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We consider the randomly biased random walk on trees in the slow movement regime as in [HS16], whose potential is given by a branching random walk in the boundary case. We study the heavy range up to the n-th return to the root, i.e., the number of edges visited more than k n times. For k n = n θ with θ ∈ (0, 1), we obtain the convergence in probability of the rescaled heavy range, which improves one result of [AD20].

Introduction

Let T be a supercritical Galton-Watson tree rooted at ρ. And to any vertex x ∈ T \ {ρ}, we assign a random bias A x ≥ 0. For any vertex x ∈ T, denote its parent by x * and denote its children by x 1 , x 2 , • • • , x N x where N x denotes the number of its children which could be 0 if there is none. Now for given the environment E = {T, (A x ) x∈T\{ρ} }, let (X n ) n≥0 be a nearest-neighbour random walk on T, started from X 0 = ρ, with the biased transition probabilities: for any x, y ∈ T,

p E (x, y) =    A x j 1+∑ Nx i=1 A x i
, if y = x j for some j ∈ {1, . . . ,

N x } 1 1+∑ Nx i=1 A x i ; if y = x * . (1.1)
For convenience, to the root ρ, we add artificially a vertex ρ * to be its parent and let (1.1) holds also for x = ρ with p E (ρ * , ρ) = 1. Obviously, this is a random walk in random environment. In particular, when A x equals some constant λ > 0 for any x, this is known as λ-biased random walk on Galton-Watson tree, which was introduced and deeply studied by Lyons [START_REF] Lyons | Random walks and percolation on trees[END_REF][START_REF] Lyons | Random walks, capacity and percolation on trees[END_REF] and Lyons, Pemantle and Peres [START_REF] Lyons | Ergodic theory on galton-watson trees: Speed of random walk and dimension of harmonic measure[END_REF][START_REF] Lyons | Biased random walks on galton-watson trees[END_REF].

P E (X n+1 = y|X n = x) =
e -V(y) 1 {y * =x} e -V(x) +∑ z:z * =x e -V(z) .

(1.2)

Throughout the paper, we assume that the branching random walk is in the boundary case, that is,

E ∑ |x|=1 e -V(x) = 1, E ∑ |x|=1 V(x)e -V(x) = 0. (1.3)
We also assume the following integrability condition: there exists certain δ 0 > 0 such that

E ∑ |x|=1 e -(1+δ 0 )V(x) + E ∑ |x|=1 e δ 0 V(x) < ∞.
(1.4)

In addition, we assume that

E[N 2 ] + E   ∑ |u|=1 (1 + V + (u)) 2 e -V(u) 2   < ∞, (1.5) 
where V + (u) := max{V(u), 0}. Immediately, one sees that σ 2 := E[∑ |u|=1 V(u) 2 e -V(u) ] ∈ (0, ∞). We take σ = √ σ 2 . The criteria of recurrence/transience for random walks on trees is established by Lyons and Pemantle [START_REF] Lyons | Random walk in a random environment and first-passage percolation on trees[END_REF], which shows that the walk (X n ) n≥0 is recurrent under (1.3). Further, Faraud [START_REF] Faraud | A central limit theorem for random walk in a random environment on marked galton-watson trees[END_REF] proved that the walk is null recurrent under (1.3) and (1.4). Hu and Shi studied the walk under these assumptions, and showed in [START_REF] Hu | Slow movement of random walk in random environment on a regular tree[END_REF] that if T is regular tree, then a.s., asymptotically, max 0≤i≤n |X i | = Θ((log n) 3 ). So the walk is called in a regime of slow movement. Later, under (1.3) and (1.4), Faraud, Hu and Shi proved in [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF], on the survival of T, a.s. ,

lim n→∞ max 0≤i≤n |X i | (log n) 3 = Cst.
(1.6)

Further, Hu and Shi obtained in [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF] that |X n | (log n) 2 converges weakly under P * . The spread and the range of this walk have been studied in [START_REF] Andreoletti | Spread of visited sites of a random walk along the generations of a branching process[END_REF] and [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF]. In this paper, we study the heavy range of the walk in this slow regime.

Define the edge local time for the edge (x * , x) as follows

L x (n) := n ∑ k=1 1 {X k-1 =x * ,X k =x} , ∀n ≥ 1.
Let τ 0 := 0 and

τ n := inf{k > τ n-1 : X k-1 = ρ * , X k = ρ}, ∀n ≥ 1.
Then L ρ (τ n ) = n. It can be seen from [START_REF] Hu | The most visited sites of biased random walks on trees[END_REF] that max x∈T L x (τ n ) is of order n in probability. For any θ ∈ (0, 1), define the heavy range by

R n θ (τ n ) := ∑ x∈T 1 {Lx(τn)≥n θ } .
We are interested in this so-called heavy range, i.e., the number of edges (or vertices) frequently visited by the random walk, which was first considered by Andreoletti and Diel [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF]. They show that in any recurrent case, under P * , in probability, R n θ (τ n ) = n ξ θ +o(1) where ξ θ > 0 is a constant depending on the regimes and on θ. In the sub-diffusive and diffusive regimes, our upcoming paper with de Raphélis [CdR] will prove the convergence in law of

R n θ (τ n ) n ξ θ
under the annealed and quenched probability. In the slow movement regime, it is given in [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF] that ξ θ = 1θ. We obtain the convergence in probability of

R n θ (τ n ) n 1-θ
under P * in this paper.

Let us state the main result as follows.

Theorem 1.1. For any θ ∈ (0, 1), the following convergence in probability holds:

R n θ (τ n ) n 1-θ P * ---→ n→∞ Λ(θ)D ∞ , (1.7)
where D ∞ > 0 is the P * -a.s. limit of the derivative martingale (D n := ∑ |x|=n V(x)e -V(x) ) n≥0 and Λ(θ) is a positive real number whose value is given in (1.12) later.

Under (1.3), D n is a martingale with respect to the natural filtration {F n ; n ≥ 0} with F n := σ(V(u); |u| ≤ n). Under (1.4), it converges a.s. towards some non-degenerate limit D ∞ ≥ 0 according to Theorem of [START_REF] Biggins | Measure change in multitype branching[END_REF]. Moreover, P(D ∞ > 0) = P(T survives) under (1.4). By the definition, we also note that θ ∈ (0, 1) → Λ(θ) is a continuous function. Its finiteness will be checked at the end of Appendix A.2.

Remark 1.2. Note that for θ = 0, R n θ (τ n ) corresponds to the total range up to τ n , which has been studied in [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF]. It is known that

R 1 (τ n ) n
converges in probability P * to ΛD ∞ with some constant Λ ∈ (0, ∞).

