 7 X

pe(xy) = RO A G (1.1)
1+ A7 Y ’

For convenience, to the root p, we add artificially a vertex p* to be its parent and let (1.1) holds also
for x = p with p®(p*,p) = 1. Obviously, this is a random walk in random environment. In particular,
when A, equals some constant A > 0 for any x, this is known as A-biased random walk on Galton-
Watson tree, which was introduced and deeply studied by Lyons [Lyo90, Lyo92] and Lyons, Pemantle
and Peres [LPP95, LPP96].
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In our setting, we assume that {A,1, -+, A}, x € T are ii.d. copies of the point process A =
{A1,---, AN} where N € IN represents the offspring of the Galton-Watson tree T. Let P denote the
probability measure of the environment £. Given the environment &£, denote the quenched probability
by P¢. Then P(-) := [IP¢(-)P(d€) denotes the annealed probability. We always assume E[N] > 1
so that T is supercritical, i.e. T survives with positive probability. Let P*(-) = P(+|T survives ) and
P*(-) = P*(-|T survives).

In this setting, we could describe the environment £ by a branching random walk. For any x € T,
let |x| be its generation, i.e., the graph distance between the root p and x. For any 0 < i < |x|, let x; be
the ancestor of x in the i-th generation; in particular, xo = p and x|,| = x. Then, define

x|
V(x):=—) logA,, Vx €T\ {p},
i=1
with V(p) := 0. Usually, (V(x), x € T) is viewed as the potential of the random walk. Immediately, we
see that (V(x), x € T) is a branching random walk whose law is governed by that of A, = {V(x), |x| =
1}. Note that A is distributed as {e=V™), |x| = 1}.
From now on, we write the environment by this branching random walk, i.e., £ = (V(x),x € T).

Then, the transition probabilities of the random walk (X} ),>0 can be written as follows

g_V(x>

{ﬂjg(XnJrl = x*|Xn = x) = G’V(x)+):y:y*:x e V()

-V(y)1
£ — — — € {y*=x}
P (Xn41 = y|Xn = x) = VI, e V@

(1.2)

Throughout the paper, we assume that the branching random walk is in the boundary case, that is,

E [ Y eV(")] =1, E

|x[=1

Y V(x)ev(x)] =0. (1.3)

|x[=1

We also assume the following integrability condition: there exists certain dy > 0 such that

E [ Z o~ (1+d0)V(x) Z %oV (x)

|x|=1 [x|=1

+E < co. (1.4)

In addition, we assume that

E[N?] +E
|u|=1

2
( Y 1+ V+(u))2e_v(”)> ] < o, (1.5)

where V, (1) := max{V(u),0}. Immediately, one sees that ¢ := E[¥j,|_ V(u)2e V] € (0,00). We
take o = Vo2

The criteria of recurrence/transience for random walks on trees is established by Lyons and Pe-
mantle [LP92], which shows that the walk (X}, ),>0 is recurrent under (1.3). Further, Faraud [Far11]
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proved that the walk is null recurrent under (1.3) and (1.4). Hu and Shi studied the walk under these
assumptions, and showed in [HS07] that if T is regular tree, then a.s., asymptotically, maxo<;<, | Xi| =
@((logn)?). So the walk is called in a regime of slow movement. Later, under (1.3) and (1.4), Faraud,
Hu and Shi proved in [FHS12], on the survival of T, a.s. ,
maxo<i<y | Xil

lim

A Mlog n)? = Cst. (1.6)

Further, Hu and Shi obtained in [HS16] that (k‘)};’;‘)z converges weakly under IP*. The spread and the
range of this walk have been studied in [AD14] and [AC18]. In this paper, we study the heavy range
of the walk in this slow regime.

Define the edge local time for the edge (x*, x) as follows

n
Lx(n) = El{xkilzx*lxk:x},vn 2 1.
k=1

Let 1p := 0 and
=inf{k > 1,01 : X}_1 = p*, Xx = p},Vn > 1.

Then Ly(7,) = n. It can be seen from [HS15] that maxyet Lx(T,) is of order n in probability. For any
6 € (0,1), define the heavy range by

>
R” n Tn . ZI{LXTH ng}

xeT

We are interested in this so-called heavy range, i.e., the number of edges (or vertices) frequently visited
by the random walk, which was first considered by Andreoletti and Diel [AD20]. They show that in
any recurrent case, under IP*, in probability, R>" (14) = n®+°(1) where & > 0is a constant depending

on the regimes and on 0. In the sub-diffusive and diffusive regimes, our upcoming paper with de

>i19
Raphélis [CdR] will prove the convergence in law of R/TST") under the annealed and quenched proba-
bility. In the slow movement regime, it is given in [AD20] that (g = 1 — 6. We obtain the convergence
9
R (1)

in probability of R under IP* in this paper.

Let us state the main result as follows.
Theorem 1.1. Forany 6 € (0, 1), the following convergence in probability holds:

R*" (1) pe

nl—@ n—oo

A(6)De, (1.7)

where Deo > 0 is the P*-a.s. limit of the derivative martingale (D = Y x|, V(x)e V)50 and A(8) is a
positive real number whose value is given in (1.12) later.



Under (1.3), D, is a martingale with respect to the natural filtration {F,;n > 0} with F,, :=
o(V(u); |u| < n). Under (1.4), it converges a.s. towards some non-degenerate limit Do, > 0 accord-
ing to Theorem of [BK04]. Moreover, P(Do, > 0) = P(T survives) under (1.4). By the definition, we
also note that 0 € (0,1) — A(0) is a continuous function. Its finiteness will be checked at the end of
Appendix A.2.

Remark 1.2. Note that for 6 =0, R>" (Tu) corresponds to the total range up to T,, which has been studied in
[AC18]. It is known that X (T”) converges in probability P* to ADs with some constant A € (0, 00).

Remark 1.3. It is known in [HS16] that i—*> 4Do/0?. This would help us to understand the
n—oo

nl g
heavy range up to time n. In fact, our arguments work also for R>%("log ”)B(TH) and under IP*, we have

MR%(”I% (1) converges in probability to * A p,, for any fixed a > 0 and 6 € (0,1). This com-

bined with the convergence of T,, indicates that 1’2{5,";1?’” (m) converges in probability to A(0)c?/4, for any

6 € (0,1). In particular, it has been verified for 6 = 0 in [AC18].

In this work, we consider the edge local times for the simplicity of calculations. One could of course
study the vertex local times in a similar way, by replacing V(x) by U(x) = V(x) — log ) ( 5 in the

following arguments.

1.1 Sketch of proofs and organisation of the paper

Write ffcn) for Ly(7,). In addition, up to the n-th return to p*, define the number of excursions visiting

X by
)
Ey’ = k:Z;l{H]'G(Tk—l,Tk],X/:x}rvn > 1.

Intuitively, the vertices with large local time are either visited by many small excursions or frequently
visited by one large excursion. But it is quite rare that one vertex is frequently visited by two or more
large excursions. Therefore, we define
>n :
R7" (T4, )) 21{ nt £ ]},V1§]§n.
xeT

And we make the decomposition as follows:

n n
R*™ (ty) = Y RZ" (1,7) = Y R (1, j) + R (0, 1).
j=1 j=2
Then we are going to treat };, R>" (1,,j) and R>" (1, 1) separately and show the convergences in
probability of
1 & 0 . 1 o
W Z R?"l (Tn/]> and WR>” (Tn/ 1)/

j=2
under the annealed probability IP*. In fact, we have the following results.
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Proposition 1.4. For any 6 € (0,1), the following convergence in probability holds:

1 ¢ , .
5 L R (1) -7 Ao(6)Des, (1.8)
j=2
where Y
2 © 0 1—060. du
AO<0) = W 0 CO(ﬁ/ \/ﬂ )7 € (0/ OO), (19)
with Cy defined in (A.35).

Proposition 1.5. For any 6 € (0, 1), the following convergence in probability holds:

9 P*
WR% (T, 1) P A1(6)Deo, (1.10)
where -
AM)Zm/gkﬁ—ﬁEe@wL (1.11)
0 s \/s' s

with G(a,b) defined in (A.37) and cg defined in (A.7).
Theorem 1.1 follows directly from Propositions 1.4 and 1.5 with
A(0) = Ao(6) + Aq1(0) € (0,00). (1.12)
Let us do some basic calculations here. For any x € T U {p*}, let Ty be the first hitting time at x:
Ty :=1inf{k > 0: X} = x}.

Forany x,y € T, we write x < y if x is an ancestor of y and x < yif x < y and x # y. Then, it is known
that

PE (T, < T,) L e 7 (1.13)
Ay 1= < lp+) = = , .
x pAx P Zpgygx eV) H,
1
b@:P%u}<1h):1—ff, (1.14)
X

where H, := Z eVW-V(x)

p<y=x

As a consequence, for any fixed x € T,
P4 (Ly(1) = 0) = 1 —ay and P4 (Ly (1) > k) = a, bl ', Vk € N™.

Then by Markov property, under ]Pg , (Ly(Tys1) — Ly(Th))n>1 are ii.d. random variables distributed as
(n)

L.(7). Moreover, E," is a binomial random variable with parameters n and a,. Let

V(x) := max V(y)and V(x) := min V(y),Vx € T.

p<y<x p<y<x



We have a, < er(x) H, < eV )*V(").

To get the asymptotic of R>” (Tu,j), we need to consider the individuals x € T such that
{Ly(ty) > nG,EJ(C ") > 2} In fact, we could approximate here fx(’cn) and E by their quenched
expectations E¢[Ly(1,)] = neV® and E¢ [E,((n)] = nay with a, ~ e V). It thus turns out that all
vertices with {V(x) < logn +o(logn),V(x) < (1—0)logn + o(log n)} are visited many times and
hence with high probability under IP*,

>n’
ZZR (T”/] Z 1{V x)<logn+o(logn),V(x )g(lfﬁ)lognJro(logn)}'
j:

xeT

The asymptotic of the sum on the right hand side will be treated in Lemma 2.2.

To study R>" (1,,1), we are going to compare it with its quenched expectation. We see that

n? 0
IEE[R%Q(TH, x;rnax 1— )"~ 1b( nl- ex;r e Vix H T e,
where we only need to count the individuals with {V(x) > logn + o(logn)} so that they are visited
only by one excursion with high probability. Here we also add the restriction {V(x) — V(x) ~ 6logn}
so that Hy = @(n?) as Hy and eV ¥~V are comparable. In addition, it is known in [HS16] that up to
Ty, with high probability, the walker has not reached the stopping line {x € T : maxy<,<x Hy < 7, <

H,} with vy, = ﬁ for any v > 0. So, the good environment here is

{V(x) >logn+o(logn),V(x) — V(x) ~ 6log n, max Hy, < vu}.

However, only part of vertices in this environment are frequently visited. By bounding the quenched

variance of R>" (1, 1), we could verify that with high probability,

nf
R (7, 1) =0 Y e VOO (g

= H, )1{V(x)210gn+o(logn),V(x)fV(x)tGlogn,maxpgygx Hy<ry }*
The asymptotic of the term on the right hand side will be given in Lemma 3.5.

The rest of the paper is organised as follows. In section 2, we study }.i', R>”9(Tn, j) and prove
Proposition 1.4 by choosing the suitable environment. In section 3, we prove Proposition 1.5 for
R>" (T, 1). Next, Section 4 is devoted to proving the generalised Seneta-Heyde norming results: Lem-
mas 3.5 and 2.2, by applying the new method introduced by [BM19]. In Section 5, we complete the
proofs of the technical lemmas.

In this paper, we use (¢;);>o and (C;);>o for positive constants which may change from line to

line. And we write f(n) ~ g¢(n) when % — 1l as n — oo. For convenience, for any real numbers

0 <a < p < oo, we write Zf:a for Yy <k<pren-



2 Proof of Proposition 1.4

In this section, we study }i', R>" (1, j) and prove Proposition 1.4.
First, it is proved in [FHS12] that maxj<;<<, | X;| = O((logn)?), P*-a.s. So,

co(logn)?
;RZHH(Tn/j) /Z‘(,] |Z[ { ) n9E }+0n(1) P*-as.,
= = X

with some large and fixed constant cyp > 0. On the other hand, it is known that P*-a.s.,

0 > inf V(u) > —oo.

ueT
So, we only need to consider } ;<) (1ogn)? 1{@(%)%9/3@Zz}l{z(x)z_a} for any fixed « > 0. Now for

anya,b € R, let

An(a,b) :={x € T:V(x)—V(x) <0logn—+a,V(x) < (1—0)logn+b},Vn>1, (2.1)
and A} (a,b) :={x € T:V(x) <logn+a,V(x) < (1—0)logn+b},Vn > 1. (2.2)

We use ¢, = op(n!~?) to represent that n‘%ig converges in probability to zero under IP. Then, we stress
that foranya« > 0,b > 0,4, = aloglogn witha > 3,

1-6
Y Lywe-wlxea-a,-ny Hor(n ) <) Y@z, () 200 £ 22)

|x|<co(logn)? [x|<co(logn)®

< Y Yo lfear@mn) Tor00 ),

|x|<co(logn)?
because of the following lemma.
Lemma 2.1. Let b > 0, &« > 0. For a, = aloglogn with a > 3, we have

1 co(logn)?

nl=o gg) );El{"@‘ —an=b) }l{fx(m)<neorls£")§1} ;HLOJO’ 23)
| collogny .
at L L ez et )} L e 022 o O (24)
(=0 |x|=¢
c logn)

It remains to study }, 1ivea,(~a,—b)) and ZCO (log)® 1 (xeAf (anh)}” which is done in the next

lemma.

Lemma 2.2. Let b > 0. For a, = o(logn), we have the following convergences in probability.

(logn)
Zco Z|x\ ¢ Lxeay(—an—b)} P

—b
18 —— DoAo(8)e, (2.5)

co(logn)?
Yoo Xpi=tYxeai@n)} p

nl -t n—oo

DooAg(0)el. (2.6)



The proof of Lemma 2.1 will be given later in Section 5, and the proof of Lemma 2.2 will be in
Section 4. The finiteness of A (f) will be checked in Appendix A.2. Now we are ready to prove

Proposition 1.4.

Proof of Proposition 1.4. Recall that Do, > 0, P*-a.s. We only need to show that for any 6 € (0,1), as

n— oo,

1o

P+ (ijz RZ" (T, ]) > (14 6)Ao(8)Des or < (1 _5)A0(9)Dw> — 0.

Observe that forany &« > 0and § € (0,1),

P* <Zj22 R (T, f)

1o

> (148)A¢(8) Do or < (1— (S)AO(G)Doo)

< P(inf V(x) < —a) +P* (max | X;| > co(logn)3> +P* (Do < B)

xeT 1<i<Ty,

YJx|<co(logn)? 1{zx(rn)zn9,lsi”)zz}
L > (140)Ao(0)Des 01 < (1= 6)A0(6)Deo; Des > B, inf V(x) > | .

nl-»9 xeT

It is known (see [Aid13]) that for any « > 0, P(infyer V(x) < —a) < e~*. Note also that P*(De < B) =
0g(1) as B | 0. Therefore,

10

_ >nf .
P* (ZJZZR (7. J) > (14 6)ADg or < (1 —5)ADOO> 2.7)

<e "+ o0,(1) +o0p(1) +P* ( ). 1{z(x)2frx}1{&(&)2716,5,&“)22} > (14 6)n" *Ag(6) Deo; Do > /3)

|x|<co(logn)?
' T n < — 1-6 0o; Do > . > _ .
P (x<c§)gn)31{Lx(Tn)>n9,E,(c >zz} < (1-=0)n"""Ag(0)Deo; Deo > B, J%IeljfrV(x) > zx)

On the one hand, for any b > 0 and a4, = aloglogn with a > 3, one has

P ( )3 1{K(x)2—0€}1{fx(rn)2;19,1—3)((”)22} > (1+6)n" *Ao(8) Dew; Dow > 5)

[x|<co(logn)®

x| <co(log n)?

1 6o (0)p
<P <nl9 Lo Meeaiomm ezl r qzesz2) 2~

. 1
+1P (n19 Z l{xeA,t(an,b)} = (1+5/2)A0(9)Dw> .

[x|<co(logn)®



We apply (2.4) to the first term on the right hand side, and use (2.6) for the second term by taking b > 0
small so that e” < 1+ 6/2. Thus, we obtain that

¥ <collog n)?

P ( )3 1{Z(x)270<}1{ Ly () 200 E" >2} > (14 6)n'""Ag(8) Deo; Do >,3> —0

as n goes to infinity. On the other hand, observe that

[x|<co(logn)®

P* ( Y l{u 2 £ 22) < (1=0)n'"%Ap(0)Deo; Do > B, inf V(x) > uc)

e oNo(0)B
S ]P (7’119 Z 1{X€An(_ﬂn,_b)}1{Ex(’rﬂ)<n9 or E;n)gl} Z 2

|x[<co(logn)?