Remark 1.3. It is known in [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF] that τ n n log n

P * ---→ n→∞ 4D ∞ /σ 2
. This would help us to understand the heavy range up to time n. In fact, our arguments work also for R a(n log n) θ (τ n ) and under P * , we have

(n log n) θ n R a(n log n) θ (τ n ) converges in probability to Λ(θ)
a D ∞ , for any fixed a > 0 and θ ∈ (0, 1). This combined with the convergence of τ n , indicates that log m m 1-θ R m θ (m) converges in probability to Λ(θ)σ 2 /4, for any θ ∈ (0, 1). In particular, it has been verified for θ = 0 in [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF].

In this work, we consider the edge local times for the simplicity of calculations. One could of course study the vertex local times in a similar way, by replacing V(x) by U(x) = V(x)log 1 p E (x,x * ) in the following arguments.

Sketch of proofs and organisation of the paper

Write L (n)

x for L x (τ n ). In addition, up to the n-th return to ρ * , define the number of excursions visiting x by E (n)

x := n ∑ k=1 1 {∃j∈(τk-1,τk],Xj=x} , ∀n ≥ 1.

Intuitively, the vertices with large local time are either visited by many small excursions or frequently visited by one large excursion. But it is quite rare that one vertex is frequently visited by two or more large excursions. Therefore, we define

R n θ (τ n , j) := ∑ x∈T 1 L x (τ n )≥n θ ,E (n)
x =j , ∀1 ≤ j ≤ n.

And we make the decomposition as follows:

R n θ (τ n ) = n ∑ j=1 R n θ (τ n , j) = n ∑ j=2 R n θ (τ n , j) + R n θ (τ n , 1).
Then we are going to treat ∑ n j=2 R n θ (τ n , j) and R n θ (τ n , 1) separately and show the convergences in probability of 1 n 1-θ n ∑ j=2 R n θ (τ n , j) and 1 n 1-θ R n θ (τ n , 1), under the annealed probability P * . In fact, we have the following results.

Proposition 1.4. For any θ ∈ (0, 1), the following convergence in probability holds:

1 n 1-θ n ∑ j=2 R n θ (τ n , j) P * ---→ n→∞ Λ 0 (θ)D ∞ , (1.8) 
where

Λ 0 (θ) := √ 2 √ πσ 2 ∞ 0 C 0 ( θ √ u , 1 -θ √ u ) du u ∈ (0, ∞), (1.9) 
with C 0 defined in (A.35).

Proposition 1.5. For any θ ∈ (0, 1), the following convergence in probability holds:

1 n 1-θ R n θ (τ n , 1) P * ---→ n→∞ Λ 1 (θ)D ∞ ,
(1.10)

where Λ 1 (θ) := c R ∞ 0 G( 1 √ s , θ √ s ) ds s ∈ (0, ∞), (1.11) 
with G(a, b) defined in (A.37) and c R defined in (A.7).

Theorem 1.1 follows directly from Propositions 1.4 and 1.5 with

Λ(θ) = Λ 0 (θ) + Λ 1 (θ) ∈ (0, ∞).
(1.12)

Let us do some basic calculations here. For any x ∈ T ∪ {ρ * }, let T x be the first hitting time at x:

T x := inf{k ≥ 0 : X k = x}.
For any x, y ∈ T, we write x ≤ y if x is an ancestor of y and x < y if x ≤ y and x = y. Then, it is known that

a x :=P E ρ (T x < T ρ * ) = 1 ∑ ρ≤y≤x e V(y) = e -V(x) H x , (1.13) b x :=P E x * (T x < T ρ * ) = 1 - 1 H x , (1.14) 
where H x := ∑ ρ≤y≤x e V(y)-V(x) .

As a consequence, for any fixed x ∈ T,

P E ρ (L x (τ 1 ) = 0) = 1 -a x and P E ρ (L x (τ 1 ) ≥ k) = a x b k-1 x , ∀k ∈ N * .
Then by Markov property, under P E ρ , (L x (τ n+1 ) -L x (τ n )) n≥1 are i.i.d. random variables distributed as L x (τ 1 ). Moreover, E (n)

x is a binomial random variable with parameters n and a x . Let V(x) := max ρ≤y≤x V(y) and V(x) := min ρ≤y≤x V(y), ∀x ∈ T.

We have a x ≤ e -V(x) , H x ≤ e V(x)-V(x) .

To get the asymptotic of ∑ n j=2 R n θ (τ n , j), we need to consider the individuals x ∈ T such that {L x (τ n ) ≥ n θ , E (n) x ≥ 2}. In fact, we could approximate here L x (τ n ) and E (n) x by their quenched expectations E E [L x (τ n )] = ne -V(x) and E E [E (n) x ] = na x with a x ≈ e -V(x) . It thus turns out that all vertices with {V(x) ≤ log n + o(log n), V(x) ≤ (1θ) log n + o(log n)} are visited many times and hence with high probability under P * , n ∑ j=2 R n θ (τ n , j) ≈ ∑ x∈T 1 {V(x)≤log n+o(log n),V(x)≤(1-θ) log n+o(log n)} .

The asymptotic of the sum on the right hand side will be treated in Lemma 2.2.

To study R n θ (τ n , 1), we are going to compare it with its quenched expectation. We see that

E E [R n θ (τ n , 1)] = ∑ x∈T na x (1 -a x ) n-1 b n θ -1 x ≈ n 1-θ ∑ x∈T e -V(x) ( n θ H x e -n θ Hx ),
where we only need to count the individuals with {V(x) ≥ log n + o(log n)} so that they are visited only by one excursion with high probability. Here we also add the restriction {V(x) -V(x) ≈ θ log n} so that H x = Θ(n θ ) as H x and e V(x)-V(x) are comparable. In addition, it is known in [HS16] that up to τ n , with high probability, the walker has not reached the stopping line {x ∈ T : max ρ≤y<x H y < γ n ≤ H x } with γ n = n (log n) γ for any γ > 0. So, the good environment here is

{V(x) ≥ log n + o(log n), V(x) -V(x) ≈ θ log n, max ρ≤y≤x H y < γ n }.
However, only part of vertices in this environment are frequently visited. By bounding the quenched variance of R n θ (τ n , 1), we could verify that with high probability,

R n θ (τ n , 1) ≈ n 1-θ ∑ x∈T e -V(x) ( n θ H x e -n θ Hx )1 {V(x)≥log n+o(log n),V(x)-V(x)≈θ log n,max ρ≤y≤x H y <r n } .
The asymptotic of the term on the right hand side will be given in Lemma 3.5.

The rest of the paper is organised as follows. In section 2, we study ∑ n j=2 R n θ (τ n , j) and prove Proposition 1.4 by choosing the suitable environment. In section 3, we prove Proposition 1.5 for R n θ (τ n , 1). Next, Section 4 is devoted to proving the generalised Seneta-Heyde norming results: Lemmas 3.5 and 2.2, by applying the new method introduced by [START_REF] Boutaud | A revisited proof of the seneta-heyde norming for branching random walks under optimal assumptions[END_REF]. In Section 5, we complete the proofs of the technical lemmas.

In this paper, we use (c i ) i≥0 and (C i ) i≥0 for positive constants which may change from line to line. And we write f

(n) ∼ g(n) when f (n) g(n) → 1 as n → ∞.
For convenience, for any real numbers 0 < α < β < ∞, we write ∑ β k=α for ∑ α≤k≤β,k∈N .

Proof of Proposition 1.4

In this section, we study ∑ n j=2 R n θ (τ n , j) and prove Proposition 1.4. First, it is proved in [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF] 

that max 1≤i≤τ n |X i | = O((log n) 3 ), P * -a.s. So, ∑ j≥2 R n θ (τ n , j) = c 0 (log n) 3 ∑ =0 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x ≥2 + o n (1), P * -a.s.,
with some large and fixed constant c 0 > 0. On the other hand, it is known that P * -a.s.,

0 ≥ inf u∈T V(u) > -∞.
So, we only need to consider

∑ |x|≤c 0 (log n) 3 1 L x (τ n )≥n θ ,E (n) x ≥2 1 {V(x)≥-α} for any fixed α > 0. Now for any a, b ∈ R, let A n (a, b) :={x ∈ T : V(x) -V(x) ≤ θ log n + a, V(x) ≤ (1 -θ) log n + b}, ∀n ≥ 1, (2.1) and A + n (a, b) :={x ∈ T : V(x) ≤ log n + a, V(x) ≤ (1 -θ) log n + b}, ∀n ≥ 1. (2.2)
We use ξ n = o P (n 1-θ ) to represent that ξ n n 1-θ converges in probability to zero under P. Then, we stress that for any α > 0, b > 0, a n = a log log n with a > 3,

∑ |x|≤c 0 (log n) 3 1 {V(x)≥-α} 1 {x∈A n (-a n ,-b)} + o P (n 1-θ ) ≤ ∑ |x|≤c 0 (log n) 3 1 {V(x)≥-α} 1 L x (τ n )≥n θ ,E (n) x ≥2 ≤ ∑ |x|≤c 0 (log n) 3 1 {V(x)≥-α} 1 {x∈A + n (a n ,b)} + o P (n 1-θ ),
because of the following lemma.

Lemma 2.1. Let b > 0, α > 0. For a n = a log log n with a > 3, we have

1 n 1-θ c 0 (log n) 3 ∑ =0 ∑ |x|= 1 {x∈A n (-a n ,-b)} 1 L x (τ n )<n θ or E (n) x ≤1 P ---→ n→∞ 0, (2.3) 1 n 1-θ c 0 (log n) 3 ∑ =0 ∑ |x|= 1 {V(x)≥-α} 1 {x/ ∈A + n (a n ,b)} 1 L x (τ n )≥n θ ,E (n) x ≥2 P ---→ n→∞ 0. (2.4) It remains to study ∑ c 0 (log n) 3 =0 1 {x∈A n (-a n ,-b)} and ∑ c 0 (log n) 3 =0 1 {x∈A + n (a n ,b)} , which is done in the next lemma.
Lemma 2.2. Let b > 0. For a n = o(log n), we have the following convergences in probability.

∑ c 0 (log n) 3 =0 ∑ |x|= 1 {x∈A n (-a n ,-b)} n 1-θ P * ---→ n→∞ D ∞ Λ 0 (θ)e -b , (2.5) ∑ c 0 (log n) 3 =0 ∑ |x|= 1 {x∈A + n (a n ,b)} n 1-θ P * ---→ n→∞ D ∞ Λ 0 (θ)e b .
(2.6)

The proof of Lemma 2.1 will be given later in Section 5, and the proof of Lemma 2.2 will be in Section 4. The finiteness of Λ 0 (θ) will be checked in Appendix A.2. Now we are ready to prove Proposition 1.4.

Proof of Proposition 1.4. Recall that D ∞ > 0, P * -a.s. We only need to show that for any δ ∈ (0, 1), as n → ∞,

P * ∑ j≥2 R n θ (τ n , j) n 1-θ ≥ (1 + δ)Λ 0 (θ)D ∞ or ≤ (1 -δ)Λ 0 (θ)D ∞ → 0.
Observe that for any α > 0 and β ∈ (0, 1),

P * ∑ j≥2 R n θ (τ n , j) n 1-θ ≥ (1 + δ)Λ 0 (θ)D ∞ or ≤ (1 -δ)Λ 0 (θ)D ∞ ≤ P( inf x∈T V(x) < -α) + P * max 1≤i≤τ n |X i | > c 0 (log n) 3 + P * (D ∞ < β) + P *   ∑ |x|≤c 0 (log n) 3 1 L x (τ n )≥n θ ,E (n) x ≥2 n 1-θ ≥ (1 + δ)Λ 0 (θ)D ∞ or ≤ (1 -δ)Λ 0 (θ)D ∞ ; D ∞ ≥ β, inf x∈T V(x) ≥ -α   .
It is known (see [START_REF] Aidékon | Convergence in law of the minimum of a branching random walk[END_REF]) that for any α > 0,

P(inf x∈T V(x) < -α) ≤ e -α . Note also that P * (D ∞ < β) = o β (1) as β ↓ 0. Therefore, P * ∑ j≥2 R n θ (τ n , j) n 1-θ ≥ (1 + δ)ΛD ∞ or ≤ (1 -δ)ΛD ∞ (2.7) ≤e -α + o n (1) + o β (1) + P *   ∑ |x|≤c 0 (log n) 3 1 {V(x)≥-α} 1 L x (τ n )≥n θ ,E (n) x ≥2 ≥ (1 + δ)n 1-θ Λ 0 (θ)D ∞ ; D ∞ ≥ β   + P *   ∑ |x|≤c 0 (log n) 3 1 L x (τ n )≥n θ ,E (n) x ≥2 ≤ (1 -δ)n 1-θ Λ 0 (θ)D ∞ ; D ∞ ≥ β, inf x∈T V(x) ≥ -α   .
On the one hand, for any b > 0 and a n = a log log n with a > 3, one has