1
+P (nl@ Yo geaan-ny < (1 5/2)A0(0)Dm> ,

|x|<co(logn)3
which is 0, (1) by (2.3) and (2.5) with b > 0 small enough so that e™? > 1 — §/2. Going back to (2.7),

one sees that

- R>n6 - .
P (ZJ—Q nl_e(T > (145 o(@)Da or < <1—5>Ao(9>Doo) < et +op(1) +ou(1).

Letting n — oo then @ T co and 8 | 0 concludes (1.8). O

3 Proof of Proposition 1.5

This section is devoted to proving Proposition 1.5. Similarly as above, we have P*-a.s.,

R>" (1,,1) = 1Zg; y 1 +0,(1)
n A
(=1 |x|=¢

For a, = aloglogn with a > 3, set

BE = {xecT:V(x)>logn+a,}, and 2, := {x € T:V(x) — V(x) € [logn — a,,0logn +a,]}.
We first show that with high probability, R (1,1) ~ BN (log 1)’ >jx|=¢ 1{@(%)2”95)@):1}1{2633;}1{26%}‘
This comes from the following lemma whose proof is stated in Section 5.

Lemma 3.1. Asn 1 oo, we have

(log n) i
IE|: Z Z 1{Lx('rn >n9E } {V <logn7a,,,} :O(nlig)r (31)

/=1 |x‘:[ _
logn Z
Y L Ut s | =001 |



Here we introduce the stopping line

Ly:={xeT:maxH, <r < H},Vr>1

y<x

It is known that in [HS16] that
P(Ek<t:XyeLly, —0

This means that P({ Xy, k < 1,} C {x e T:x < L,} U{p*}) — 1. For any r > 1, define
L ={xe r]l":r§1<a;<Hy <r}.
1 3
So, we only need to study ZZO:(lOgn) Yjx|= 1{ (o) 210 EL" } {ves; }l{xej 11ixez,y- In fact, only the

generations of order (log n)? should be counted and %, can be replaced by %,, in view of the follow-

ing lemma.

Lemma 3.2. Ase | 0, we have

. 1 e(logn)? i
limsup gl [ Y, X l{zx(r,z)znf?,ﬁﬁ”):l}l{xeﬂ;}l{xeﬁn,z(xt—w} =0:(1),  (33)
100 (=1 |x[=t

(1og )
1
lim sup ——51F L (Z L Ut oz p ) e ez vwz-a Tpes) | =0:(1). (B4

=0 =(logn)2/¢e|x|=¢

Foranye € (0,1),

1 (logn)*/
nlfGIE Z Z 1{{( )>n9E } {V e[logn—an,logn—l—an],ﬂ(x)z—a,xegn} :On(l)' (35)
l=¢(logn)? |x|=L

Instead of %), we are going to use .Z,, with r, = (log K to control the quenched variance of
(logn)?
L g2 Zlel=t Yz 5 <) Hrem e Lae 2, )

Lemma 3.3. Forany ¢ € (0,1) fixed, « > 0 and for v, = wzthﬁxed v > 0, we have

(logn)7 g
(logn)?/e

- 12 sz (Tl 20t £ }{xe@+}1{xe%}1{v( X)>—a,yp <max.<x H.<n}
e(logn)? |x

E =o(n'7?). (3.6)

Let PX .= {x e T: V(x) — V(x) € [flogn — K,0logn + K|} with large constant K > 1. Then, as K — oo,

=ox(1)n'=%.  (3.7)

(logn)*/
E |: Z Z l{f( )=t E( } {xg@*'}l{xej \jK}l{V( )>—a,max;<y Hy<n}
(=¢(logn)? |x|=L

10



Now, we let
En(l, By NI 2y, ) |§£1{L (w2 =1V  rea ey L, LV (2 o)
It immediately follows that
C[E(L B VDN Ly, 0)] = 1 P (Lelm) 2 0’ B = D,y Lo Lne 2, A vz a)
x|=¢ 9
=<1+on(1)>n1*9efv<x>f<;—xn{xe@m,m}1&@27“},

where f(u) := ue™*. Let Var® denote the quenched variance. We state the following estimate.

Lemma 3.4. Let 0 < A < B < co. For { € [A(logn)?, B(logn)?] NN, one has
1220

E[Varf (E,(¢, B, N 2.1 %L, a))] < “log nymr—+

(3.8)

All these previous lemmas will be proved in Section 5. The following lemma states the asymptotic
behaviour of the quenched expectation E€ [E, (¢, B N 2, N Z,,,&)].

Lemma 3.5. Forany 0 < A < B < coand a+ v > 6, one has

du
L

)

(l%n) Z V) n? . B ,
(=A(logn)? [x|=£ H,' (#2020} noso A

=
>
5

In fact, because of (3.7), we only need to prove that

B(l 2
(logn) n®

V(1 X, Co(A,B,K)D 3.9
L e inokn 0(A, B, K)Dss, (3.9)
{=A(logn)? |x|=¢ H {xE l W} e

where Cy(A, B,K) = c¢gCs(A, B,K) with C3(A, B,K) defined in (4.18). One sees immediately that
limg 0 Co(A, B,K) = ¢ ff g (ﬁ, %)%" The proof of (3.9) is postponed in Section 4. And the finite-
ness of f/f G(==, £)% and that of A1(0) = cr [, G(—%, %)% are checked in Appendix A 2.

Vi Vu V' Vu
Let us prove Proposition 1.5 by use of these lemmas.

Proof of Proposition 1.5. Note that for any § > 0and > 0,

>n?
P* <|R(T’“1) AL (0) D] > 5Dw>

nlfﬁ
xeT 1<i<

<P*(inf V(x) < —a) +P* (max |Xi| > co(logn) ) +P*(Deo < B) +P*(Fk < 1, Xy € L)

co(logn)
LD VR R R OEY
+P* | |

e — A1(6)Deo] > 6D, Do >
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Here P*(3k < 7, X € L,) = 0,4(1) according to [HS16]. By Lemmas 3.1, 3.2 and 3.3, one has

R (1, 1) -
v (‘ 52— A1 (6)Des| 2 6D | < e +0u(1) +05(1)

1 Lol
* Zé Ogrllog/nez '_'n(g ‘%—i_ N .@n N f'}’nl (X)
ey o

By comparing &, (¢, %,F N 2, N Z,,,«) with its quenched expectation, we use Chebyshev’s inequality
and then Cauchy-Schwartz inequality to get that

O B, B O Dy 1 2Ly, 0) — EE (B (L, B 0 Dy 01 2, 0)]

Py 1-0 | >6p/4
n

16

2
(logn)*/e
SWE ( Y BB NDuN.Z,,, a) —EE[E, (L, BN Dy ng%,a)])

{=¢(logn)?

16 (logn)?/e  (logn)?/e

S = 1 Y E [varg(an(e, B NP0 ,,zﬂ%,a))} ,
p l=¢(logn)? (=¢(logn)?

which is 0, (1) by Lemma 3.4 as long as a A 7y > 8. Therefore, it remains to note that

(ogn)®/e R[5, (0, B N Dy N L
P* ( Z [ n( 7 nnl_?n ’anlx)] _Al(G)Doo| > gDoo/Doo > ‘B
{=¢(logn)?
(logn)?/e n? 5
<P | 2 Z (1+0,(1 (x)f(ﬁ)l{xe%n*m%ﬁz%} — A1(0)Doo| > 1D°°’ Do > B
l=¢(logn)? |x|=¢ x

+P*(inf V(u) < —u),

ueT

which is 0, (1) 4+ e~* by Lemma 3.5 for sufficiently small ¢ € (0, 1). We thus deduce that

lim sup lim sup IP*
e—0 n—o0

e(logn)2 =1
10

(logn)?/e m— +
)y =0 (0, By N\ Dy N Ly, )
( = Y AL(8)Dy| ngm,szﬁ <ew,

Going back to (3.10) and letting « — co and 8 | 0, we therefore conclude that for any > 0.

, | RZ" (1,1
lim sup IP <|nl(9n) — A1(0)Deo| > (5Doo> =0.

n—oo
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4 Generalised Seneta-Heyde scaling: proof of Lemmas 2.2 and 3.5

In this section, we prove Lemmas 2.2 and 3.5 by extending the well-known Seneta-Heyde scaling result
for the branching random walk (V(u),u € T). The Seneta-Heyde scaling problem is first treated by

[AS14]. Later, [BM19] gave a new proof which inspire our arguments here.

4.1 Lyons’ change of measure and spinal decomposition

First, we state some facts and lemmas on the branching random walk (V(u),u € T).
Recall that P is the law of the branching random walk (V(u),u € T) started from V(p) = 0. Let
P,(V(u),u € T) € -) = P((a+V(u),u € T) € -) for any a € R. Let E; be the corresponding

expectation. Then the following lemma holds because of (1.3).

Lemma 4.1 (Many-to-One). Forany n > 1, a € R and any measurable function f : R" — R, we have

E.| Y e VWF(W(u), -, V(un))| = e "E[f(S1+a,--+,Sq+a)], (4.1)

|u|=n
where (Sy)n>0 is one dimensional centred random walk with i.i.d. increments and Sy = 0.
Moreover, by (1.4), E[S?] = 0% € (0,00) and

E[e—éosl] + E[e(1+(50)51] < 00, (4.2)

Forany n >0, let S, := maXo<k<y Sk and S, := ming<x<, Sx. More estimates and rescaling results on
the random walk (S,),en can be found in Appendix A.2.
Define the additive martingale with respect to the natural filtration {F} },,>0 by

Wy= Y e vn>o0.
|u|=n
Under (1.3), this is a non-negative martingale and it converges P-a.s. to zero according to [Lyo97]. By
Kolmogorov extension theorem, for any IR, we can define a probability measure Q, on Fo := V;>0F,

such that
dQ,
dP,

|7, ==¢" Z e’V(”),Vn > 0.

|u[=n
Let Eq, denote the corresponding expectation and write Q for Q.

Let us introduce a probability measure Q, on the space of marked branching random walks so that
its marginal distribution is exactly Q,. Recall that the reproduction law of the branching random walk
(V(x),x € T) is given by the point process A, = {V(x), |x| = 1}. Let A, be the point process having
Radon-Nykodim derivative ) .. 4, e~ with respect to the law of £. We start with wy the root, located

at V(wp) = 0. At time 1, it dies and reproduces a random number of individuals whose displacements
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with respect to V(wy), viewed as a point process, are distributed as A,. All children of wy form the
first generation, among which we choose x to be w; with probability proportional to e~"(*). Then
recursively, at time n + 1, the individuals of the n-th generation die and reproduce independently
their children according to the law of A, , except w, which gives birth to its children according to ﬂ\e
The w, 1 is selected among the children of w, with probability proportional to e~V for each child
u of wy,. This construction gives us a branching random walk with a marked ray (w;),>0, which is
called the spine. The law of this marked branching random walk (V' (x), x € T; (wy)x>0) is denoted by
Qq. Again, Q, denotes the law of (a + V(x),x € T; (w,),>0) under Qp. We use Eg, to represent the
corresponding expectation and use Q instead of Qo for brevity.

It is known that the marginal law of Q, on the branching random walk is the same as Q, defined

above. We also state the following proposition from [Ly097], which gives some properties of Q,.

Proposition4.2. (i) Foranyn € Nanda € R,

~

Q. ((V(wp), -+, V(wy)) €-)=P((a+So, -+ ,a+Sy) €-).
(ii) Forany |u| = n,
—V(u)
Wh
For the marked branching random walk (V(x),x € T;(wy)n>0), let Q(w;) = {u € T : u* =

e

Qa (wn = u‘fn) -

wj_1,u # w;} be the collection of brothers of w; for any j > 1. Let ¢ be the sigma-field containing all

information along the spine, that is,
G = U{(wkr V(wk))kZO/ (”/ V(”))ueukzoﬂ(wk) }
Then conditioned on %, for all u € Uy>1Q(wy), (V(v),v > u) are independent and distributed as Py ,,).

4.2 Proof of Lemmas 2.2 and 3.5

In this section, we study the following sum: forany 0 < A < B < oo,

Xi(A,B,r) = BZrZ ) e V@E(z,r), fori=1,2,3; (4.3)
M=A |z|=m
where
Fi(z,7) ::eV(Z)_(l‘G)’_bl{V(z)—V(z)g9r+t,,V(z)g(1—9)r+b}' (4.4)
Pa(e,r) i=e O b g oo (4.5)
B(zr) =K ;Z)1{v<z>>r+n,maXy<z<v<y)V(y>)<r+sy,v<z>v<z)e or—Kr K1} (4.6)

14



with t, = o(r), s, = o(r), K > 0 and b € R such thats, + 6logr < t,. We are going to show that as
r — oo.
xi(A, B,r) =5 Ci(A,B)De, fori =1,2,3, (4.7)

where C;(A, B) are positive constants which will be determined later.

First, to conclude Lemma 3.5, in other words, to get (3.9), we need to compare {z € .,2”%} =
{maxy<Z Hy < (logn -} with {max,<:(V(y) — V(y)) < r+s,}. In fact, note that VWVl < H, <
ly|eV®-V¥) with |y| < |z|. Thus for |z| < B(logn)? with n > 1,

l{maxygz(V(y)—V(y))glogn—(’y+3) loglogn} < l{ZE.fwn} < l{maxygz(V(y)—V(y))glogn—'yloglogn}

Note also that in Lemma 3.5, t, = aloglogn with a 4+ > 6. Therefore, we can deduce Lemma 3.5
from (4.7) for i = 3.

Secondly, one can see immediately that Lemma 2.2 is mainly based on the convergences of x1 and
X2 and that Lemma 3.5 is based on the convergence of x3 with » = logn. To complete the proof of

Lemma 2.2, as F; < F,, we still need to check the following estimate.

Lemma 4.3. Forany a > 0, as € | 0, we have

(logn)? i
limsup E |: Z Z e~ Fz (z, logn)l{v( )>—a} =0,(1); (4.8)
n—o0 m=1 ‘Z‘
o(logn)? ]
limsupE | Y. Y e VO (z,logn) 1y o) | =0e(1). (4.9)
n—eo (logn)2/e |z|=m ]

The proof of Lemma 4.3 is postponed in Section 5. In the following, we prove (4.7) by using the
idea of [BM19].
Outline of proof of (4.7). It is known that for any ¢ € (0, 1), there exists kg > 1 such that

P (inf inf V(z) > 0) >1-—g¢, (4.10)

n>ko |z|=n

with the convention that inf @ = co. For any r such that Ar? > 2k, let

Xi(A,B,1,ko) : Z Ee @F(z,7, ko)

m=Ar2 |z|=m

where Fi(z,71,ko) := Fi(Z;T’)l{min yer V()
z0<y<z
e >0andi = 1,2,3, there exists kg > 1 such that for any k > ko,

>0} with zp := z,. It then follows from (4.10) that for any
P (vr > 1, Xi(AI B, 7’) # Xi(A/ B,r, k)) < 2e. (411)
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So, according to [BM19], it suffices to show that forany A > 0andi =1,2,3,as,,

lim limsup E[e M(ABk0)| 7 1 = lim lim inf E[e (4B 7 1 = exp{—AC;(A, B)Dw}.  (4.12)

k=00 y o0 ko—oo r—o0

By (4.11) and a Cantor diagonal extraction argument, we could find a subsequence k, 1 oo so that for
any rational A € Q,
lim E[e=i(ABN| 7 | = exp{—ACi(A, B)Dw }.

r—r00

Then by Lemma B.1 of [BM19], this yields the convergence in probability of x;(A, B, r) towards C;(A, B) De.
Let us check (4.12). Observe that by Jensen’s inequality,

Br?
E[e—/\;a(A,B,r,ko)|fk0] — H E [exp{—)& Z Z 1{20—u}€_V(z)Fi(Z,T)}‘fk[)]

|u|=ko m=Ar? |z|=m
Br?
ZeXp{—/\ Yy Y E [ ) 1{20_u}e‘”z>a<z,r>}mo]}
|u|=ko m=Ar2 |z|=m
Zexp{—)\ Z (1+Or(l))EV(H)[Xi]}l{max\“\:koV(V»)Srlm,min‘wzkoZ(M)Zfrl/?’}' (413)
|ul=ko

where §; = Xi(A,B,r, ko) := y Bk Yz =m V@@ F(z,r) with

m=Ar2—kg

{V(2)>0,V(2)~V(2)<6r+,,V(2)<(1-6)r+b}’

{V(2)20,V(2)<r+t,V(2)<(1-6)r+b}”

e
P3( ) f( H, )1{V \V(z) >r+t,maxy<; (V(y)—V(y)) <r+s,,V(2)—V(z)€[0r—K,r+K] } :

Let us explain a little the last inequality in (4.13). Note that if {max,_, V(1) < r1/3}, one has V(z) =
max;,<y<; V(y). Thus, fori = 1,2,

E ||Z 1{zo—u}ev(z)l?i(zrr)}|"rko] = EV(u) [ Z ei‘/( )ﬁ(z 1’)] :

|z|=m—ko

v

For i = 3, one can see that given {max,_, V(1) < r'/3,min,_, V(u) > —r'/3} and {V(2)

r+t,V(z) — V(z) € [0r +d,0r +d + h|}, we have moreover {max,<-(V(y) — V(y)) < r+s,} =
=1 eor eor

{maxz<y<:(V(y) = V(y)) <7 +s}and £(57) = (1+0,(1))f( ) as

):ZUSySZ gV(y)fV z

‘HZ - Zzogygz eV(y

/3_p—t, — Or(l).

This leads to

Y e VIR NN | = 1+00)Eyy | Y e V@)

|z|=m |z|=m—ko



We next turn to the upper bound of E[e~*i(AB7k0)| 7, 1. For any & € (0,1), let As := Ae™*’ an

Bf’sz[)

o (0) N
X. = e~ F R ‘
Z m= ; k() |Z|Z: {Z‘Z\:m e )F (Z T)<ﬁ}
As a consequence of the fact e~ < 1 — At forany ¢ € [0, 5],
E[ _AX,‘(A,B,T’,]{(]) |‘F ]

< H E lexp{ A Z Z 1{20 14}3 V(z Fi(Z;V)l{ZZml{zoll}ev(z)l?i(zlr)<3,:'z}})fk0]

|u|=ko m=Ar? |z|=

<TI (1—/\5E[ Y Z 1—uye” Z)E(Z,r)l{zzml{zou}e_v<z)g(zlr)<g:2}‘fk0]>

[u|=ko m=Ar? |z|=

d

Br?
§exp{—)\5 Y. E[ ) 2 | P V(z F(z,r)1{zm gt R RS ‘fkol} (4.14)

[u|=ko m=Ar? |z|=

which as explained above, for r large enough, is bounded by

~(/2)
exp {—/\5 Z (1 + 07(1))EV( )[X ] } + 1{max‘u‘=k0 V(u)>r1/3} + 1{min\u\=k0 K(u)<—r1/3}'

|u|=ko

For (4.13) and (4.14), letting r — co brings out that

liminfexp {—A Z (1+0:(1))Ey ) [Xl]} < 1iminfE[e—AXi(A,B,r,ko) | Fio]

r—o00 r—0o0
J|=ko

< lim sup E[e™ (A B70)| 7 ] < lim sup exp {‘Aa Y. (14 0:(1) By [

r—o0 r—00 \u‘:ko

Next, we claim the following lemma on E,[{;] and E, [)@l@].

Lemma 4.4. Foranyx > 0,6 > 0,asr — oo,

lim E, [%i] =Ci(A, B)R(x)e”",
lim sup Ey [)@- - )El@} =0,(1)R(x)e ¥,

r—00

where R(+) is the renewal function defined in (A.6),

Ci(a,8) = Ca(4,B) = & [T aa( o % € 0,),

and

E—S

B 1 0
Hc(,o_) _1)]dS/A g(ﬁ/ﬁ)

K
C3(A, B) = C3(A, B, K) :/_KE[f(H "
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(4.16)
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By (A.7), R(u) ~ cruasu — oo. Recall also that the derivative martingale Dy, = Y, V(u)e V)

converges a.s. to some non-negative limit D,. As a result, we obtain

lim lim E[e*i(ABrko) | Fr,] = exp{—AcrCi(A, B)Deo }.

ko—>oo r—00

By Lemma B.1 of [BM19] and a Cantor diagonal extraction argument, this yields convergence in prob-
ability of %;(A, B,r,ko(r)) towards ¢cgCi(A, B)De. In view of (4.11), we obtain the convergence in
probability of x;(A, B, r) towards C;(A, B)Ds under P (hence under P*) with C;(A, B) = ¢xCi(A, B).
Note that [ E[f(m)]ds = 1. So Lemma 3.5 holds and finally Proposition 1.5 holds with

1 6 .du

)—

A1<9):CR/OO (\f\/a Ll'

And Lemma 2.2 holds with

¢ [T 0 10 V2 e, 8 1-6
Male) = ex'r [ O 70T = i |y O

because of (A.8). The finiteness of these constants is given in Appendix A.2.

In order to conclude (4.7), we only need to prove Lemma 4.4 mainly for i = 2, 3.

Proof of Lemma 4.4. Proof of (4.16). By Many-to-one lemma, we have
Bi’z—ko .
Ex [}ez] = e*x Z Ex |:esmf(179)r*b;§m Z O, Sm g r + t,,, Sm S (1 . 9)1’ + b] ‘

m=Ar2—kg

By (A.38),asr — oo,

Br2—ko 1+Or( )

o —X Ct r ( )
E:[X2] =R(x)e ———=—C
[ 2] ( ) m_;]{g m 0(\/* \/* )
ko
x 2 c 0 1-0,du
=R o) [ TO( )
-2
which converges to R(x)e ¥ Co(\f, Te)d—”. By (A.39) instead of (A.38), we get (4.16) for i = 1.

Moreover, we get that
0 1—0. du

N

Ci(A,B) = Co(A, B) = /B & o

Fori = 3,by (A.36),asr — o,

Brz’ko 1+ 0,(1) r Or
E:fs] =e "R (x [ sie ~Djas=rG(—, <L)
m= Ar2 —ko Hoo+Hc(>o) m m m
e B 1 6 .du
E[f( d —_——)—.
or / w1 S/A ANV

18



Proof of (4.17). First, by Markov inequality,

BVz—k()

Y E

m=Ar2—ky

Bi’z—kg

Y E

m=Ar2—ky

~ ~(0
&m—ﬁ)

]

<

Note that F; < F>. So, we only need to treat it for i = 2,3. By Lyons’ change of measure and Proposition

4.2, we then get that
~ (6
Bt — %]
Br2—kg R BT’Z
< Y e “Eg_ |Fi(wm,7) ( 5
m=Ar2—k,

SUB] (A, B, r, Z) + UBZ(A/ B/ 7, Z)/

where
BT2—k0
UB1(A,B,r,i) := Z e_xE@X
m=Ar2—ko
Brszo
UBy(A,B,r,i):= ), e “Eg
m=Ar?—k

B Brz —V(wm) T

Ei(wy, 1) ¢ " (W, r) A1) |,

—/\ Br2 m =N

Fi(Wm, 7’) [7 E E e—V(z) i(Z, 1")] A1
i J=lueQ(w;) |zl=mz>u

Observe that for i = 3, by Proposition 4.2 and (A.4),

Briko  pp2e—x s
UB1(A,B,r,3) < Z E, [e ”’I{szgsm21’+tr,§mfsme[9r7K,9r+K}}:|
m:ArZ—ko
Brl—ky  p,2,—(1-0)r—t+K
< c(l4+x)e ™ =o0,(1)R(x)e ".
m=Ar2—k 5\/ﬁ
Note also that as 1?2 <1, by (A5),
Brszo Brz R
UBl(A, B,T’,Z) < 2 e_XTEQX {Fz(wm, r)e—V(w,,,):|
m=Ar2—kg
Br2—ko By2e—(1-0)r—b
< e—Xfo(Sm >0,5, < (1—0)r+b)
m=Ar2—kg
Breko Br2e=(1=0)r=b c5(1 2
- 3(1+x)(1+7 N
= Z ¢’ ) ( m??/(z ) =0 ()R(x)e™™
m:Aerkg
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Recall that ¥ = 0{(wk, V(wk))kzo, (Ll, V(u))ueukgla(wk)}' SO,

UBa(A, B, 1,i) <
Br?—ko =R B?’Z m .
Y e Eg, |Ewnr) TZ Y B | ¥ cV@REng|)AT) |, @20
m=Ar2—k ' J=lueQ(w;) |z|=m,z>u

where for i = 2 and u € Q(wj), by branching property at u and then by (A.5),

EQr [ Z e_V(Z)I?z(z, T)‘g]
’ |z|=m,z>u

<e™ "y 0) B [T S, 2 0,8 < (1= 0)r — b]

ca(1+V(u)(1+7) Vi
(m—j+41)3/2 Ljcmszy + e M yzopLzmay (4.21)

<e V1,50,

and fori =3 and u € Q(wj),

Eéxl Y e V@R )9

+ Eg,

)3 e‘V(Z)fg(z,r)l{V(z)>V(”)}|g

|z|=m,z>u

u)1{K(L1)20,V(u)—V(u)<r+5, V(u)>r+t, }PV( (Sm = > 0,x— Sm_] € [97’ -K 97’—|—K])| x=V(u)

+e M1y 050/ Py(u) (Spj > 0,Sm—j — Su—j € [0r — K, 0r + K], max (Sk—Sk) <r+5,5uj>7+1),

<m—j

:EQX [ Z E_V(Z)F3 (Z, r)l{V(Z):V(u)} |g
|z|=m,z>u

where by (A.28) for j < m/2and V(u) < r/2, one has
PV(u)(Sm iz >0, Sm —j Sm_] € [9 —K, 97’—|—K] mniix](Sk — Sk) <r+s, Sm —-ji = >r+ tr)

(1+K2)(1+7)
Sl{]Zm/Z} + 1{j<m/2,V(u)2r/2} + C5(1 + V(”)) (T}’l — j)3/2 1{j<m/2,V(u)§r/2}' (4.22)

Moreover, by (A.5), one sees that

o, Z e_V(Z)fg(z,r) %

[c6(1+V(u))(E/( u) —0r +K)(1+ 2K) A1

1{V(u)ZO,V(u)—V(u)SH—sy,V(u)Zr—i-t,} . ])3/2

(u)1{K(u)20}1{j<m/2,V(u)2r/2}

V(u 1+K)(1+7r
+c5(1+ V(u))e )l{g(u)zo,v(u)gr/z,j<m/z}( (m _>]-()3/2 )

- 1+K)(1+7r -
§C7(1 + V(M))2€ V(u)l{Z(u)EO}( (m _)j()3/2 )1{j<m/2} + 2 V(u)

+e 1y oy Loy e

Ly =01 1j=m/2}

+ e—r/4e—V(u)/21{Z(u)20}1{j<m/2}' (423)
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Plugging (4.21) or (4.23) to (4.20) yields that

UBy(A,B,r,2) < UB5(A,B,r,2)+UB5 (A,B,r,2) (4.24)
where
Br?—kg B3 m/2 v
UBs(A,B,r,2) := Z e 52 Z E 2(wm17) Z (1+V(u))e (u)l{z(u)zo} ,
m=Ar?—ko ue (w,)
S B?’z—kg
UBF(A,B,1,2):= ) e_xEQx 2(W, v Z Y. 78 l{v( =0y | A1,
m=Ar2—k j=m/2ueQ(w;)
and that
UB,(A,B,r,3) < UBYY(A,B,r,3) + UBP (A, B,r,3) + UBY) (A, B,7,3), (4.25)
where
Brszo 2B 1 2\ .3 m/2
1 _ + K)r
UBE )(A, B, 1’,3) = Z e g ((5m3/2 ) EQX wm/ Z Z 1 + V (u)l{Z(u)ZO} ,
m=Ar2—kg J=1 ueQ(w;)

(2) Brszo BrZ R m/2 1
UBZ (A, B, r, 3) = Z e_x7€_r/4EQx F3(wm, 7’) Z Z E_V(u)/zl{z(u)zo} P
m=Ar2—kg J=1 ueQ(w;) i

Bl’szo

uB (A,B,r,3)i= Y, ¢ Eg [Fes Wa, 7 (Z ) 2*6 Ny >>0})“

m=Ar2—k j=m/2 ueQ(w;)

In the rest part, we will check that all these terms are 0, (1)R(x)e™* as r — co and then x — oo.
We will first treat UB5 (A, B, 1,2), llBél) (A,B,r,3) and UBEZ) (A, B,r,3) in the similar way. For any
ueT,let AV(u) = V(u) — V(u*) be its displacement. Write A,V (u) for AV (u) V 0. Then,

§ >(1 VN i < § )(1 +V()e sy < eV Py Vi
ue IU]‘ ue IU]‘

with V" := ¥ caw) e~AV(W)/2 Consequently,

UBZ<(A, B, 7’,2)
Br ko Br W2 V(wp)—(1—0)r—b V(w; 1)/2+
—x m)— 7 w;_
< ) L om? 2'3@ L R IR G a7 P
m=Ar>—ko =

which by Markov property at time j and then by (A.26), is bounded by

Br?—k, 2
rzo e~ Br ni { e*V(wj-l)/ZVfEV [Sm] (1-0)r+bq ]}
_a 5m3/2 {V(wj)=0} j BV(w)l€ {5, 20,8, ;<(1-0)r—b}
m=Ar?—ko
Br?—kg B3 m/2
< B V(wj-1)/2y/+ _ L
_m—AZr;—koe om32 Z Q: [ {vzo} Y] (1+V(w]))] (m—j)3/2
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Here (1 + V(w]))l{v )20} S < (14 V(wj_ 1))1{V 20}(1 + A, V(w;)) and then Markov property at
time j — 1 implies that
EQx |:1{Z(wj)20}e_‘/(wjil)/zvj+(1 + V(ZU])):|
< Eo, [1{z(wj71)zo} (1+ V(wj1)e™V @072 B[V (14 Vi (wn))],

where by Proposition 4.2,

EQ[V (1—|—V+ wl [21 1_|_V+ V(M)l | ;# e—V(v)/Z] )

By Cauchy-Schwartz inequality and (1.5),

EQ[V1+(1 + Vi (wn))])* <E (|Z: (14 Vi (u))e V)2 E [(l
L |u|=1 ]
<E[( T (14 V(e V02| B [N evw]
=1

L u[=1

<E (Y (1+Vi(u)e V)2 | E[N?E [( Y e V2| < oo
L ful=1 ] ul=1
Similarly, we also have Eg[V;" (1 + V. (w1))?] < 0. It follows that
UB5 (A, B,1,2)
Br2—ko B3 m/2
_ —V(w; 1)/2 cgr
< ) e oy Z o} { (V(w, 20} (1 V(wj-1))e ) ] (m — )32
m=Ar?2—k ]
Br2_k0 C9T m/2 |: S /4i| S /4
< e ' —= )Y E, |1,/ e i1 < ¢0e”*E e 1
e T By

which by (A.15) shows that UB5 (4, B, 7,2) = o,(1)R(x)e~*. For UB{" (A, B,,3), as £(t) < 1, we have

m/2
Eg, {% W, T (Z Y, (1+V(u V(u)l{V(u)>O})] (4.26)
J=1 ueQ(wy)

J

3
<
N

S E [ {V W) 0V(wm)Zr—i-t,,makam(V(k)—V(k))Sr-i—s,,V(wm)—V(wm)e[er—K,GH—K]}e

I =
N
N _

—V(wi_1)/2y/+
e -1 V] ]

I

I
—_

EQX [I{Z(wm)zo,rg{:i,V(wm)2r+t,,maxk§m(V(k)fV(k))§r+sy,V(wm)fV(wm)e[Ger,GrJrK]}

—_

1

-,

where 7 = inf{i <m: V(w;) = V(wn)}.
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On the one hand, if 7,/ > j + 1, by Markov property at time j, one sees that

m

—V(w;_1)/2
« ‘ZlEQX |: {Z(wm)EO,T,‘,{:i,V(wm)2r+t,,maxk§m(V(k)—V(k))§r+s,,7(wm)—V(wm)G[Qr KGH—K}}E (03-1) V]—q
j=1i=j+

/2
1E x |: {Z(w])zo}e (wj 1) ‘/]+Ev(w]) [l{gmﬂv20,?,,,,]'2r+t,,maxk§m,7(§k75k)§r+s, gm i=om ]6[97’ K97+K]}i|:|
which by (A.28) and (A.15) is bounded by

m/2

Vw. (14+K>)(1+7)
C11 ]_21 EQX I:l{v(wj)>0}e V(w; 1)/2V]'+(1 + V(w])) (m _],)3/2

<@ +K)A+r) LZ(1+Sj_1)

372 L Vg oy | Bg [(14+ Vi (wn) V']
cn(1+K)(1+7
_ el +m3/)2( ) 0 ()R ().

On the other hand, if 7, < j, again by Markov property at time j,

3
<
N

-

i

Il
—

I =
S~
N

—V(wj_1)/2y/+
EQA [ {Z(wm)ZO,T,‘,{:i,V(wm)21’+t,,maxk§m(V(k)*V(k))ﬁ?’%*Sy,V(wm)*V(wm)E[97*K,97+K]}e (w] 1) ‘/] ]

S 3 Eéx [I{Z(wj)z()}e*V(W/*l)/ZX/]fFPV(w]_) (Em_] Z O,X - Sm_] € [97’ - K, 97’ + K])’x:V(w)}
j=

where by (A.5),

c12(1+ K2)(1+ V(w;)) (14 V(w;) — 6r)
PV(wj)(imfj >0,x— Sm—] € [97’ — K, or+ K])|x*V(wj) = ! :

(m— 7 '

which is bounded by CB(HKZ)(S?)/S(Z]' 04 pecause V(w)) —
erty at time j — 1 and (A.15), we get that

V(w;) < r+s,. Again by Markov prop-

m

~
N

-.
Il
—_

j

—V(w;j_1)/2
ElE Qy [ {V W) >0,V =1,V (W) >r+tr,maxg<,, (V (k) =V (k) <r+s:,V (Wi )=V (wm ) €[0r—K 9r+K]}e (1) V]+j|
=

< 13l +m1<32/)2(1 1) E, l;(l + S]__l)ze—s,;l/21{§j7120} Eg V)" (14 Vi (w1))?]
c 2 r
_as(1 +m1<3/)2(1 + )ox(l)R(x).