P *   ∑ |x|≤c 0 (log n) 3 1 {V(x)≥-α} 1 L x (τ n )≥n θ ,E (n) x ≥2 ≥ (1 + δ)n 1-θ Λ 0 (θ)D ∞ ; D ∞ > β   ≤ P *   1 n 1-θ ∑ |x|≤c 0 (log n) 3 1 {x/ ∈A + n (a n ,b)} 1 {V(x)≥-α} 1 L x (τ n )≥n θ ,E (n) x ≥2 ≥ δΛ 0 (θ)β 2   + P *   1 n 1-θ ∑ |x|≤c 0 (log n) 3 1 {x∈A + n (a n ,b)} ≥ (1 + δ/2)Λ 0 (θ)D ∞   .
We apply (2.4) to the first term on the right hand side, and use (2.6) for the second term by taking b > 0 small so that e b < 1 + δ/2. Thus, we obtain that

P *   ∑ |x|≤c 0 (log n) 3 1 {V(x)≥-α} 1 L x (τ n )≥n θ ,E (n) x ≥2 ≥ (1 + δ)n 1-θ Λ 0 (θ)D ∞ ; D ∞ > β   → 0,
as n goes to infinity. On the other hand, observe that

P *   ∑ |x|≤c 0 (log n) 3 1 L x (τ n )≥n θ ,E (n) x ≥2 ≤ (1 -δ)n 1-θ Λ 0 (θ)D ∞ ; D ∞ ≥ β, inf x∈T V(x) ≥ -α   ≤ P *   1 n 1-θ ∑ |x|≤c 0 (log n) 3 1 {x∈A n (-a n ,-b)} 1 L x (τ n )<n θ or E (n) x ≤1 ≥ δΛ 0 (θ)β 2   + P *   1 n 1-θ ∑ |x|≤c 0 (log n) 3 1 {x∈A n (-a n ,-b)} ≤ (1 -δ/2)Λ 0 (θ)D ∞   ,
which is o n (1) by (2.3) and (2.5) with b > 0 small enough so that e -b > 1δ/2. Going back to (2.7), one sees that

P * ∑ j≥2 R n θ (τ n , j) n 1-θ ≥ (1 + δ)Λ 0 (θ)D ∞ or ≤ (1 -δ)Λ 0 (θ)D ∞ ≤ e -α + o β (1) + o n (1).
Letting n → ∞ then α ↑ ∞ and β ↓ 0 concludes (1.8).

Proof of Proposition 1.5

This section is devoted to proving Proposition 1.5. Similarly as above, we have P * -a.s.,

R n θ (τ n , 1) = c 0 (log n) 3 ∑ =1 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 + o n (1).
For a n = a log log n with a > 3, set

B ± n := {x ∈ T : V(x) ≥ log n ± a n }, and D n := {x ∈ T : V(x) -V(x) ∈ [θ log n -a n , θ log n + a n ]}.
We first show that with high probability,

R n θ (τ n , 1) ≈ ∑ c 0 (log n) 3 =1 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {z∈B - n } 1 {z∈D n }
. This comes from the following lemma whose proof is stated in Section 5.

Lemma 3.1. As n ↑ ∞, we have E   c 0 (log n) 3 ∑ =1 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {V(x)<log n-a n }   =o(n 1-θ ), (3.1) E   c 0 (log n) 3 ∑ =1 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x / ∈D n }   =o(n 1-θ ). (3.2)
Here we introduce the stopping line

L r := {x ∈ T : max y<x H y < r ≤ H x }, ∀r > 1.
It is known that in [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF] that

P (∃k ≤ τ n : X k ∈ L n ) → 0.
This means that

P({X k , k ≤ τ n } ⊂ {x ∈ T : x < L n } ∪ {ρ * }) → 1. For any r > 1, define L r := {x ∈ T : max y<x H y < r}.
So, we only need to study

∑ c 0 (log n) 3 =1 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B - n } 1 {x∈D n } 1 {x∈L n } .
In fact, only the generations of order (log n) 2 should be counted and B - n can be replaced by B + n , in view of the following lemma. Lemma 3.2. As ε ↓ 0, we have

lim sup n→∞ 1 n 1-θ E   ε(log n) 2 ∑ =1 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B - n } 1 {x∈D n ,V(x)≥-α}   =o ε (1), (3.3) lim sup n→∞ 1 n 1-θ E   c 0 (log n) 3 ∑ =(log n) 2 /ε ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B - n } 1 {x∈D n ,V(x)≥-α} 1 {x∈L n }   =o ε (1). (3.4)
For any ε ∈ (0, 1),

1 n 1-θ E   (log n) 2 /ε ∑ =ε(log n) 2 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {V(x)∈[log n-a n ,log n+a n ],V(x)≥-α,x∈D n }   = o n (1). (3.5)
Instead of L n , we are going to use L r n with r n = n (log n) γ to control the quenched variance of ∑

(log n) 2 /ε =ε(log n) 2 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B + n } 1 {x∈D n } 1 {x∈L rn } .
Lemma 3.3. For any ε ∈ (0, 1) fixed, α > 0 and for γ n = n (log n) γ with fixed γ > 0, we have

E   (log n) 2 /ε ∑ =ε(log n) 2 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B + n } 1 {x∈D n } 1 {V(x)≥-α,γ n ≤max z≤x H z <n}   = o(n 1-θ ). (3.6) Let D K n := {x ∈ T : V(x) -V(x) ∈ [θ log n -K, θ log n + K]} with large constant K ≥ 1. Then, as K → ∞, E   (log n) 2 /ε ∑ =ε(log n) 2 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B + n } 1 {x∈D n \D K n } 1 {V(x)≥-α,max z≤x H z <n}   = o K (1)n 1-θ . (3.7)
Now, we let

Ξ n ( , B + n ∩ D n ∩ L γ n , α) := ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B + n } 1 {x∈D n } 1 {x∈L γn } 1 {V(x)≥-α} .
It immediately follows that

E E Ξ n ( , B + n ∩ D n ∩ L γ n , α) = ∑ |x|= P E (L x (τ n ) ≥ n θ , E (n) x = 1)1 {x∈B + n } 1 {x∈D n } 1 {x∈L γn } 1 {V(x)≥-α} =(1 + o n (1))n 1-θ e -V(x) f( n θ H x )1 {x∈B + n ∩D n ∩L γn } 1 {V(x)≥-α} ,
where f(u) := ue -u . Let Var E denote the quenched variance. We state the following estimate.