Combining these inequalities and going back to (4.26), we have

m/2 cu(1+KH (1 +7
Eéx |:F3 '('/Um/T’ k() (Z Z 1+V (u)l{v(u)>0}):| S 14( )( )

0x(1)R ().
J=1 ueQ(w;) m3/2
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This implies that

Bl’z—ko 2\..3 2
" L 2B(1+ K2R ey (1+K2) (1 +7)
UB, (A, Br,3)< ) e Sm3/2 m3/2

m=Ar2—k

0x(DR(x) = 0x(1)R(x)e " (4.27)

Note that LueO(w)) e V(/2 < e’V(wffl)/ZVjJ“. So similarly as above,
UBP (A,B,r,3) = 0, (1)R(x)e ™. (4.28)

Let us turn to bound UB§3) (A, B,r,3)in (4.25). Let V(wj; ) := minj<x<p V(wy) and Syj ) := minj<x<p Sk
Observe that

Bl’z—ko
(3) - z
uBy)(A,B,r,3) < Y ¢ Eg [F3(Wm,r)l{z(w[mﬂi]’m]) Sélog,}}
m=Ar2—kg
I 2B Vi) AV(w)
—x —V(w;_ - u
+ ) e 5 .Z EQ, |10 (om) 20,0 (s 1) 26l0gr}E Y o : (4.29)
m=Ar2—k j=m/2 ueQ(w;)

On the one hand, by Proposition 4.2,

Eéx[ 3(aM”r)l{ZUWmn—Lm)§6bgr}}
< EQX [1{1(20,,,)EO,V(w,,,)zr—&-t,,maxkgm(V(wk)—V(wk))gr-i-s,,V(wm)—V(wm)e[er—K,Gr—&-K]}1{Z(w[m/2,1/m])§6logr}}
m—1
< Y P(8, 20,5, =4ty Sy = S < 6logr,
j=m/2-1

S — Sm € [0r — K, 0r + K],rg1<ax(§k —S;) <r+ sr) .
m
Recall that t, > s, + 6logr. So S, > S;. By Markov property at time j, one sees that

EQX [F3(wm/ V)l{z(w[m/z,lrm])§6logr}}
m—1
< ). Pu($;>0,5 <6logr)P(S,,_; > o,krgax,(ék —Sk) <7 +5,Su_j— Sm_j € [6r — K,0r + K])
j=n/2-1 =]
c15(1+x)(6logr)? "=t
S D

P(§m_]~ >0, max'(gk — Sk) <r-+ Sr,gmfj — Sm,]' € [91‘ —K,0r + K])
j=m/2—1 ksm=j

where the last inequality comes from (A.5). Then by (A.29), one gets that

. c16(1+ K)(1+ x)(6logr)?
Eéx [FS(wm/ r)l{z(w[m/Z—l,m])Sé 1Ogr}:| ~ m3/2 7

~

which ensures that ZBTZ_kO e “Eg, [F(;(Z, r)l{z(w[mm1 m])§6logr}] =o0,(1)R(x)e "

m=Ar2—kg
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On the other hand, by Markov property at time j,

BYZZ—:"O 2812 5" V(wy 1) AV(w)
e —— E5 |1 e \Wj-1 e BV
x V(wm) 20,V (W /2—1,m) 261

m=Ar2—k 0 j=m/2 Q {7(w J20X W21 ogr} ueQ(w;)

Br2—kg 2B m

/3] B _v

B b g )

m=Ar2—k j=m/2 ueQ(wy)

where by Proposition 4.2 and (A.15),

m

Y. o, Ly sape ) = 2 Ex |15 sope 5 <Es Lzoe_wl = 0:(1)R(x),

j=m/2 =m/2

Moreover by Proposition 4.2 and (1.5),

EQ [ 2 e—V(u)] <E [( 2 e—V(u) 2
|u|=1

0.
ueQ(wy)
We thus deduce that
Br2—ky 2372 m
Z e*x45 Z E {V )20,V (0} 1n,])>6logr}e —V(wj_1) Z e AV | — Ox(l)R(x)e’x.
m=Ar2—k j=m/2 ueQ(wj)

(4.30)
Going back to (4.29), we obtain that LIB£3) (A,B,1,3) = 0x(1)R(x)e".
It remains to bound l,[BZZ (A, B,7,2) in (4.24). Similarly as above, observe that

B}’z—ko
UB5(A,Br2)= Y, e"EQx[ Wi, T (Z Y. 76 1{V( )>0})/\1]

m=Ar2—ky j=m/2 ueQ(w;)
Bl’z—ko R
—x
< Z e EQX [F2(wmrr)1{z(w[m/271,m])§6logr}]
m=Ar2—k,
RS Wl Vi) AV()
—x —V(w;_ —AV(u
+ E e 2 TEQY l{z(wm)zO,Z(w[WZ,Lm])26logr}e - Z e
m=Ar2—ky j=m/2 ueQ(w;)
Bi’sz() N
- Z € XEQX |:F2(wm’ r)l{Z(w[m/Zfl/m])S(’logr}] +0x(1)R(X)€ x’
m=Ar2—kg

where the last line comes from (4.30).
For the first term on the right hand side, by Proposition 4.2,

Bl’z—ko
Z e_xEQx |:F2(w~m, r)l{z(w[m/Zfl,m])S6logr}:|

m=Ar2—k,
B}’z—ko

m
—x Smu—(1—-0)r—>b
< ) e Y, E [e " 1{§m20,Sn,§(179)r+b,5]-:§[m/2_1,m]§6logr}] /
m=Ar2—k j=m/2—1
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which by Markov property at time j, is bounded by

Bi‘szg

[esm_]'*[(lfe)lﬂ’b*k]l

{§m,j20,5m_j§(179)r+bfk}]'

—x = —_— 1-0)r4+b—v
L N B ssog o BT s, caara oy lless
Br2—ko 6logr m
< ) et ), ), PuS2085€[kk+1])eE
m=Ar2—kg k=0 j=m/2-1

Then by (A.5) and by (A.27), we have

Bi’szo N
Z e XEQX [F2(Wm; r)l{Z(w[m/zfl/m])S()logr}]
m=Ar2—kg
Br2—kg 6logr m
1- az(1+x)(2+k) S i—[(1—0)r+b—k
< Z e Z 13/2 Z E[eSn [0+ h{gm 20,5, ;<(1-0)r+b— k}]
m=Ar2—k k=0 j=m/2-1
Bi‘szo c 1 2
_.c18(1+x 6logr _
<y, o nllENRIEE o R(xe
m=Ar2—kg
We hence completes the proof of (4.17). O
5 Proof of Lemmas 2.1, 4.3, 3.1, 3.2, 3.3 and 3.4
Proof of Lemma 2.1. It suffices to show that
co(logn)? i e
IE(5_1) =E Z Z I{XGAn(*ﬂnﬁb)}l{ZX(Tn)<n€ or E»(cn)<1} :o(n B ) (5.1)
k=1 |x|=k Fo
co(logn)? | -
]E52) —IE kz‘i |Z 1{x¢A an }l{V )> zx} {Lx(Tn)>n9E >2} :0<7’l ) (52)
= x|=k

Proof of (5.1). Observe that E¢[1 (L)<t or B )<1}]

So (5.1) follows the following convergences:

<P (Ly(t) <n

o) + 1P (fx(“fn) > nf, E" — 1>'

co(logn)3
Ees) :=E [ Y Y e a0 P° <Lx(Tn) <n ) =o(n'7?); (5.3)
k=1 |x|=k |
logn T
Esay =B | Y. Y eaya,-onP° (Lx(Tn) > nf,E{Y = 1) —o(n'7?). (5.4)
k=1 |x|=k |

Note that for a, = aloglogn witha > 3 and x € A,(—ay,,
A =Db, we get

—b) with |x| < co(logn)

Pé(Ly(1a) < 1) < g—Co(logn)*?
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This implies that

co(logn)®
(s < e cvliosn” Y. 2 Yxeau-an-b)
k=1 |x|=k

Then by (2.1) and Many-to-One Lemma, one sees that

co(logn)?

Sk —
kZl E[e 1{Sk75k§9lognfa,,,Skg(lff))lognfb}}

Se—clg(log n)”‘3n1—960(10g 1’1)3 _ O(nl—e),

Es) <e olosn)™

which shows (5.3). On the other hand, for n > 2 and x € A, (—a,, —b), we could get that

— 0
P¢ (Lx(Tn) > 1’19, EJ(CVI) — 1) :nuxbj[ne]—l(l B ux)nfl < nlf(?er(x)e—con—x

Snlf(?er(x)efcu(logn)"’s‘

Consequently,
s co(logn)?
Epg < n'fea@s™E | Y Y 1, e VW
k=1 |x|=k
which, by the Many-to-One Lemma, leads to
,_, collog n?
E 5.4 <pl-fe—cullogn) Z P (Sk — Sy <0logn—a,, S < (1—0)logn— b)
k=1

Snl—ee—c21(logn)”‘3co (lOg 1’1)3 _ 0(1’11_9),

which concludes (5.4).
Proof of (5.2). It follows from (2.2) that

o(logn)®

E(T 0 pn

]E(5'2) <E ! kzl |;k1{v x)>— “}I{V x)>log n+ay, or V(x)> (1—9)logn+b}]P (LX(T”) > n ’E3(C : 2 2)] :
= x

So, to get (5.2), we only need to show that

_CO(logn)
Es35 :=E k; |Zkl{v >logn+aﬂ}]P (L(ta) > n®, EY) > 2)] =o(n'"?); (5.5)
_c logn
E¢) =E O(Zg) 21 P (Le(t) 2 n%) | = o(n'""); (5.6)
(5.6) - — & = {V x)<logn—a,, ()>(176)10gn+b} x\Th) =N =o0(n ;

co(logn)?
— (T 6 p(n)
Es7) =E |: E 1{V( )Z—tx,V(x)e[logn—un,logn+a,1],V(x)>(1—6)logn—&-b}]P (Lx(mn) = 1", Ex” > 2)]

= o(n'™?). (5.7)
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Let us begin with (5.5). For x € T such that V(x) > logn + a, with a, = aloglogn, we have
P¢ (fx(rn) > ne,E§”) > 2) < n' O (logn) % V),

It then follows from Many-to-One Lemma that for a > 3,

o(logn)3
Egss < n'~?(logn)™E |: Yo ) e x] = co(logn)>~"nt=% = o(n!~Y).
k=1 |x|=k

This proves (5.5).
For Es4), as n(1 — by) = I% > ePna, if V(x) > (1 —0)logn + b, by (A.1) withy = b,

— 6 o af
P* (Lx(”fn) > ”6> <2nace” " 170 < cpnl e V¥em 2
Sczznl—GE—V(X)e—C23(10gn)ﬂ73.

This combined with Many-to-One Lemma implies that
co(logn)3

_n _ a—3
Es.6) <copn' e cnllogn) g !
k=1

Z V)| = C24(10gn)Se—cz3(logn)”’3n1—9 _ 0(1’11_9),
|x|=k
which shows (5.6).

For E57), again, as n (1 — by) = f{—i > ePnay, by (A.2) with 7 = b, one has

nG i

P (La(ma) 2 n, ) 2 2) < 2(nay) 2o (700 — 221002V ()2,
X

2(1-9) p—2V

)16
which is less than cos5n (%) since (I’;—i)ze_c’/ i < sup,., t?e 1" < co. As aresult of Many-to-One

Lemma, we have

co(logn)?
1-0 -V 1-6)logn—V
IE(Sj) =ttt 6 kz |Z 1{V x)€[logn—ay,log n+ay,),V(x)>(1-6) logn+b}e (x)e( )logn—V(x)
=1 |x|=k

1-6
=csn Esg),

where
co(logn)?
E(S,S) = Z E |:e(170) lognfSkl
k=1

{§k2fuc,gke[lognfa,,,lognJran],SkZ(179) log n}} : (5'8)

Apparently, e(1=0)1087=8c < ¢~ if §; > (1 — @) logn + a,. Therefore, for a, = aloglogn with a > 3,

one sees that
co(logn)

Eisg) < 0,(1) + Z E(59
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where

Eiso)(k) := E [ (1-6) logn— Skl{Sk (5.9)

>—a,S;€[log n—ay,log n+ay,),Sp€[(1-0) logn,(1— G)logn—s—an]}} :
We only need to show that y_,°" (logn)? Es0)(k) = 04(1). For 1 < k < ¢(logn)? with ¢ € (0,1) small, by
(A.22),

¢(log n)? (1—9) log n+ay, ¢(log n)?

Z E(59) Z e(lfﬁ)lognfr Z P(ﬁk Z —DC,Sk S [7’,1’+ 1])
r=(1-0)logn k=1

<co(1 4 a)e = 0g(1).

For k > (logn)?/¢, by (A.5), one has

co(logn)? (1-0) log n+ay, co(logn)?
Y, Esgk) < Y. ellrflognr Nt p(S > —a, S € [r,r+1])
k=(logn)?/¢ r=(1-6)logn k=(logn)?/e

<cor(14 a)?Ve = 0.(1).

It remains to check that limsup, . Zklof ng/n S) E(50)(k) = 0¢(1). By considering the first time that
(Si)o<i<k hits S, we get that
5 [L(1-0)logn—s
ogn—
E(5 9) Z E |: g kl{S >—u,5;_1<Sj=S¢log n—ay log n+a,],Sx[(1-0) log n,(1-6) logn-i-zz,l]}}
j=1
k—1 a, ay
t
< Z Ze E [ {S >—,5;_1<Sj=5c€[log n+s,logn+s+1),5.€[(1-0) log n+t,(1—-06) logn+t+1)}} :
] 1s=—a, t=0

By Markov property at time j, one sees that

Sp>—a,5;_1<Sj=S5i€[log n+s,logn+s+1), Ske[(l—G)logn-i-t,(l—Q)logn+t+1)}]
<P(S; > —u,S5;=S; € [logn+s,logn+s+1))P(S;_; < 0,5 ;j+0logne[t—s—1,t—s5+1)).

So,
(logn)?/e (logn)?/e k—
Z E(5-9) <k) < Z Z P(5 11) ]/ ’ (510)
k=e(logn)? k=¢e(logn)? j=

where P5 11y(j, k) is defined to be

ay _
) Ze*tP > —u,Sj=S; € [logn+s,logn+s+1))P(Sk_j < 0,5 ;j+0logn € [t—s—1,t—s+1))
s=—a, t=0

(5.11)
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Observe that Z;‘:—ll Pi11)(j, k) < 2] *(logn)? 2 ~(elogm)? | Z (clogny? P(511)(j, k). We bound the three

=(elogn)?

sums separately. First, by (A.5) and then (A. 10) forj < (e log n) < ¢k and a, = aloglogn, we have

e (logn)? e (logn)? ay 1
. = _ +0logn+2a
Y. PGk < Y, P(S;>-a,5 =5 >logn—ay)) e e (k _g,)3/2 L
j=1 =1 =0 J
“logm® 144 1+ 0logn +2a, (14 a)elogn
=29 2 j1721og n (k—j)372 = €30 k3/2 :

j=
For (elog n)? < j<k—(elog n)?, by (A.5) and then (A.21), one sees that

k—(elogn)?
Y. Piay(ik)
j=(elogn)>
k—(elogn)? - ap
< )Y a.xsup P(S; > —a,5; = S; € [logn +s,logn +s + 1)) Y e s 1+ leog‘n;—zzan)
j=(elogn)? Is|<ay, t=0 ( _])
k—(elogn)? (1 +“)4(10 4 4 3
gn) cxan (14 «) 4 (logn)°ay,
Sentn Y Smg e = ez (b et
j=(elogn)
Ask > ¢(logn)?, we get that Zk ;125’:)) Pisiny(j k) < c3(1+ 0&)4&;‘{—3/2.
For (1 —e)k < k — (elogn)? < j < k, by (A.21) and (A.22), one sees that
k-1 . 1 1 3 an t+an (slogn)z _
Y. Pe(ik) = +[X Llog ) Z e Z Y P(5,<0,5+68logne[r—1,r+1))
j=k—(elogn)? j=1
< c35an (1 + a)*(logn)® &2
As a consequence,
- : (14 a)elogn a 35, (1 + a)*(logn)3
Z; Py (j k) < cng +c33(1+ “)4€4k§/2 + : i3 B¢
]:
Plugging it into (5.10) yields that
(logn)?/e
Y. Eio(k) = 04(1) +0:(1),
k=¢e(logn)?
which completes the proof of (5.8). We thus conclude (5.7) and (5.2). O
Proof of Lemma 4.3. Let
e(logn) i
E(4.8) :=E Z Z Fz Z logn)l{v( y>—a} | 7
m=1 |=m

co(logn)

E(4.9) =E Z Z e FQ Z logn)l{v( )>—al
m=(logn)?/¢ |z|=m
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Let us bound E g) first. By Many-to-One Lemma,

S¢>—a, Sk <log n+ay,Sp€[ 5% logn,(1-6) logn+b]}:|

> —a,S € [tt+1]).

e(logn)?
— Sk—(1-6)1 —b
E(4_8) = kz E [e = )logn 1{§k2—a,?kglognJrun,Skg(lf(?) logn+b}]
=1
e(logn)? e(logn)?
< Z 128 logn— b+ E E[Sk (1—6)logn— bl{
k=1 k=1
(1-6) logn+b e(logn)?
§0n<1)+ Z t—(1-0)logn—b Z P(ﬁk
t:%logn k=1

We then deduce from (A.22) that E4 ) = 0,(1) + 0¢(1). This suffices to conclude (4.8).
On the other hand, by Many-to-One Lemma,

co(logn)3

) E[es
k=(logn)?/e
co(logn)3
< ) e
k=(logn)?/e

Euo) =

By use of (A.5), we obtain that

k—(1—9) logn—bl

128 logn—b + 2

co(logn)® (1-0)logn+b

k=(logn)?/e t=13%logn

co(logn)?