Lemma 3.4. Let 0 < A < B < ∞. For ∈ [A(log n) 2 , B(log n) 2 ] ∩ N, one has E[Var E (Ξ n ( , B + n ∩ D n ∩ L γ n , α))] ≤ c 1 n 2-2θ (log n) a∧γ-4 .
(3.8)

All these previous lemmas will be proved in Section 5. The following lemma states the asymptotic behaviour of the quenched expectation

E E [Ξ n ( , B + n ∩ D n ∩ L γ n , α)].
Lemma 3.5. For any 0 < A < B < ∞ and a + γ > 6, one has

B(log n) 2 ∑ =A(log n) 2 ∑ |x|= e -V(x) f( n θ H x )1 {x∈B + n ∩D n ∩L γn } P * ---→ n→∞ D ∞ × c R B A G( 1 √ u , θ √ u ) du u .
In fact, because of (3.7), we only need to prove that

B(log n) 2 ∑ =A(log n) 2 ∑ |x|= e -V(x) f( n θ H x )1 {x∈B + n ∩D K n ∩L γn } P * ---→ n→∞ C 0 (A, B, K)D ∞ , (3.9) 
where

C 0 (A, B, K) = c R C 3 (A, B, K) with C 3 (A, B, K) defined in (4.18). One sees immediately that lim K→∞ C 0 (A, B, K) = c R B A G( 1 √ u , θ √ u ) du u .
The proof of (3.9) is postponed in Section 4. And the finiteness of

B A G( 1 √ u , θ √ u ) du u and that of Λ 1 (θ) = c R ∞ 0 G( 1 √ u , θ √ u ) du u are checked in Appendix A.
2. Let us prove Proposition 1.5 by use of these lemmas.

Proof of Proposition 1.5. Note that for any δ > 0 and β > 0,

P * | R n θ (τ n , 1) n 1-θ -Λ 1 (θ)D ∞ | ≥ δD ∞ ≤P * ( inf x∈T V(x) < -α) + P * max 1≤i≤τ n |X i | > c 0 (log n) 3 + P * (D ∞ < β) + P * (∃k ≤ τ n , X k ∈ L n ) + P *   | ∑ c 0 (log n) 3 =1 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈L n } 1 {V(x)≥-α} n 1-θ -Λ 1 (θ)D ∞ | ≥ δD ∞ , D ∞ ≥ β    .
Here P * (∃k ≤ τ n , X k ∈ L n ) = o n (1) according to [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF]. By Lemmas 3.1, 3.2 and 3.3, one has

P * | R n θ (τ n , 1) n 1-θ -Λ 1 (θ)D ∞ | ≥ δD ∞ ≤ e -α + o n (1) + o β (1) + P *   | ∑ (log n) 2 /ε =ε(log n) 2 Ξ n ( , B + n ∩ D n ∩ L γ n , α) n 1-θ -Λ 1 (θ)D ∞ | ≥ δ 2 D ∞ , D ∞ ≥ β   + o ε (1). (3.10) By comparing Ξ n ( , B + n ∩ D n ∩ L γ n , α)
with its quenched expectation, we use Chebyshev's inequality and then Cauchy-Schwartz inequality to get that

P   | ∑ (log n) 2 /ε =ε(log n) 2 Ξ n ( , B + n ∩ D n ∩ L γ n , α) -E E [Ξ n ( , B + n ∩ D n ∩ L γ n , α)] n 1-θ | ≥ δβ/4   ≤ 16 (δβ) 2 n 2-2θ E      (log n) 2 /ε ∑ =ε(log n) 2 Ξ n ( , B + n ∩ D n ∩ L γ n , α) -E E [Ξ n ( , B + n ∩ D n ∩ L γ n , α)]   2    ≤ 16 (δβ) 2 n 2-2θ (log n) 2 /ε ∑ =ε(log n) 2 1 (log n) 2 /ε ∑ =ε(log n) 2 E Var E (Ξ n ( , B + n ∩ D n ∩ L γ n , α)) ,
which is o n (1) by Lemma 3.4 as long as a ∧ γ > 8. Therefore, it remains to note that

P *   | (log n) 2 /ε ∑ =ε(log n) 2 E E [Ξ n ( , B + n ∩ D n ∩ L γ n , α)] n 1-θ -Λ 1 (θ)D ∞ | ≥ δ 4 D ∞ , D ∞ ≥ β   ≤P *   | (log n) 2 /ε ∑ =ε(log n) 2 ∑ |x|= (1 + o n (1))e -V(x) f( n θ H x )1 {x∈B + n ∩D n ∩L γn } -Λ 1 (θ)D ∞ | ≥ δ 4 D ∞ , D ∞ ≥ β   + P * ( inf u∈T V(u) < -α),
which is o n (1) + e -α by Lemma 3.5 for sufficiently small ε ∈ (0, 1). We thus deduce that lim sup

ε→0 lim sup n→∞ P *   | ∑ (log n) 2 /ε =ε(log n) 2 Ξ n ( , B + n ∩ D n ∩ L γ n , α) n 1-θ -Λ 1 (θ)D ∞ | ≥ δ 2 D ∞ , D ∞ ≥ β   ≤ e -α .
Going back to (3.10) and letting α → ∞ and β ↓ 0, we therefore conclude that for any δ > 0.

lim sup

n→∞ P * | R n θ (τ n , 1) n 1-θ -Λ 1 (θ)D ∞ | ≥ δD ∞ = 0.
4 Generalised Seneta-Heyde scaling: proof of Lemmas 2.2 and 3.5

In this section, we prove Lemmas 2.2 and 3.5 by extending the well-known Seneta-Heyde scaling result for the branching random walk (V(u), u ∈ T). The Seneta-Heyde scaling problem is first treated by [START_REF] Aidekon | The seneta-heyde scaling for the branching random walk[END_REF]. Later, [START_REF] Boutaud | A revisited proof of the seneta-heyde norming for branching random walks under optimal assumptions[END_REF] gave a new proof which inspire our arguments here.

Lyons' change of measure and spinal decomposition

First, we state some facts and lemmas on the branching random walk (V(u), u ∈ T).

Recall that P is the law of the branching random walk (V(u), u ∈ T) started from V(ρ) = 0. Let P a ((V(u), u ∈ T) ∈ •) = P((a + V(u), u ∈ T) ∈ •) for any a ∈ R. Let E a be the corresponding expectation. Then the following lemma holds because of (1.3). Lemma 4.1 (Many-to-One). For any n ≥ 1, a ∈ R and any measurable function f : R n → R + , we have

E a ∑ |u|=n e -V(u) f (V(u 1 ), • • • , V(u n )) = e -a E [ f (S 1 + a, • • • , S n + a)] , (4.1)
where (S n ) n≥0 is one dimensional centred random walk with i.i.d. increments and S 0 = 0.

Moreover, by (1.4), E[S 2 1 ] = σ 2 ∈ (0, ∞) and E[e -δ 0 S 1 ] + E[e (1+δ 0 )S 1 ] < ∞. (4.2)
For any n ≥ 0, let S n := max 0≤k≤n S k and S n := min 0≤k≤n S k . More estimates and rescaling results on the random walk (S n ) n∈N can be found in Appendix A.2. Define the additive martingale with respect to the natural filtration {F n } n≥0 by

W n := ∑ |u|=n e -V(u) , ∀n ≥ 0.
Under (1.3), this is a non-negative martingale and it converges P-a.s. to zero according to [START_REF] Lyons | A simple path to biggins' martingale convergence for branching random walk[END_REF]. By Kolmogorov extension theorem, for any R, we can define a probability measure

Q a on F ∞ := ∨ n≥0 F n such that dQ a dP a | F n := e a ∑ |u|=n e -V(u) , ∀n ≥ 0.
Let E Q a denote the corresponding expectation and write Q for Q 0 .