E10) <0,(1) +

k=(logn)?/e

This ends the proof of Lemma

Proof of Lemma 3.1. In fact, as P¢ (Ly(T,) > n?, E,(C") =1) = na,(1— ux)”*lbim_l,

show that

co(logn)?

Es12) :=
=

co(logn)?

Es13) :=
=1
co(logn)

Ei14) :=
=1

¥ E|

{gkz—a,§kglogn+an,sk§(1—9) logn+b}:|

y c3(l+a)(14+(1—0)logn+0b+uw)

K372

43.

L|x|=¢

Z nay(1—ay)" 1b” _11{V
L[x|=¢

Y nax(1—ay)" 1b” 11{V
L|x|=¢

)>910gn+an}

)<610gn711,1}

= 0,(1) + 0:(1).

Y nax(1—ay)" 1b” ’11{‘, X)<logn—a,} = o(n'7?);

First, observe that if V(x) < logn — a, with a, = aloglogn and |x| < co(logn)3, then

n—1y [n?]—
a)" h"

nay(1 —

0 0

l 9 - ()niei;lTxe_(n_

E

X

31

1)ﬂx < n

1—96—V(x)e—C37(log n)?

-3

4

et=(1=0)logn=bp(g > _n 5 c[t,t+1]).

O

we only need to

(5.12)

(5.13)

(5.14)



as ay > —~—. This follows that
|x[eV ()

1-6 gy R %
E(s5.12) < nl fecwllogn) [Z‘i E IZ e V|,
/= x|=¢

which by Many-to-One lemma, is bounded by n!~?co (log 1)3e <7108 — (1 ~€). This proves (5.12).
Next, note that if V(x) — V(x) > 6logn + ay,

0
nay(1— ux)”_lbf—l <nl=fe VL < n' =0~V (log n) =7,

< H, S
This brings out that
co(logn)?
Ei.13) <n'?(logn)~* E E [ Y e x] = o(n'™9). (5.15)
|x|=¢

On the other hand, if V(x) — V(x) < flogn — a, and |x| < co(logn)?, one has I’fl > Cl(log n)*~° and

0

— 0_ 9 — _n 0 — _ -3
nax(l—ax)” 1b;’(l 1 Snl 96 V(x)e Tim Snl 96 V(x)e c3g(logn)” )

As a consequence,

co(logn)?

-0 — a—3

E(5A14) Snl 96 cag(logn) Z E [2 e x] — 1 9) (516)
x|=¢

This completes the proof of Lemma 3.1. O

Proof of Lemma 3.2. Note that
0
PE (Le(ta) > n, BV = 1) = nay(1 — ) o)1 <l V0 e,

which is bounded by 2n!~fe~ V() (ﬁ—i A %) as xe /2 < 2(x A 1) < 2. So, it suffices to show that

e(logn)? @ 0o Hx T .
lim sup Z E|) e ﬁ ) )l{xe,%;ﬂ.@n,Z(x)Zﬂx} =0.(1); (5.17)
n—oo =1 |x| Y X ]
‘ co(logn)3 v n? H,
limsup ) E|) e’V (F/\ ) )l{xej T LV (x)> a} =0¢(1); (5.18)
n—=0  y=(logn)?/e |x|=¢ x
(logn)?/e V) T
2 E E e 1{x€J }l{V €llogn—aylogn+a,),V(x)>— a} :0”(1)' (5.19)
l=¢(logn) |x|=¢
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Proof of (5.17). Let
e(log n)? n? H,
Eia7) = Z‘i E [HZ; EA — L xemyna,y Za}] :
X

It suffices to show that E(5 17y = 0,¢(1) as n — oo and then ¢ | 0. By Many-to-One Lemma,

7

e(logn)* n® HS
Es17) = gz E [ HS A —= 0 ) S, > —a,S;>logn—a,, Sy — S, € [0logn — a,,0logn + ay,)
-1

where H} := 2£:0 e’ Note that H} = Zi:o eSk=5¢5¢=5¢ > ¢5¢=5¢ Tt then follows that

e(logn)® 1

Esin< ), ) E

(=1 x=—ay

x+1 Sk S/
Ze 1{5 >—u,5,>log n—a,,5,— s,e[alogn+xelogn+x+1]}]
k=0

e(logn)? a,—1
—x
+ EZI 3;) E |:€ 1{§[z—a,§5210gn—an,gg—Sge[910gn+x,910gn+x+1]}:| ’
On the one hand, for x > 0and n > 1,
e(logn)? a,—1
—x
2 Z E [8 1{@27a,§g210gn7an,357556[610gn+x,9logn+x+1]}}

/=1 x=0
a,—1 e(log n)? B B
=Y e* Y P(S,>-aS >logn—a,S —S € [0logn+x,0logn+x+1])
x=0 /=1

which is 0.(1) by (A.29). On the other hand, by considering the first time hitting S, one gets that

e(logn)* 1 LA

Xt kSt

lZi Z E kz(:)e 1{S> a,Sp>logn—an,S;— Sée[Glogn+x910gn+x+1]}
=1 x=-—ay

e(logn)* ¢—1 ¢

-1
=)y e YL E[e

{8/>—«,S;>logn—a,,5;_1<5;=5,,5;—S,€[0log n+x,0log n+x+1] }
X=—ay =1 j=1k=

For k > j, by Markov property at time j, one sees that

-1 ¢
Sk—S; _ _
Z Z ZE [e ]1{54Z*D@S;Zlognfu,,,S]-,l<Sj:514,5]'75/€[910gn+x,6’logn+x+l]}:|

(=1 j=1k=
e(logn)? (-1 (-
< LoL P(S; > —a,5; = S; > logn —a,)E [l;) esi1{5€_j§0,—55_j6[9logn+x,910gn+x+1]}]
(e cllogn)? [t
< ]—21 P(S; > —a, S;=S8;>logn—ay,) 621 E L;)e 1{5/ i<0,—S,_ ]E[Glogn+x610gn+x+1]}]
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which by (A.19) and (A.23), is bounded by

T e L) et

X &= 0¢(1).
j<e(logn)? \/logn 08( )

For k < j, by Markov property at time j again and by time-reversing, one gets that
Sk—S;
E [e * /1{51,2—0{,5]-210;; n—a,,S;_1<Sj=5,,5;—S,€[0log n+x,0log n+x+1]}}

j—1
Sk—S; <
Z et ]1{5j>—oc,5j>5j1,Sj>logn—un}] P(Sé_j <0, _Sg_f o Glogn € [x’x + 1])

=1 j=1 |k=0
¢(log n)? j ¢(log n)?
75 -
S Z E [Z € kl{sj>0,5j>10gnlln,s]'Sj<0(}] Z P(SE_] S O’ _SE_]' - Hlogn = [x’x + 1])’
j=1 k=1 l=j+1
which by (A.30) and (A.22) is bounded by
e(log n)? oo )2 e(logn)? _
Z 'C41 o2 @ gj ) e+ Z C43e—c44(logn)1708 — 05(1)/
= \/jlogn =1
for all n > 1. This suffices to conclude (5.17).
Proof of (5.18). Let
(logn) - nt  H,
«.— - X
EGag) 1= Z E Z € (ﬁ A o )1{x€ﬂn NZuNZV(x)>—a} | *
l=(logn)?/¢ |x|=¢ x

Similarly as above, one sees that

logn a,—1

—x
E(5.18) < Z Z e "E |: {Qézfa,ggzlognfan,maxkg(gkfsk)glogn,@vage[910gn+x,910gn+x+l}}}
l(=(logn)?/e x=

collogn)® 1 [

+ ) Y ¢E

Sk—S¢
Ze 1{S[> a,Sy>log n—ay,maxg<(Sy—S)<logn,S,— SgG[Ologn+x910gn+x+l}}] :
(=(logn)?/ex=—an

k=0
So, it suffices to prove that uniformly for x € [—ay, a,],

co(logn)3

Z E 1{542704,5[2103;nfay,,maxkg/;(?kak)glogn,@foe[0 log n+x,0log n+x+1]}} :Oﬂrﬁ(l) (5-20)
t=(logn)?/e

co(logn)3 ¢
x|

Sk—S¢ _ _ _ —
ZE 1{S[>—zx,S[>logn—an,maxiq(si—si)<logn,S[—S[e[910gn+x,9logn+x+1]}] _0”15(1)' (5-21)
{=(logn)?/¢ k=0 -

Note that (5.20) follows from (A.31) and (5.21) follows from (A.32). We thus conclude (5.18).
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Proof of (5.19). Let E519)(¢) := E [ZM:ZE Vix )l{xejn}l{v 2)€llog n—an log n-+a],V(x)>— a}} We are going

to show that
(logn)?/e

Y. Ei9(0) = o0u(1). (5.22)

l=¢(logn)?
It follows directly from Many-to-One Lemma that

Es19)(¢) =P (S, > —a, Sy € [logn — ay,logn +a,],S; — S € [0logn — a,, 0logn + a,]) .
Then we conclude by (A.33). O

Proof of Lemma 3.3. Proof of (3.6). Recall that for x € Z*n N 2, N %, one has

6
P (La(m) 2, B = 1) = nax(1— @) 0017 = (14 0, (1)) e VO (1),
X
with f(t) = te~!. It then follows that
(logn)?/e
o . (12 . Zf {Lutmznn £ 1} {xemi  Hxe 2 MY @2 -0 smaxcc Ho<n)
e(logn)? |x
(logn)2/e v n®
=(1+04(1)) (Z )2E |Z€e_ (x)f(Hx)1{,(693;}1{xe@n}1{v(x)z—a,%SmangxHz<n}]
l{=¢(logn Lx|=
(logn)?/e [0
:(1+0n(1))g (1X: )2E f(I_I;)1{&2—&,5521055n+an,5g—556[Blogn—a,z,Glogn+an],'yn§maxk<[H]fgn}] (5.23)
=¢(logn 4

which is less than

(log )2 /¢ 0
¢ E E f(HS)l{S >—u,S;>log n+ay,S;—Se€[0log n—ay,0log n-+a,) logn—rloglog n—log {<maxi<(S;—Sk) <10gn}
l=¢(logn)?

as 5% < H,f < keSS, To conclude, we only need that for any a, = o(logn),

B(logn)?

0
. n
;}gl;lo g_A(lzogn)Z E [f(l_{ég)1{Si>—a,Sg>logn+an,S[—Sge[9 logn—a,,0 logn+u,l],maxkg(§k—5k)§log n+an}]

00) ’ g(&\%)‘i;, (5.24)

which follows immediately from (A.36) and (3.7). By comparing the convergences for a, = 0 and

a, = —(r + 3)loglog n, we obtain what we want.
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Proof of (3.7). Similarly as (5.23), we get that

(logn)?/e

n1791E Z Z {Lx ) >nf E ]} {xej+}1{x€9n\9K}1{V( )>—amax;<y H;<n}
l=¢(logn)? |x|=¢

(log ) /e 0
:(1 + 0on (1)) 2 R E f(ﬁ)l{iz—a,@zlog n+a,,Sy—S,€[0logn—ay,0logn+a,|\[0 log n—K,0 log n+K],maxi<, H}fgn} :
l=¢(logn) ¢ B

Note that f(x) < (x A 1). Similarly as in the proof of (5.17) and (5.18), one has
/

(logn)?/e

Bl
(ﬁ) {QZ—a,ggzlog n+a,,Sy—Sy€0logn—ay,0logn+a,]\[0log n—K,0log n+K],maxi<y H,f Sn}
l=¢(logn)? 14 B

(logn)*/e —K ¢ 63

X k—o¢ _ _ _

< Z Z ¢'E Ze l{gz—a,S/ZIOgn—&-un,Sg—Sée[Glogn+x,9logn+x+1],maxkg(5k—5k)glogn}
l=¢(log n)2 X=—an k=0

—x
+ Z Z e E [ {S >—u,S,>log n+a,,S,—Sy€[0log n+x,0log n+x+1],maxg<¢(Sg—Sk) <logn}}
l=¢(logn)? x=K

Using the same arguments as for (A.36), one sees that

(logn)*/e TZG
Z E f(ﬁ)l{gz—a,ggzlogn+un,§4—566[6logn—a,,,Glogn+an]\[9logn—K,Blogn—&-K},maxkg H,fgn}
l=¢(logn)? {4
<cgs(1+a)e X +o0,(1),
which is 0g (1) + 0,,(1) as n — oo and then K — co. This is what we need. O

Proof of Lemma 3.4. Let us consider the quenched variance of &, (¢, Z,f N 2, N %, &) which is

Varf (B,(0, 2 N 2,0 2, 0)) = EE [(En(z, BN DN L, 0) — EE[E, (L, B N Dy N 2, 0))) }

07 _
= Y nae(1—a)" BT = nay(1— a) b T faemnmnsy,v(x)z—a} + Zvar (5.25)
|x[=¢
where
Lvar 1= Z 1{x,z€53f,rﬂ@nﬂf/w,K(x)Z—zx,Z(z)Z—uc}
|x|=|z|=Cx#2

116 — n— 719 —
[]ES [{ ot 01V T,y 20 ) — n2aya,(1— ay)" B 17N 1 = a) T L (5.26)

On the one hand, for the first term on the right hand side of (5.25), as ¢ = @((logn)?),

1 -1 —13,[n"]-1
||Z nay(1 — a)" bl 1 1 — nag(1 — ay) 16" N remingns, vz}
x|=¢
< Z 1’l€lx 1 _ax)n 1bn 711{x€%+ﬁ/nﬁ$w Z*l%}’
|x|=¢

36



whose expectation under E is ©( ”12 9) according to (A.36) and (5.23). For x # z, one sees that {E,(C”) =

E§”) = 1} means that either x and z are visited in two different excursions or they are both visited in

the same excursion. Let a, , := ]Pg (Tx AT, < Tp+). Then,

8
x\tn 0 Tn >71
E {L 7)) >nf EP = } {L 0 g 1}

=n(n — Dayaz(1 — axz)" 2(bb)" 171 4 n(1 — ay.)" P8 (To(1) > 1, L.(11) > 1)

Zx (rl)fz (Tl) :| .

<n’aya,(1 — ax,z)”_Z(bxbz)”g_1 +n(1 —a,,)"VE® [ 20

Let u = x A z be the latest common ancestor of x and z. Say that u, is the child of u such that u, < x
and u, is the child of u such that u, < z. Then
IEE [zx(Tl)zz(ﬁ)] :]EE [Zux(Tl)zuZ (Tl)] e*V(X)*V(Z)‘FV(ux)ﬁ’V(MZ)
:IES [Zu('fl) (zu (Tl) + 1)] e*V(X)*V(Z)+2V(M)
:ZHuer(u) % e*V(X)*V(Z)‘FZV(l[)’

where for x,z € .Z,,, H, < 7,. Going back to (5.26), we thus bound Xy, by

0_ _ _ _
Z n2ayay (byby)" (1 —ax.)" 2 — (1 —ay)" 11 —a,)" 1]l{x,zegﬁﬂ_@nﬂfw,Z(x)z—a,z(z)z—a}
x#z,|z|=|x|=(

+€_Zl Z Z znleG,Yner(u) w e~V (¥)=V(z)+2V(u)

l{x,ze%fﬂ%ﬂ_fw,z(x)zfa,z(z)zfa}'
k=0 |u|=k |x|=|z|=C,xN\z=u

By Lemma 4.2 of [AC18], (1 —a,,)" 2 — (1 —ay)" (1 — a,)"! < na, + na,. Moreover, a, < e~ V() <
e~ 18— for x € %,f. Consequently, for x,z € &, ,

ﬂzﬂxﬂz(bxbz)ng_l[(l - ’Zx,Z)n_2 - (1 - ”x)n_l(l - az)n_l]

0 0 2-20
1-0,-V() 16 V)N A —a,  —ay 2n —V(x)-V
Sn e (X)[er 2Hx]n e (Z)[Ee ZHZ](e @ —|-e a ) S <logn>ae (x) (Z).
Note also that vy, = (logn) and that V(1) > V(x) > —a. Therefore,
2?2 V() V)V )+
Tyar < » » e TR e a2 V() —aV(2)> )
(10g )Y (=6 ik x|z T oxnz=u {xze 80202, V(x)2 -0V (2)2~a}
Observe that
[0—1

E Z Z Z e V(x)=V(z)+V(u)

1{x,ze%,*ﬁ@,,ﬁ.$w,Z(x)zfa,z(z)zfa}
Lk=0 |u|=k |x|=|z|=£,xA\z=u

<E Z DD DA D DR FUE D DI s ey
k=0 |u|=k uj —; =u z2>U,|z|=¢ X> 1y, |x|=C
Uz FUx
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which by Many-to-One Lemma and (A .4), is bounded by

-1
—V(ux)—AV(uz)
El) 2 2 e Z
k=0 |u|=k ui=uy=u
Uz Flly

v (u)av(e)>—a} Pvie) (Se—1-k = =) Py (Spm1—k > —a)

-1
1+AV 1+ALV
<csE |) ) (I+a+t V(u))2er(u)1{Z(u)27a} ) e*AV(”x)*AV(uz)( + Ay (”ZK))_(I:' +V(ux))
k=0 |u|=k “z*:;g:”
Uy Flly
-1 671
k (1
k=0"
We therefore end up with
S < cson2 2 2 _ s 22
ar = -~ .
(log n)a/\r (log n)a/\r74
which suffices to conclude Lemma 3.4. O

A Appendix
A.1 Quenched probability for edge local times

We collect some inequalities for the quenched law of the edge local times. They are inspired by Lemma
3.4 of [HS15] and (30) of [AD20].

Lemma A.1. Let a,b € (0,1). Suppose that ({;)i>1 are i.i.d. random variables taking values in IN such that
P((1 =0)=1—a, and P({; > k) = ab’ 1, ¥k > 1.

1. Ifn®(1 —b) > (14 n)na with some 17 > 0, then there exists c,, > 0 such that for any n > 1,

’ (Z Gi = n9> < 2nge=cr (70, (A1)
i—1
and
P (Z Gi2n%) Loy 2 2) < 2(na)Ze=er'(170), (A2)
i=1 i—1

2. For A>0,0 <A < 1landforanyn >1,

(Z i < A> —Mer—(1-0)4) (A.3)
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Proof. We first prove (A.3). Observe thatas b € (0,1), for any A > 0, by Markov inequality,
P (i ¢i < A) =P (e*/\(l—b) Yl > e*A(lfb)A)
i=1
<eM1-b)Ag {ef)\(lfh)gl} n ,

1-b)

where E[e 17001 =1 — “(8“(171,) We have 1 — x < e~ for any x € [0, 1]. It follows that

n (e (17b) — 1)
(eA(l—b) _ 1)

=exp{A(1—-D)A

ﬂa(@)\(l,h) —1)+(1-0b) g

A(1-b) _
(e H > ALH and then

(A0 —1)+(1-D)

P <Z gi < A) < e’/\(l%’(l’b)“‘),Vn > 1.
i=1

Let us turn to check (A.1) and (A.2). We only prove (A.1), (A.2) follows from similar arguments. Note

Since0<1—-b< eW;le, one gets

that for any s € [1, ), Markov inequality implies that

n n
P (E Gi > ne) <s"E lsﬂ” Y ey > 1] =
i=1 i=1

E[s]" —P(LL; 117,13 = 0)

0

S?’l
El(l - b)S n n
1 na(1—")s a(l1—"b)s , 4

P i S _ N\~ T/7\n

—sn’ 1—bs (1-a+ 1—bs )
since (1 —a+x)"— (1 —a)" < nx(1—a+x)"! forany x > 0. Now take s = (%igé’ with some
o> 0. Apparently, s € [1,1) and for any 7 € (0, 1), there exists M,, > 1 such that log(1 + (1+(5) 5) >
(1—1/3) AL 1+5 as long as 6b > M. Consequently, for 6 > M, /b > 0,

L 14 0b 1-b o a

>4 < —n M \n-1
’ (;C =" ) smegp 1F (1+5)b) %)
<2(na)e ( ’7/3) 1+0 M—nﬁ‘

Now we take 77 € (0,1) such that n?(1 —b) > na(l+17)and 6 = max{%, ,7_2172} so that

01 _ 0(1 _ 01 —

laén(l b):n(l b) 149 S(1_17/2)11(1 b)‘
b = (141n)éb (1+6)b 5(1+7) (1+0)b
This yields that
n
Ui

where (1+0)b <1+ M, + —=5. We hence conclude (A.1) with ¢, = CEaTR— € (0,00). O
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A.2 Results on one-dimensional random walks

We state some facts and inequalities on centred random walk (S, ),>0 introduced in the Many-to-One
Lemma. The proofs are postponed in Section A.3.
Let &, := S, — Sy—1 for any n > 1. Note that E[¢;] = 0, 0> = E[¢3] < co. Moreover, by (1.4),

E[eﬂsoﬁl + e(1+(5o)51] < oo.

We start with some well known inequalities (see [AC18] for instance). Recall that S,, = ming<x<, Sk
and S, = maxg<r<, Sx. Note that the inequalities in the following hold also for the random walk

(—=Su)n>0. Forany & > 0 and n > 1, we have

P(S, > —a) < M and P(gn <a) < M' (A.4)
Vn Vn
Foranya > 0,b > a > —a and forany n > 1,
P(S, > a5, € [a.b]) = Pu(S, 2 0,5, € [a+a,a+ b)) < SUFDIULOENALLZ0) )
We define the renewal function associated with the strict descending ladder process as follows:
R(u) = Z P(Sx < S;_1,S¢ > —u),VYu > 0. (A.6)
k=0
It is known from Renewal theorem that
1
;R(u) — Ccrasu — oo. (A7)

Moreover there exist 0 < Cs < C7 < oo such that for any u > 0,
C6(1 + I/l) < R(M) < C7(1 + M).

Recall that there exists some positive constant c;. such that P(S,, > 0) ~ C—\/% as n — oo. According to

Lemma 2.1 of [AS14],
2

=/ —. A8
CRC+ o2 ( )
Fact A.2. 1. Forany u,a > 0and foranyn > 1,
— Cs(l+a—+u
Py(S, > —a,5, = S,) < S(n) (A9)

(A.10)



3. For any B > 0 fixed, there exists c(B) > 0 such that foranyn > 1and —By/n < —a <0 <a <b <

By/n,
- c(B)(l-l-zx)(b—a).

P(S, > —a,S, =S, € [a,b]) < 372 (A.11)
4. For A > 0O sufficiently large and any A > 0, « > Oand n > 1,
logn 1 2
A(Sn*Sn) _ < > _ < g - *Clln/A i .
E[e 11’2]{a<x (Sk Sk) 4, S D‘] ClO(1 + ‘X)[ 1372 + i’le ] (A.12)
5. ForanyA>1,A>0,a >0andn > 1,
-S) & C12 1+«
E[e/\(S" Sn); Sn 2 Ar&n 2 _“] S 1§\/ﬁ ) (A13)
6. For o« > 0and A > 1 sufficiently large,
P(En > —(X,gn = Sn/ max (gk - Sk) < A) < C131 il “eicuﬁ (A-14)
1<k<n
7. Asx — oo,
E, [2 e‘S”/‘Ll{SnZO}] = 0, (1)R(x). (A.15)
According to [Afa93], conditioned on {S,, > 0}, the rescaled path ( f ; )and Y1 e

converge jointly in law to a Brownian meander (m;, t € [0,1]) and a pos1t1ve random variable Heo
which is independent of the Brownian meander. One can refer to [AC18] for more details. Let us state
(A.12) of [AC18] here.

Fact A.3. Leta > 0,a,b > 0 fixed and a,, = o(\/n), b, = o(/n). For any uniformly continuous and bounded
function g : [1,00) — R, we have

n
lim nE g(z esj_sn)1{§112_“rsn >§n—1rmaX1SiSn (gi—si)Sﬂ\/ﬁ-i-an,San\/ﬁ-i-bn} - Cﬂ’bR(“)E[g(HOO)] (A16)

n—oo .
j=1
where R is the renewal function and C,, is defined in (3.20) of [AC18].

The previous two Facts can be found in [AC18]. The following lemmas state some inequalities that

will be proved in Appendix A.3.

Lemma A.4. Let o > 0. There exists ¢y € (0,1) such that for m sufficiently large and for any 1 < r < gym,

we have
14w o C 2
P(ﬁm > —u,S,, € [T,T+ 1]) < Cis 165m (A.17)
and .
P(S, > —a,Sp > r) < Cryet e Cisly (A.18)
Moreover, .
= +a o 2
P(S,, > —a,Su=5,>r) < C19W€ a0’ (A.19)



Lemma A.5. 1. Foré € [0,1) and A > 1 sufficiently large,

A1+5 .
Y P(Sp > A) <e AT (A.20)
k=1

2. Leta >0, foranyn > landr > 0,

_ 1 3
P(S, > —,50 = Sy € [r,r+1]) < Ca(1 +a)* L7 (A21)
3. Letyy > 0, a > 0. For r sufficiently large, one has
Y. P(S; > —a,Sc € [r,r+1]) < Cos(l+a)y. (A.22)
1<k<yr?
Moreover,
[k
) E [ e %5, > 0,5 € [r,r +1]| < Co. (A.23)
k=1 |i=0
4. Foranyx > 0andn > 1,
LR — 1+x
E|) ¢%5,<0S,€[-x—1,-x]| < Cos—375 (A.24)
k=0
5. Forany A >0,a > 0andn > 1,
Co(1
Eule %S, >0,5, > A] < WM/? (A.25)
6. Foranya, A > Oandn > 1,
_ 1+a)(1+A
E, [esn A;Qn >0, Sn < A] < C27(n)3(/2)- (A26)
7. There exists c € R, such that for any A > 0,
Y E[e*4;S,>0,S, < A] < Cas. (A.27)
n>0
8. Fora >0,a,b,c>0,K>1,n< Arwith A >0,
_ _ _ 1+K?
P(S, > —a,S5, > ar,rl?jlx(sk —S) <br,S,— Sy € [cr—K,cr+K]) < Cyo(1+ “)(—,:3/2>r
<n
(A.28)
9. Let x > 0. For a,b,n > 0and r > 1 sufficiently large,
nr B B
Y P(S; > —«, Sk > ar,Sp — Si € [br,br +1]) < Cso(a, b)*'2. (A.29)
k=1
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10. Let a > 0. For r > 1land 1 < m < yr* with some sufficiently small ,

Csn (1 + 06)2

m
-S
E k:zl ¢ kl{émzorsmergmfsmga} - \/%T

2 -0
e~ 2w 4 C31€7C32r] é, (A.30)

with some 6 € (0,1).

11. Leta > 0. Fora,b,c > 0,0 <y < 1small and r > 1 sufficiently large,

Col’3

Y P <S£ > —u, S > ar,rkniag((gk —S¢) < br,Sy— Sy € [er,cr + 1]) =0,(1) +0,(1). (A31)

(=r2/y
Moreover,
cor® l 53
Zz E kZ et [1{@32ftx,ggzur,maxig(gifsi)Sbr,gngge[cr,cerl}} = 077<1) + Or(l)' (A32)
l=r?/n =0

12. Leta > 0. Fory,a,b > 0,a, = O(logr), b, = O(logr) withr > 1,
72/17 - -
Y. P(S;>—a,S; € [ar—ay,ar+a,],Sp — Sy € [br — by, br + by]) = 0,(1). (A.33)
l=nr?
The following lemma focus on asymptotic results that we need.

Lemma A.6. Let « > 0. Then the following convergences hold.

1. For any continuous and bounded function g : [0,00) — Ry, the following convergence holds uniformly
for x,y in any compact set of (0, 00) and for z = o(y/n), h > 0,

= s c hR(« N 0n(1
E g(;e Sl)1{§n2—a,§n§x\/ﬁ,5n€[y\/ﬁ-&-z,y\/ﬁ-&-z—ﬁ—h)} = +an()EtX[g(e /Hoo_l)]co(x_y,]/)"f—r(l),
(A.34)
where ¢+ = limy,_,o /nP(S,, > 0) and
Cola,b) = p(2P(Ry — Ry < L|Ry = 2 (A.35)
ola,0) =@ p 1 1> p 1= o) .

with @(x) = xe™*"/ 21{,20} and (R, s > 0) a 3-dimensional Bessel process started from 0.

2. Let a,b > 0 be fixed constants. For F(x,y) = ie*x/y with x € Randy > 1 and for a, = o(\/n),
a,, = o(y/n) and fixed K > 0, we have

. b/i—(5—5) \° .S5i—5,
lim nE | F(e Vin=( ),;)e )1{§nz_algnZa\/ﬁ—i-a,,,maxogkgn(gk—Sk)Su\/ﬁ—i-a;,,gn—Sne[b\/ﬁ—K,b\/ﬁ-i-K]}
K
= G(a,b)R () / E[(F(e™, Hoo + HS — 1)]ds, (A36)
—K
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where
(A.37)

/ C oA b b )1 _du

\LF\LFU \/ —u'«/l—u {”>b}u(1—u)
with C,, defined in (3.20) of [AC18], c— := limn — co\/nP(S,, < 0) and ) = Yo =% with
(@,Ef))kzo the Markov chain obtained from the reflected walk —S. Moreover, this convergences holds

uniformly for a, b in any compact set of (0, 00).
The following result is a direct consequence of (A.34).

Corollary A.7. Let « > 0and a,b > 0. For a, = o(y/n) and b, = o(\/n), the following convergence holds.

lim nE [0V 05, > 0,5, — S, < av/n + an, Su < by +by| = C+7§("‘)co(a,b); (A38)
n [ee]
lgn nE [es’“b\/ﬁ’bn;ﬁn > —a,S, < (a+b)vVn+a,S, <byn+ bn} = C+7§(“)Co(a,b). (A.39)
n—oo

where Co(a,b) = ¢(L)P(Ry — Ry < 2|Ry = £) is defined in (A.35).

Finiteness of A(f). At the end of this section, we check that

0 1—60. du
/Co(f f) < oo,

which ensures the finiteness of A (6) in (1.9) and that of C;(A, B),i = 1,2 in Lemma 4.4. By (A.35), one
has Cy(a,b) < ¢(b/a). So,

o 1-6 ® Lm0 1-6
C </ 7_/ t/(ZU)dt .
/ ol 7 f) n o Vi s

We also verify that

© 1 6 . ds
fy 95 <

which ensures the finiteness of A;(6) defined in (1.11) and that of C3(A, B) in Lemma 4.4. In fact, by

change of variables r = s(1 — u) and t = su, one sees that

/“’g(ld 7/ /C 1-6 0 ) du ds
0 \f\f s MM \/sl—u V(1 —u) (T—uus
7/ 1—9 Q)dr/ c 1it

"VrirJo Vit

where the finiteness of fo C L 4 has been verified in Lemma A.1 of [AC18]. We thus obtain the finite-
t’

ness of [;° G \[ \[) . Moreover, one sees that A(0) = ;;+ ANo(1—60) + Ag(6) with A introduced
in [AC18].
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A.3 Proofs of (A.17) - (A.36)

Proof of (A.17). This is given in Lemma B6 of [AD14] when & = 0 and the increments are bounded. Let
us prove the general case.
For1 <r < Ay/mwith A > 10 fixed, by (A.5), it is clear that

Cs(14+a)(1+7+a) 1+zxe,r2/m
m

P(S,, > —ua, Sy € [r,r+1]) < Y < Cs sup tet.

0<t<A

It suffices to show (A.17) for Ay/m < r < gom. For any x € R, let
T, :=inf{k > 0:S; > x}, and T, :=inf{k > 0: Sy < x}.