Let us introduce a probability measure Q a on the space of marked branching random walks so that its marginal distribution is exactly Q a . Recall that the reproduction law of the branching random walk (V(x), x ∈ T) is given by the point process A e = {V(x), |x| = 1}. Let A e be the point process having

Radon-Nykodim derivative ∑ z∈A e e -z with respect to the law of L. We start with w 0 the root, located at V(w 0 ) = 0. At time 1, it dies and reproduces a random number of individuals whose displacements with respect to V(w 0 ), viewed as a point process, are distributed as A e . All children of w 0 form the first generation, among which we choose x to be w 1 with probability proportional to e -V(x) . Then recursively, at time n + 1, the individuals of the n-th generation die and reproduce independently their children according to the law of A e , except w n which gives birth to its children according to A e . The w n+1 is selected among the children of w n with probability proportional to e -V(u) for each child u of w n . This construction gives us a branching random walk with a marked ray (w n ) n≥0 , which is called the spine. The law of this marked branching random walk (V(x),

x ∈ T; (w n ) n≥0 ) is denoted by Q 0 . Again, Q a denotes the law of (a + V(x), x ∈ T; (w n ) n≥0 ) under Q 0 .
We use E Q a to represent the corresponding expectation and use Q instead of Q 0 for brevity.

It is known that the marginal law of Q a on the branching random walk is the same as Q a defined above. We also state the following proposition from [START_REF] Lyons | A simple path to biggins' martingale convergence for branching random walk[END_REF], which gives some properties of Q a .

Proposition 4.2.

(i) For any n ∈ N and a ∈ R,

Q a ((V(w 0 ), • • • , V(w n )) ∈ •) = P ((a + S 0 , • • • , a + S n ) ∈ •) . (ii) For any |u| = n, Q a (w n = u|F n ) = e -V(u) W n .
For the marked branching random walk (V(x), x ∈ T; (w n ) n≥0 ), let Ω(w j ) = {u ∈ T : u * = w j-1 , u = w j } be the collection of brothers of w j for any j ≥ 1. Let G be the sigma-field containing all information along the spine, that is,

G := σ{(w k , V(w k )) k≥0 , (u, V(u)) u∈∪ k≥0 Ω(w k ) }.
Then conditioned on G , for all u ∈ ∪ k≥1 Ω(w k ), (V(v), v ≥ u) are independent and distributed as P V(u) .

Proof of Lemmas 2.2 and 3.5

In this section, we study the following sum: for any 0 < A < B < ∞,

χ i (A, B, r) := Br 2 ∑ m=Ar 2 ∑ |z|=m e -V(z) F i (z, r), for i = 1, 2, 3; (4.3)
where

F 1 (z, r) :=e V(z)-(1-θ)r-b 1 {V(z)-V(z)≤θr+tr,V(z)≤(1-θ)r+b} , (4.4) F 2 (z, r) :=e V(z)-(1-θ)r-b 1 {V(z)≤r+tr,V(z)≤(1-θ)r+b} , (4.5) F 3 (z, r) :=f( e θr H z )1 {V(z)≥r+tr,maxy≤z(V(y)-V(y))≤r+sr,V(z)-V(z)∈[θr-K,θr+K]} , (4.6) 
with t r = o(r), s r = o(r), K > 0 and b ∈ R such that s r + 6 log r < t r . We are going to show that as r → ∞.

χ i (A, B, r) P * -→ C i (A, B)D ∞ , for i = 1, 2, 3, (4.7) 
where C i (A, B) are positive constants which will be determined later. First, to conclude Lemma 3.5, in other words, to get (3.9), we need to compare {z ∈

L γ n } = {max y≤z H y ≤ n (log n) γ } with {max y≤z (V(y) -V(y)) ≤ r + s r }. In fact, note that e V(y)-V(y) ≤ H y ≤ |y|e V(y)-V(y) with |y| ≤ |z|. Thus for |z| ≤ B(log n) 2 with n 1, 1 {maxy≤z(V(y)-V(y))≤log n-(γ+3) log log n} ≤ 1 {z∈L γn } ≤ 1 {maxy≤z(V(y)-V(y))≤log n-γ log log n}
Note also that in Lemma 3.5, t r = a log log n with a + γ > 6. Therefore, we can deduce Lemma 3.5 from (4.7) for i = 3. Secondly, one can see immediately that Lemma 2.2 is mainly based on the convergences of χ 1 and χ 2 and that Lemma 3.5 is based on the convergence of χ 3 with r = log n. To complete the proof of Lemma 2.2, as F 1 ≤ F 2 , we still need to check the following estimate.

Lemma 4.3. For any α > 0, as ε ↓ 0, we have

lim sup n→∞ E   ε(log n) 2 ∑ m=1 ∑ |z|=m e -V(z) F 2 (z, log n)1 {V(z)≥-α}   =o ε (1); (4.8) lim sup n→∞ E   c 0 (log n) 3 ∑ (log n) 2 /ε ∑ |z|=m e -V(z) F 2 (z, log n)1 {V(z)≥-α}   =o ε (1). (4.9)
The proof of Lemma 4.3 is postponed in Section 5. In the following, we prove (4.7) by using the idea of [START_REF] Boutaud | A revisited proof of the seneta-heyde norming for branching random walks under optimal assumptions[END_REF].

Outline of proof of (4.7). It is known that for any ε ∈ (0, 1), there exists k 0 ≥ 1 such that

P inf n≥k 0 inf |z|=n V(z) ≥ 0 ≥ 1 -ε, (4.10)
with the convention that inf ∅ = ∞. For any r such that Ar 2 ≥ 2k 0 , let

χ i (A, B, r, k 0 ) := Br 2 ∑ m=Ar 2 ∑ |z|=m e -V(z) F i (z, r, k 0 )
where F i (z, r, k 0 ) := F i (z, r)1 {minz 0 ≤y≤z V(y)≥0} with z 0 := z k 0 . It then follows from (4.10) that for any ε > 0 and i = 1, 2, 3, there exists k 0 ≥ 1 such that for any k ≥ k 0 ,

P (∀r ≥ 1, χ i (A, B, r) = χ i (A, B, r, k)) ≤ 2ε. (4.11)
So, according to [START_REF] Boutaud | A revisited proof of the seneta-heyde norming for branching random walks under optimal assumptions[END_REF], it suffices to show that for any λ > 0 and i = 1, 2, 3, a.s., lim

k 0 →∞ lim sup r→∞ E[e -λ χi (A,B,r,k 0 ) |F k 0 ] = lim k 0 →∞ lim inf r→∞ E[e -λ χi (A,B,r,k 0 ) |F k 0 ] = exp{-λC i (A, B)D ∞ }. (4.12)
By (4.11) and a Cantor diagonal extraction argument, we could find a subsequence k r ↑ ∞ so that for any rational

λ ∈ Q + , lim r→∞ E[e -λχ i (A,B,r) |F k r ] = exp{-λC i (A, B)D ∞ }.
Then by Lemma B.1 of [START_REF] Boutaud | A revisited proof of the seneta-heyde norming for branching random walks under optimal assumptions[END_REF], this yields the convergence in probability of

χ i (A, B, r) towards C i (A, B)D ∞ .
Let us check (4.12). Observe that by Jensen's inequality,

E[e -λ χi (A,B,r,k 0 ) |F k 0 ] = ∏ |u|=k 0 E exp{-λ Br 2 ∑ m=Ar 2 ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z, r)} F k 0 ≥ exp -λ ∑ |u|=k 0 Br 2 ∑ m=Ar 2 E ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z, r)}|F k 0 ≥ exp{-λ ∑ |u|=k 0 (1 + o r (1))E V(u) [ χi ]}1 {max |u|=k 0 V(u)≤r 1/3 ,min |u|=k 0 V(u)≥-r 1/3 } , (4.13) where χi = χi (A, B, r, k 0 ) := ∑ Br 2 -k 0 m=Ar 2 -k 0 ∑ |z|=m e -V(z) F i (z, r) with F 1 (z, r) :=e V(z)-(1-θ)r-b 1 {V(z)≥0,V(z)-V(z)≤θr+tr,V(z)≤(1-θ)r+b} ; F 2 (z, r) :=e V(z)-(1-θ)r-b 1 {V(z)≥0,V(z)≤r+tr,V(z)≤(1-θ)r+b} ; F 3 (z, r) :=f( e θr H z )1 {V(z)≥0,V(z)≥r+tr,maxy≤z(V(y)-V(y))≤r+sr,V(z)-V(z)∈[θr-K,θr+K]} .
Let us explain a little the last inequality in (4.13). Note that if {max |u|=k 0 V(u) ≤ r 1/3 }, one has V(z) = max z 0 ≤y≤z V(y). Thus, for i = 1, 2,

E ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z, r)}|F k 0 = E V(u) ∑ |z|=m-k 0 e -V(z) F i (z, r) . For i = 3, one can see that given {max |u|=k 0 V(u) ≤ r 1/3 , min |u|=k 0 V(u) ≥ -r 1/3 } and {V(z) ≥ r + t r , V(z) -V(z) ∈ [θr + d, θr + d + h]}, we have moreover {max y≤z (V(y) -V(y)) ≤ r + s r } = {max z 0 ≤y≤z (V(y) -V(y)) ≤ r + s r } and f( e θr H z ) = (1 + o r (1))f( e θr ∑ z 0 ≤y≤z e V(y)-V(z) ) as |H z -∑ z 0 ≤y≤z e V(y)-V(z) | H z ≤ k 0 e r 1/3 -r-t r = o r (1).
This leads to

E ∑ |z|=m 1 {z 0 =u} e -V(z) F 3 (z, r)}|F k 0 = (1 + o r (1))E V(u) ∑ |z|=m-k 0 e -V(z) F 3 (z, r) .
We next turn to the upper bound of E[e -λ χi (A,B,r,k 0 ) |F k 0 ]. For any δ ∈ (0, 1), let λ δ := λe -λδ and χ(δ) i =:

Br 2 -k 0 ∑ m=Ar 2 -k 0 ∑ |z|=m e -V(z) F i (z, r)1 ∑ |z|=m e -V(z) F i (z,r)≤ δ Br 2 .
As a consequence of the fact e -λt ≤ 1λ δ t for any t ∈ [0, δ],

E[e -λ χi (A,B,r,k 0 ) |F k 0 ] ≤ ∏ |u|=k 0 E exp{-λ Br 2 ∑ m=Ar 2 ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z, r)1 ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z,r)≤ δ Br 2 } F k 0 ≤ ∏ |u|=k 0 1 -λ δ E Br 2 ∑ m=Ar 2 ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z, r)1 ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z,r)≤ δ Br 2 F k 0 ≤ exp -λ δ ∑ |u|=k 0 E Br 2 ∑ m=Ar 2 ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z, r)1 ∑ |z|=m 1 {z 0 =u} e -V(z) F i (z,r)≤ δ Br 2 F k 0 (4.14)
which as explained above, for r large enough, is bounded by

exp -λ δ ∑ |u|=k 0 (1 + o r (1))E V(u) [ χ(δ/2) i ] + 1 {max |u|=k 0 V(u)>r 1/3 } + 1 {min |u|=k 0 V(u)<-r 1/3 } .
For (4.13) and (4.14), letting r → ∞ brings out that lim inf

r→∞ exp -λ ∑ |u|=k 0 (1 + o r (1))E V(u) [ χi ] ≤ lim inf r→∞ E[e -λ χi (A,B,r,k 0 ) |F k 0 ] ≤ lim sup r→∞ E[e -λ χi (A,B,r,k 0 ) |F k 0 ] ≤ lim sup r→∞ exp -λ δ ∑ |u|=k 0 (1 + o r (1))E V(u) [ χ(δ/2) i ] (4.15)
Next, we claim the following lemma on

E x [ χi ] and E x [ χ(δ) i ].
Lemma 4.4. For any x ≥ 0, δ > 0, as r → ∞,

lim r→∞ E x [ χi ] =C i (A, B)R(x)e -x , (4.16) lim sup r→∞ E x χi - χ(δ) i =o x (1)R(x)e -x , (4.17) 
where R(•) is the renewal function defined in (A.6),

C 1 (A, B) = C 2 (A, B) = c + σ B A C 0 ( θ √ u , 1 -θ √ u ) du u ∈ (0, ∞),
and

C 3 (A, B) = C 3 (A, B, K) = K -K E[f( e -s H ∞ + H (-) ∞ -1 )]ds B A G( 1 √ u , θ √ u ) du u ∈ (0, ∞). (4.18) By (A.7), R(u) ∼ c R u as u → ∞.
Recall also that the derivative martingale D k 0 = ∑ |u|=k 0 V(u)e -V(u) converges a.s. to some non-negative limit D ∞ . As a result, we obtain lim

k 0 →∞ lim r→∞ E[e -λ χi (A,B,r,k 0 ) |F k 0 ] = exp{-λc R C i (A, B)D ∞ }.
By Lemma B.1 of [START_REF] Boutaud | A revisited proof of the seneta-heyde norming for branching random walks under optimal assumptions[END_REF] and a Cantor diagonal extraction argument, this yields convergence in prob-

ability of χi (A, B, r, k 0 (r)) towards c R C i (A, B)D ∞ .
In view of (4.11), we obtain the convergence in probability of