Then it is known that for any 0 < x <,

x+1

y+1

Recall that the increments of S are G, k > 0 which have finite exponential moments. Therefore, one
has

Px<TyJr < T(;) < Css

P(S,, > —a,Sy € [r,r+1]) < P(maxék >r/2)+P(S,, > —a,Sy € [r,r—i—l],ST} <Vm+ %)

<Cszgme™ 50’/2+Z%P (5, >0,Sper+ar+a+1], \FJra—j,Sje[\/ﬁ—i—uc,r/Z—l-\/ﬁ—i—oc]).
]:

+
By Markov property at T,

M

Il
—

Py(S,>0,S, €r+ar+a+1],T \F+a =j,Sje[Vm+a,r/2+m+a])
j
m—1 N

< PS>OT j P(Sy—jelr+a—xr+a—x+1

a a( Vit ]) m+“§;2?/%+a+r/2 ( " [7’ o ])

~.
Il
—_

a+1
Ty P 1) < Gs—F———— P(S; 1
e < To) B e PO € b 1) < G G o s, PO € b 1D

On the one hand, for j > Kr with K > 1 fixed and r > 1, by Chernoff’s bound,

IN

P, (T

max max P(S; € [x,x+1]) < max P(S; >r/3) < e~ Car,
1<j<Krr/3<x<r 1<j<Kr

On the other hand, for Kr < j < m, we use the following change of measure
P(t)<(51,' .. ,Sj) €)= E[etsj*j‘l’s(t); (S, Sj) €]

with ¢s(t) := logE[e!®1]. The probability P(*) is well defined when ¢s(t) < co. The corresponding
expectation is denoted by E (t), It hence follows that for t € (—=60/2,00/2),

P(S; € [x,x +1]) =EW[e "595(); S, € [x,x +1]]
<e txHsOPU)(S; € [x,x 4 1)) < e 13+ CIPPU(S; € [x,x 4 1)),
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2
as ¢ps(t) < Capt? for |t| < 6y/2. Let us take t = t; = @ so that e~17/3+Cvif" < ¢~ %1 Moreover,

as under P, (Sy) is a random walk with i.i.d. increments and E)[¢551] < co for s € (0,8y/2), Berry-

Esseen theorem shows that there exists C such that for Kr <j <m,

C
PO(S; € [x,x+1]) < —.
: Vi
As a result,
2 2

Cc __~_ c __2Z
max max P(S; € [x,x+1]) < max —e *% < ——e ¥,
Kr<j<mr/3<x<r Kr<j<m \ﬂ vm

as long asr > Ay/m with A > 1/18Cs;. We thus end up with
_ a+1 _ c __2
P(gm Z —Q, Sm € [rl r+ 1]) S C34m€ dor/2 + C35m <€ Caer V ﬁe 36C37m)

which suffices to obtain (A.17). O

Proof of (A.18). Observe that by (A.17) and Chernoff’s bound,

Eom
P(S, > —a,Su>r) <) P(S, > —a,Sy€[t,t+1]) +P(Sy > eom)

t=r

o 1+a 2
<Y Cis——e Com 4o~
t=r m

1+a _
§C177r e~ Cisr/m.
O

Proof of (A.19). Note that (S, — Sy—i)o<i<m/2 is an independent copy of (S;)o<i<m/2- S0, by (A.18) and
(A4),

P(im > —a, Sy = gm > 7’)
<P(Sm/2 > —ua, Sm/Z > r/z)P(ﬁm/Z > O) + P(ﬁm/Z > _“)P(ém/2 >0, Sm/Z > 7’/2)

<Ciolt 2 e-Cartim
mr

Proof of (A.20). Because of (4.2), for A € (0,14 dp) and k > 1,

P(Sp > A) < e ME[eM] = e MAtTkes(Y)

7
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where ¢s(A) = log E[¢*51]. Note that ¢5(0) = E[S1] = 0 and ¢s(A) < Ca7A2 for A € (0,5p/2) small. By
taking A = m with A sufficiently large, we have

Z P(Sk > A) < Z e*/\A%’k(PS(A)
1<k< AL+ 1<k< AL+

_alz?
S Z e—/\A+C37k/\2 S Al-‘rtse iC3;
1<k<Al+é

which suffices to conclude (A.20) for § € (0,1). In particular, for § = 0, we can take C37 > 1/ so that
(A.20) holds. O

Proof of (A.21). Observe that by Markov property at time n/2,

P(S, > —&,5, =Sy € [r,r+1]) <E [1{%227%5”/29“}P(En/z =Sy Er—xr—x+ 1])13{:5”/2}

:E[l{gn/zzfa,sn/zgrﬂ}P(§”/2 >0, €r—x,7r—x+1])|r=s,,]
which by (A.5), is bounded by

(2+T— Sn/2)

1 24r+a)
{S1/2>—aSup<r+1} 1372

CsoE
39E| 2372

| < Cso P(S,» > —a,5, <r+1)

which by (A.5) implies that

nZ 0 5n =5 € [r,r+1])§c40(1+“)(i:r+“) §C40(1+0¢)4( 1)

P(S e

This completes the proof of (A.21). O

Proof of (A.22). By use of (A.20) and (A.17), we see that for r > 7?2 sufficiently large,

#3/2 nr2
Y. PS> —a,Selnr+1) <) P(Si>r)+ ), P(S > —a, S € [rr+1])
1<k<nr? k=1 k=y3/2
1/2 i 1+a o 2
<e 4 V7 Cis——e 0% < Cy(1+a)y
k
k=r3/2
2
o Efl o feOF < 10 2emCurt i < [ demCutar < 21 0

Proof of (A.23). It is immediate that

k
E|Y e %5>0,S¢€lrr+1]| < KP(Sy 2 0,5¢ € [r,r+1
k k

1<k<nyr? i=0 1<k<nyr?
32 nr?
<P2Y P(Se>r)+ Y kP(S; > —a, Sk € [r,r+1])
k=1 k=r3/2
which by (A.20) and (A.17), is bounded by Cy7. O

47



Proof of (A.24). In fact, we only need to check that

v 1+ x
75 .

By Markov property time at time k and then by (A.5), one sees that

n—1 n—1

Y Ele 55, > 0,5, € [x,x+1]] = E[E*Skl{skzo}l’sk(ﬁn_k > 0,5, € [x,x+1])]
k=1 =
n—1
Cs(2+x -
& - k)3/)2E[(1 + Si)e " s, 01]
k=1
n—1 00 o 4 1
Cau(l4+x) & (141)% 1
< < C45(1 + x) _—
= (n— k)2 f;o k372 k; K372(n — k)3/2
which is less than Cyg(1 + x)n=3/2, -

Proof of (A.25). Observe that by (A.5),

E(x[eisn;ﬁn >0,5, > A] < Z eitPuc(ﬁn >0,5, € [t1t+ 1])
t=A

2, Cs(14a)(241) 1+a _
t A/2
<) e 13/2 < Cv 3 :
t=A
O
Proof of (A.26). Note that by (A.5),
A
Eu[e® %S, >0,5, <Al <Y e AP(S, > 0,5, € [tt+1])
£=0
T+a @ _ 14+a)(1+A
SCE.W (2 + t)€t+1 A S C48(n)3(/2).
t=0
O

Proof of (A.27). In fact, by setting 7~ := inf{k > 0 : Sy < 0} and R~ (dx) the renewal measure associ-

ated with the weak ascending ladder process of (S,),>0, we have

T —1
Y E[e4;S,>0,S, < Al =E [ Y, Mg, <
HZO n=0

A
:/ ex_AR_(dx) < C49,
0

because there exists a constant ¢; > 0 such that for any 2 > 0, R~ ([x, x + h]) ~ ch as x — co. O
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Proof of (A.28). Let

Paog) :=P(S, > —a,S, > ar, r&ayf(gk —S) < br,S, — Sy € [er — K, cr + K]).

By considering the first time hitting S, and by Markov property,

n—1
Paosy =Y P(S, > —a,S; =5, >ar,S;— S, € [cr — K, cr +K])
j=1

I
—_

n

<) P(§>—uS = S;>ar)P(S,—j <0,—S,_j € [cr — K, cr + K])
j

which by (A.10) and by (A.5) for (—S,,),>0 is bounded by

I
=

"1 Cso(14a) (14 cr +K)(1 +2K)
5 (n=7)°7

which is bounded by LRI o6 )y < 452, 0

Proof of (A.29). By considering the first time hitting S,, and by Markov property, we have

Vis - -
P(S, > —a, Sy > ar, Sy — Sk € [br,br + 1))
k=1
k-1 B _
< P(ﬁk > —q, S] = S] > IZT’)P(Sk_]' <0, —Sk_]' S [b?’, br + 1])
k=1 j=1
nr _ L
<Y P(Sy > —ua,S;=5;>ar) ) P(S <0,—Sk € [br,br +1]),
j=1 k=1

which by (A.10) and by (A.22) for (—S,)n>0 is bounded by

nr?
Z Cs1(1+a) 7 < Caola,b)(1+ 0‘)173/2‘

]':1 \/jar ﬁ

Proof of (A.30). Observe that if m < r1*?, then by (A.20), one has

1-6
< r1+567C21r .

m
-S
E LZ%@ kl{ﬁmzo,smzrﬁm—smgrx}

If 170 < m < 57?2, then by Markov property,

m

=S 2
2 e kl{SmZO,szr,Sm_Smga}] < yr-e 1E
k=1 >

m

e :
{SkSr/Zé,nZO,SmET’,Sm—Smélx}
k=1

E

m J—
<nrre "2 4 ) E[efskl{gkzo,skgr/z}l’sk(§m7k >0,Su—k>1,Sm—k — Sm—i < ). (A.40)
k=1
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Now we write n = m — k and a = S for convenience, then P, (S,,_x > 0,5,k > 7,5y — Sk < &)
is less than

P(ﬁn Z —a, Si’l Z 1’/2,§n - Si’l S (X)
n
<Y P(S;>-a5=5>r/2—a)P(5,;<0,5, ;> —a)
j=1
n

P(S;>r/3)+ ) P(S;>-a,5=5>r/3)P(S,;<0,S, ;> —a)

5 j=rito

IN

N
+

j

By (A.20) for the first sum on the right hand side and by (A.19) and (A.5) for the second sum, one gets
that

_ B - " 1+a ¢ 2, Cs(1+a)?
P(S, > —a,5, > 1/2,5, — Sp <) < e Cal/3 4 Crg—m—e G0 /|02 T2
n n n n j—;ﬂ" \ﬂr (n—]—}—l)3/2
2
<e*C2] (7’/3)]7‘5 + C51 (1 + ﬂ) (1 + OC) e*CZOT’Z/n
- nr
Plugging it into (A.40) yields that
s
E ](Z] € kl{imZO,SmZ?Sm—SmStX}

_ i _ _ - i _ 1 + 0()2 _ 2
<prre 2+ Y Ble g gy ]/ L Y BleS 1+ 8] Cot ) -
=1 k;l [ (5,20} k; [ (5,20,50<r/2} k)] Cs1 —

- 1 2 2
ST]T.ZE—I’/Z +e—C21(7/3)1 0 +C52( \;—ﬁc:’) e—CZOWI
which suffices to conclude (A.30). O

Proof of (A.31). First, we observe that

P(A_gl)(g) =P <S€ > —a,gg > ar,r]rgg;((gk — Sk) < br,gg — Sg S [C?’, cr + 1])

(-1
< Z P(A.4l) (]/ E)/ (A41)
j=1

P(A_4])(].,£) =P <S > —DC,I}’{l<aX<§k — Sk) < br,gj = S] > ar>

x P <§g_]' <0,8, ;> ~br,=S; ;€ [cr,cr 4+ 1]) . (A42)
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Observe that for j < r'*9 or j > ¢ — r!T0 with § € (0,1), by (A.20),

cord e /-1 cor? Fl+é
Z Z P(A_41)(j, f) + Z P(A.41)(]‘, f) S Z Z P S > ar) + Z P Sg,j 2 CT")
(=r2/y | j=1 j=0—r1+0 (=r2/¢ | j=1 j=l—r1to

<corle " = 0,(1).

For r1t9 < j <72, by (A.42), (A.19) and (A.5), one has

o 2 crt 12 _ _
Yo Y Pam(GO)< Y. Y P(S;>—a,S5;=5;>ar)P(S,_; <0,—S,_; € [er,cr +1])
=12 /1y j=ri+d (=r2 /1y j=r1+o

cor? 72

1+« € E cr+1 U r
< Csy » : < C56(1 + D‘)i/
(:r;/nj—;ﬂ‘ Vir (£—j)*? ezrzzm e

which is 0,(1) as 77 | 0.
Forr? <j< /(-7 by (A.42), (A.14) and (A.5), one has

cor®  0—r?

Y Y Puapy(if)

=r2/q j:r2

cor® I— _ _
Z Z P S > —K, max(Sk — Sk) S bi’, S]' = S]‘)P(Sg_]' S 0,—Sg_j € [CT’, cr + 1])
l=r2/y j=r? ks

cor®  (—1? 1 T _c cr + 1 cot r
Z Z Cor—r—e : (€ —j)372 =< Z Cso(1 +“)M,
/ 12/ j=r2 (=r2/y

which is also 0,(1).
Forl{—r><j<{-— ri+o, similarly as above, by (A.42), (A.14) and (A.17), one has

cor®  —ylto cor® 0—ylto 14+ ; 2 cor®
. ® —C i1 _c, * 1+« —C
) Y Paan( ) <) ) Ceo 612 e 2 < Y Ces 7 o 2
=r2/1 j=L—12 l=r2/1y j=0—12 j J =r?/y

which is 0, (1). We hence end up with

3

cor
Y. Pasn(l) =o0,(1) +0,(1),
=r2/y
which shows (A.31).
O]
Proof of (A.32). Let
4 _
- Sr—S
E(A.gz)(g) :=E [kzoe k l1{S£>_oc,5[>ar,max,-<[(Si—S,‘)<br,Sg—SgE[cr,cr-i—l]}] , and
H — Sk—S;
E(A'43)(]/ k' E) _E |:e , ]1{§£:Sj>§j,1}1{§[Z*D(,§(ler,maxigg(Eifsi)gbl’,E[*S[E[CT,CI’+1]}1| * (A43)
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By considering the first time hitting S, one sees that

CQT’3 6073 —1 ] 1 C07’3 -1
Y. Esop(d) =), E Y Eau(kO)+ Y, Y EE(A 13)(J K, 0). (A.44)
821’2/17 l= 1’2/)7] 1 k=0 (= 1’2/17] 1k= ]

For k > j, by Markov property at time j,

E(A.43) (]/ k, E) < P(Ej > —q, S - S 2 ar, maX<S —5i ) < bT)E [eSkijl{@,jgo;fSé,je[cr,cr+1]}] : (A‘45)

1<i<j

Similarly as above, we use different inequalities for different j to bound the second sum on the right
hand side of (A.44).
First, for j < r!™ with § € (0,1), by (A.45), (A.24) and (A.20), one sees that

O o3 A 0—j s
Z Z ZE(A/B)(]’k'g) < Z Z P<Sf = ar)E [Ze kl{SéjSO;StjG[Cr,cHﬂ}]

l=r2/y j=1k=j (=r2/y j=1 k=0
cor®  rlte
cr+1 Corpl—d
E E P(S] > LIT)C65 < C66\f€ 677
(=r2/y j=1 (¢/2)3/2

which is 0,(1). Secondly, for pltd < j <12, by (A.45), (A.19) and (A.24), one sees that

cor? r2 4

Y Y Y Eauw(iko)

€=r2/7] j:r”‘s k:]‘

cor? r2 {—j

_q S
< Z Z P<§j Z —a, Sf - Sf 2 HT)E kz(:)e kl{@,]-go;fsg,je[cr,cr+1]}

g:,,Z/,7 j:r1+5
3 2

&L 14+a _c,? cr+1 gl r
<) L Co e s s ), Collta) g
(=12/y j=rl+o \ﬂr (E _]) / =r2/y e/

which is 0,(1). Thirdly, for r* < j < ¢ — r?, similarly as above, by (A.45), (A.14) and (A.24), one sees
that

o Qr Lot 14g ' cor’
_c,di cr+1 r
)3 ZZE(A43) k< L L Cn——e T ma < L Calltagn

1=r2/y j=r2 k=j (=r2/y j=r2 =r2/y

which is 0, (1). Finally, for £ — 1?2 < j < {,by (A45), (A.14) and (A.23), one sees that

cr® (-1 ( cor? 1_{_“ ot 72 (—j S
; —Cr55
Z E EE(A-43)(]’k’€) < Z C74 ¢/ ” E E Zekl{gg,]-SO;—Sg,]-e[cr,cr+1]}
0=r2/y j=0—12 k=] =r2/y l—j=1 k=0
Gr? 14+a _
B ST
(=r2/y
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which is 0, (1). Combining all these terms, we get that
cor® (=1 ¢
Y. )Y Bk 0) = o,(1) +oy(1). (A.46)
0=r2/y j=1k=j
cor? yi-l Z{{_lo E(a43)(j, k, £). For k < j, Markov property at time j implies that

Next, let us bound }_,” , .
; S¢—S; S
Euao(ick,€) < E o551 (5,555 25 2armavacse (5 <h }} P(S;_j <0,—Si_j € [cr,cr +1]).

If Sy < %, then Ex 43)(j, k, £) < e~ 7. Therefore,

S:>—a,5,>

—ar/2 k=S
v + E [e ¢ 11{7] S %,S]>S —1, S >ar max0<l<](5 S <br}]
X P(S_; <0,—5,_j € [cr,cr +1]).

Eaa3)(j k0) <e
(A47)

By Markov property at time k and by the fact that (S;_x — Sj_x—i)o<i<jk is distributed as (S;)o<i<j—k,
S
E [e © ]1{ >8> —0,5>5; 1,5;>ar,maxo<i<;(5i—5; <br}}
<E [1{512—06312%,maXigk(gi—Si)Sbr}E[e - 1{5;420,5;42360}]|x0:§k—5k}

which by (A.25) is less than = )3/2E [e(s"_sk)/zl{ngfzx,?kZ”zl'maxisk(gifsi)ﬁbf}} - As a result

cor® —1j-1 o 0/2  f—r? j— Crs
Y ¥ ZE(A43) ok <or(1)+ ), Z+ Y+ Z Z WE(MS)(],k 0),  (A.48)
t=r2/n j=1k= (=r2/y j=1 j=t/2 iz (

where

E(A 48)(j/k Z) =E [e(Sk_Sk)/21{§K2—a,§k2%,maxigk(gi—s,-)gbr}} P(ggf]' <0, -5 ] [CV cr+ 1])

For j < //2,by (A.5), we have
cr+1

L O LS Cp (Sk—5¢)/2

i (j — k)3/2 Era9)(j b €) < ; ; 3/2 [ ' 1{&12*“3/2%/maxiSk(Ei*Si)SbY}} (€/2)3/2
0/2-1 ~ 0/2

r C
_r (S¢—5x)/2 B B 79
< (5/2)3/2 kzzl E {6 1{§K27¢x,5k2%,maxigk(sifsi)gbr}} ; ;—H (] IR )3/2
N A
=Cs07373 03/2 Z + kzz E [ e 1{SK> 2,5k > % max; <k (S;—S; <br}}

By (A.13) for k < % and by (A.12) for k > r?, we then see that

cor® 07271 C
78 .
7(]. ST E(a48)(j, k, £)

t=r2/yj=1k
r? 1+u¢ U2 (1—|—tx)logk (1+a) _cyk
Z:rZ/iy k r2
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For £/2 < j < { — 2, again applying (A.5) to bound P(gg_j <0,-S5, ;€ [cr, cr +1]), and using (A.13)
for k < r? and using (A.12) for k > %, we could get that

cor®  1—1? j-1 Crs

Y XY WE(MS (K, €) = 0y(1). (A.50)

(=r2/y j=L/2k=1

For ¢ — > < j < ¢ —1, again by (A.13) for k < r? and by (A.12) for k > 72, one sees that

Sz logl e Coaz 72
Z Z 3/2 Eaa8)(j kK £) < Cea(1+a) (575 Bz T T) Y P(S;<0,=S; € [er,cr +1]),
=0—12k= =
which by (A.22) is less than
3
log¢ ¢ S
Cs5(1+oc)(€3%2 + 7 ).
Consequently,
Cor3
L Z Z 3/2E(A48)(]'k ) = o0r(1) +0y(1). (A.51)
l=r2/1y j=C—12 k= 1
In view of (A.49), (A.50) and (A.51), we end up with
cor®* (—1j-1
Z Z 2 3/2E(A48)(]/k 0) = 0,(1) + 0,(1).
(=r2/y j=1k= 1

Proof of (A.33). By considering the first time hitting S;, one sees that

2 P (S, > —a,S; € [ar —ay,ar +a,],5y — Sy € [br — by, br + b,])
l=yr?

2/ 01
Z ZP( > —u,Sj 1 <Sj=5y € [ar—a,,ar+a,],5,— Sy € [br — by, br + b))
l=nr? j=1

2/ (-1 2y A 2y g2 /g b—nr?/2 /g -1
< ) Y Pusy(if) Z Z Y X+t Y Y ot X Pasio),
(=yr2 j=1 l=nr2 j=1  f=nr? j=r1t0  (=pr2 j=L/2 l=nr2 j=0—nr2/2
where 6 € (3,1) and
Pasy(j,0) :==P(S; > —a,S; = S € [ar —a,,ar +a,])P(S;_; <0, =Sy € [br — by, br +b,]). (A52)

We will consider the four sums on the right hand side separetly and prove that each term is o,(1).

1. For1 <j< 19 with 6 € (0,1), we use (A.5) and (A.20) to obtain that
2/,7 1+ 2/,7 146

b
2 ZP(ASZ) j,l) < 2 ZP (Sj > ar — )C79(€r_><].)37/2:0r(1).

l=nyr? j= l=yr? j=
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2. For r'*0 < j < ¢/2withé € (1/2,1), we use (A.21) and (A.5).

/62 2/ 0)2 Bxa rxb
YL Pam(0s Y Y Coll+a) ot g
g_”ijf,,lJrJ (= ,7,,2] ,1+o ] ]
2/17 )
a,b,r
< ) Ca(l+a)t~ 7372 =or(1)
=nr?

3. For /2 <j<{—nr?/2,weuse (A.11) and (A.5).

rz/;y Z—iyrZ/Z 2/77 Z—iyrZ/Z (1 2/77

+a)a, rXxb a,b,
Y. Y Puas(O)< ), ) Cn 572 (1= S < ) Cas( 1+a)£3/2 =0,(1).
l=yr2 j=L/2 (=yr2 j=€/2 ] ] t=nr?

4. For { —nr?/2 <j<{—1,weuse (A.11) and (A.22).

2 2
i 0—1 2/y 1 + oc) br+b, 1r°/2

Y Y Pusy(H)< ) C84 5 Y. Y P(5<0,-S;€[r,r+1]) =o.(1).

t=nr* j=t—nr*/2 l=nr? r=br—b, j=1

Proof of (A.34). Let

n
R —-S;
Eaz4 = E [g(Z;e )1{5,,>—tx,5n<x\/ﬁ,5ne[y\/ﬁ+z,y\/ﬁ+z+h}}] :
i=

Lets € (0,1/2).

+ Error(a za

n
_ -S;
Easy =E [g (ge )1{5 20,85,y 21185 5 <10 Sy Sxv/ M Su€ly/i+zy/n+z+h] |

In

where

EW’OT(A 34 < | |g| |°° |: {§ ,S[naln]§”5/6,511€[y\/ﬁ+2,y\/ﬁ+2+h}}]

+ ||g|’°° S >—a,5 5>n S,ze[yf—i-zyf—i-z—i-h]}]

First, let us check that Error(s 35 = on( ). On the one hand, by (A.20),
< o
E (15,505 ot nclyviisayviseri} ) SPw = 1)

n&
1
<Y P(Sy >nd) <o = 0u()-
k=1
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On the other hand, by considering the first time hitting S|

né,n]’s

E [1 {En > —zxé[”{sm] <n®/6,S,ely/n+zy\/n+z+h| }

n—1

< '26 E [1{51.2_“,5,9»‘/6}1’(&%; >0,5, ;€ lyvn+z—ty/n+z—t+ h])|t:5]}
j=n
<”‘ﬁ Cs(1+a)(1+a+n"6)2Cs(1+h)(1+y/n+z+a+h)
=L 72 (n—j)372
o Cs(14a) (14 a4 n/0

2
+ Lp(S, ) =y +z— o)

j=n—v/n
where the last inequality follows from (A.5). By (A.20),

]‘3/2

} < C85(1 + 06)41’1_(5/6_1 + Cg5(1 + 0()311‘5/3_3/26—C86ﬁ

E|1 .
{E” Z _{X’g[n‘s,n] Sné/6’5” € [y\/ﬁ+zry\/ﬁ+z+h]

which is 0,,(1). It remains to prove the convergence of
n p 8

n
+ -
E(A'34) =E [8(;6 >1{§nZ*Déé[,,zsrn]2n5/6,§n5Sn(‘,?néx\/ﬁ,sne[y\/ﬁ+z,y\/ﬁ+z+h)} ) (A.53)
AS Spyo ) 2> n%/6 and g is uniformly continuous on any compact set of [0, ),
n Vlé
gy e =g(e ™) +ou(1). (A.54)
i=1 i=1

In fact, we need to work on {}_I" ; e~5 < K} with K > 0 fixed. It is easy to check that

Bl e )1 5,2 as,elyvmraviesn}]

i=1
1

n

Bule" 5115201 Ps,(Sy i 2 0,8ui € [yV/n+ 2, yv/n + 2+ 1)) + eV

A
ing

n

i=1
<”*1 Cor(1+a)(1+yvn+z+h)et _ Css
- = 3/2(n —)3/2 = q
So,
n
_ s ok (1)

Easy =E [g (Z% € )l{ﬁnZ*a,gnSx\/ﬁ,SnE[y\/ﬁ+z,y\/ﬁ+z+h),2?:1 e Si<K} + :

1=

Let us work directly with (A.54). By (A.5), it is clear that

Ol’l(l)P (ﬁn Z _0‘/5[}’1‘5,7[] 2 n5/6/§nf5 S nélgn S x\/ﬁl Si’l E [y\/E—'_ZIy\/E—'_Z—’_h))

<0,(1)P (S, > —«,Su € [yVn+z,yvn+z+h))

Cs(1+a)(1+h)(1+yyn+z+a+h) 1

SOn(l) n3/2 :OH(E>'
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It then follows that

1
_5 1
E(A 34) —E [ Z € {SWE*N,E[V,M] >nd/6,S 5<n’,S, Sx\/ﬁ,Sne[y\/ﬁ+z,y\/ﬁ+z+h)} + 0n ( " )

n° 1
_ =S
- [g(z—zle )1{§nz—a,gn(;§n5,§n§x\/ﬁ,5ne[y\/ﬁ—i-z,y\/ﬁ—i-z—&-h)} + OH(E)
né s o 1
— [g(ze 51)1{§ >0 b_gn(;}Psné (Spope = —,S,_s <xv/n,S,_s —yv/n—z€[0,h))| + OH(E).
i=1 ! !
(A.55)

where the last equality is obtained by Markov property at time n°. For t = S, € [—a, n’], one sees that

P; (§n_n5 > —a,S, . <xVn,S, . —yyn—z¢ [O,h))
=P 1o (Sy_p < xvVn+alS,_5 >0,S,_ s —yvVn—z+ael0,h))
X Pt+a(§n—n‘5 >0, Sn—n‘s - y\/ﬁ —zc [‘X’“ + h))

By (5.3) of [CC13],

Pria(Sums = 0,8, —yv/ii—2 € [a ) = SER(+a)(@(L)h+ou(1)),

SEES

where the constant ¢, = limy,_,. /nP(S,, > 0) € (0,00). Moreover, in the spirit of Theorem 2.4 of
[CC13], we can say that

Prio (S S xV/n+alS, 45 >0,8, w—yv/a—z+ac[0h) = PR < gu{1 - g)

uniformly for (x,y) in a compact set of (0,0)2. In fact, in Theorem 2.4 of [CC13], the Hypothesis 2.2 is

needed for the density of increments. However, in this work, as we consider {S, € [y,y + h|} instead

of {S, = y}, the Hypothesis 2.2 is not necessary. As a result,

P; (§nfn5 > —Dé,gn,n(s < X\/ﬁ, Sy —y\/ﬁ— zZ e [O,h)) |t:5n5

Plugging it into (A.55) yields that
c — X 1
B E[g(Z Vs o 05 ien) RS +p(IPR < XR = L)1+ 0,1) | +0()

[ HZ:eIX Sz 1{5 5>O}R( n")] %lp(%)hl’(ﬁl < ’Rl = %)(1—{—0”(1)) +0n(%)

i=1

W |3 w]Uwg) PR < 2[Ry = L)1+ 0,(1)) +0u()
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where ({;)i>o is a Markov chain taking values in R, satisfying P,({p = «) = 1, with transition

probability p(x,dy) = 10 %gg P.(S1 € dy). It is known that for any § € (0,1/2) small, Py-as.,

Zn > n'2 % forn > 1. So Heo = Y2 pe % is a positive random variable taking values in Ry. It is

obvious that

TlJ e}
Yol 5 Y el = e — 1.
i=1 i=1
As g is bounded, one obtains (A.34) by dominated convergence. O

Proof of (A.36). Let

_ n _

o— b - Sn_sn Si_sn

E(A.36) = E [F(e VA ), ;)e )1{5”2—11,5,,Zu\/ﬁ+an,max0<k<,l(Sk—Sk)Su\/ﬁ+a{1,Sn—5,1€[b\/ﬁ—1<,b\/ﬁ+1<)}] .
1=

By considering the first time hitting S,,, we have

n—1 _ n _

— b - Sn*Sn Sifsn

E(s36 = Z; E [F (ePVrt )/_Z(:)e J105,5 05 1<5;5=5u2av/i+a,}
j= i=

Xl{maXUSkgn(gkfsk)ﬁﬂ\/@rﬂ'nsn*Sne[b\/ﬁ*K/b\/ﬁJrK)}}' (A.56)

K/h
14

By Markov property at time j, this is equal to 7;11 v :7}1/ 1 Eas6)(j, 11, £) where

1

j n—j
. o by/n+R,_; S;—S; Ry _ _
E(A36) (]/ n/ 6) «— E [F(e ]; ;O e ] + k;l e )l{ﬁjzflx,s]',]<S]',S]'Zﬂ\/ﬁ+ﬂ;1,maX0§k§j(Sk*Sk)Sﬂ\/ﬁ*Fﬂ;l}

Xl{maxksnffRkﬁofminoskgn—j(—Rk)S(ﬂ\/ﬁ+u£,)/\(oc+sj),—Rn,je[b\/ﬁ+ﬁh,b\/ﬁ+£h+h)}} (A.57)

with (Ry)k>o is an independent copy of the random walk (Sy)x>o. First, let us prove that for n > 1,
K/h—1
) Y nEuse(j,n,l) = o0c(1)

j<enorj>n—enl{=—K/h

For j < en, similarly to (A.42), by (A.20), (A.10) and (A.5) one has

K/h—1
Y. Y EBuase(on ) < Y P(S;>avn+ay)
j<en{=—K/h j<n3/4
on
+ ;/41’(5]' > —a,5;=5; > ayn+a,)P(S, ; <0,-S, € [bv/n — K, by/n +K])
j=n
ot @ Co(lta) (LHbYA+K) _ oa(1) +oi(1)
- j=n3/4 \/j(”\/ﬁ"i' ay) (n—7j)%? n .

58



For j > n —en, by (A.9) and (A.22), one has
n K/h—-1

Z Z E(A.36) (]r n, f)

j=n—ent=—K/h
en

<Y P(S,_;>—a,S,j =S, j>ayn+a,)P(5; <0,-S; € [bv/n— K,by/n+K])
j=1

§C91(1+06)(1+2K)€ 08(1)'

n n
Thus, it remains to study }"0 o f:/ ’S(l/h nE 36)(j,n,£). Recall that F(x,y) = fe=*/¥ with x > 0 and
y > 1. So, for any fixed h > 0

sup |F(xeh,y) — F(x,y)| < 2(eh —1)and sup |F(x,y+h)—F(x,y)| <2h.

x>0,y>1 x>0,y>1

Therefore, on —R,,_; € [by/n + (h,b\/n 4 Lh + h),

F(e byn+R,; Zes S]+ZeRk =F(e —Lh Zes SJ+Z€Rk ) 4 o (1).
=0 k=1 k=1
Moreover, let (S ]E_) )k>0 be the random walk distributed as the reflected walk —S, and independent of
S. Observe that for ¢ € [—K, K] with K > 1/h fixed integer

E(A-36) (]’ n, ﬁ) =E [1{S->—a ,5i-1<5j, S'za\/ﬁ—kan,maxogkg(gk—sk)Sa\/ﬁ+a§1}

S

,gh .
t+Ze 3 ) +on(1)1 {87208, < (avn-+a,)n (a+s),s;:}fbﬁe[eh,zh+h)}]|t:z£:0ei*sf,s:sj

By use of (A.34) for S(=) one sees that en < j<n-—enwithee (0,1/2),forn>>lands > ay/n+a,

(n —j)E| ‘”’t+2€ Yo (Mg

1>05 S\ i< (av/nta)A(ats),S! \—by/neltn, Bh+h)}]
ch —(h (-) —b b
= —"E|[(F b o —1 1))|C ’
where ¢_ := lim,, .o v/nP(S,; < 0) and H =Y e & with (QE*) )k>0 the Markov chain obtained
from the reflected walk. It follows that

) +oa(1),

. n
nE 6 (j,n,0) = ni_]E |:1{§‘2*0t,§]‘—1<S',S'Zﬂ\/ﬁ+un,maxo<k<]‘(§k*5k)S‘l\/ﬁ+uln}

C—h o 5—S (-) —b
X< - I;OE I+ Heo )+0n /711_ /771_ +0n ’
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which by Fact A.3 is equal to

n c_h _ a—>b b
Cap g R(8) =7 Fle ™ Mo + HS) — 1)]C , +0u(=

This leads to

n—en K/h—1

Y. ). nEuse(int)

j=en {=—K/h

n—en c_h _ (=) a—>b b
= i ayi R(0)—E[(F(e™", Hoo + Hoo ' —1)]Co( ) ) +0n(1)

B L e NCETRCEY

1—e dt C,R((x) a—b b K s (-)

p— a a o0 n 1 l Kh
L ot Ol ) | FUFE Mt M)~ Dlas F00(1) + on(1)
Letting n — oo then letting i — 0 and ¢ — 0, we conclude (A.36). O
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