χ i (A, B, r) towards C i (A, B)D ∞ under P (hence under P * ) with C i (A, B) = c R C i (A, B). Note that R E[f( e -s H ∞ +H (-) ∞ -1
)]ds = 1. So Lemma 3.5 holds and finally Proposition 1.5 holds with

Λ 1 (θ) = c R ∞ 0 G( 1 √ u , θ √ u ) du u .
And Lemma 2.2 holds with

Λ 0 (θ) = c R c + σ ∞ 0 C 0 ( θ √ u , 1 -θ √ u ) du u = √ 2 √ πσ 2 ∞ 0 C 0 ( θ √ u , 1 -θ √ u ) du u ,
because of (A.8). The finiteness of these constants is given in Appendix A.2.

In order to conclude (4.7), we only need to prove Lemma 4.4 mainly for i = 2, 3.

Proof of Lemma 4.4. Proof of (4.16). By Many-to-one lemma, we have

E x [ χ2 ] = e -x Br 2 -k 0 ∑ m=Ar 2 -k 0 E x e S m -(1-θ)r-b ; S m ≥ 0, S m ≤ r + t r , S m ≤ (1 -θ)r + b . By (A.38), as r → ∞, E x [ χ2 ] =R(x)e -x Br 2 -k 0 ∑ m=Ar 2 -k 0 1 + o r (1) m c + σ C 0 ( r √ m , (1 -θ)r √ m ) =R(x)e -x (1 + o r (1)) B- k 0 r 2 A- k 0 r 2 c + σ C 0 ( θ √ u , 1 -θ √ u ) du u , which converges to R(x)e -x c + σ B A C 0 ( θ √ u , 1-θ √ u ) du u
. By (A.39) instead of (A.38), we get (4.16) for i = 1. Moreover, we get that

C 1 (A, B) = C 2 (A, B) = B A c + σ C 0 ( θ √ u , 1 -θ √ u ) du u .
For i = 3, by (A.36), as r → ∞,

E x [ χ3 ] =e -x R(x) Br 2 -k 0 ∑ m=Ar 2 -k 0 K -K E[f( e -s H ∞ + H (-) ∞ -1)]ds 1 + o r (1) m G( r √ m , θr √ m ) →R(x)e -x K -K E[f( e -s H ∞ + H (-) ∞ -1 )]ds B A G( 1 √ u , θ √ u ) du u .
Proof of (4.17). First, by Markov inequality,

E x [ χ i -χ (δ) i ] = Br 2 -k 0 ∑ m=Ar 2 -k 0 E x ∑ |z|=m e -V(z) F i (z, r)1 ∑ |z|=m e -V(z) F i (z,r)> δ Br 2 ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 E x ∑ |z|=m e -V(z) F i (z, r) Br 2 ∑ |z|=m e -V(z) F i (z, r) δ ∧ 1 .
Note that F 1 ≤ F 2 . So, we only need to treat it for i = 2, 3. By Lyons' change of measure and Proposition 4.2, we then get that

E x [ χ i -χ (δ) i ] ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x   F i (w m , r)   Br 2 δ [ m ∑ j=1 ∑ u∈Ω(w j ) ∑ |z|=m,z≥u e -V(z) F i (z, r) + e -V(w m ) F i (w m , r)] ∧ 1     ≤UB 1 (A, B, r, i) + UB 2 (A, B, r, i), (4.19) 
where

UB 1 (A, B, r, i) := Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x F i (w m , r) Br 2 δ e -V(w m ) F i (w m , r) ∧ 1 , UB 2 (A, B, r, i) := Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x   F i (w m , r)   [ Br 2 δ m ∑ j=1 ∑ u∈Ω(w j ) ∑ |z|=m,z≥u e -V(z) F i (z, r)] ∧ 1     .
Observe that for i = 3, by Proposition 4.2 and (A.4),

UB 1 (A, B, r, 3) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 Br 2 e -x δ E x e -S m 1 {S m ≥0,S m ≥r+t r ,S m -S m ∈[θr-K,θr+K]} ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 Br 2 e -(1-θ)r-t r +K δ √ m c 2 (1 + x)e -x = o r (1)R(x)e -x .
Note also that as F 2 ≤ 1, by (A.5),

UB 1 (A, B, r, 2) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 2 δ E Q x F 2 (w m , r)e -V(w m ) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 2 e -(1-θ)r-b δ P x (S m ≥ 0, S m ≤ (1 -θ)r + b) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 2 e -(1-θ)r-b δ c 3 (1 + x)(1 + r) 2 m 3/2 = o r (1)R(x)e -x . Recall that G = σ{(w k , V(w k )) k≥0 , (u, V(u)) u∈∪ k≥1 Ω(w k ) }. So, UB 2 (A, B, r, i) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x   F i (w m , r)   ( Br 2 δ m ∑ j=1 ∑ u∈Ω(w j ) E Q x ∑ |z|=m,z≥u e -V(z) F i (z, r) G ) ∧ 1     , (4.20)
where for i = 2 and u ∈ Ω(w j ), by branching property at u and then by (A.5),

E Q x ∑ |z|=m,z≥u e -V(z) F 2 (z, r) G ≤e -V(u) 1 {V(u)≥0} E V(u) [e S m-j -(1-θ)r-b ; S m-j ≥ 0, S m-j ≤ (1 -θ)r -b] ≤e -V(u) 1 {V(u)≥0} c 4 (1 + V(u))(1 + r) (m -j + 1) 3/2 1 {j<m/2} + e -V(u) 1 {V(u)≥0} 1 {j≥m/2} , (4.21) 
and for i = 3 and u ∈ Ω(w j ),

E Q x ∑ |z|=m,z≥u e -V(z) F 3 (z, r)|G =E Q x ∑ |z|=m,z≥u e -V(z) F 3 (z, r)1 {V(z)=V(u)} |G + E Q x ∑ |z|=m,z≥u e -V(z) F 3 (z, r)1 {V(z)>V(u)} |G ≤e -V(u) 1 {V(u)≥0,V(u)-V(u)≤r+sr,V(u)≥r+tr} P V(u) (S m-j ≥ 0, x -S m-j ∈ [θr -K, θr + K])| x=V(u) +e -V(u) 1 {V(u)≥0} P V(u) (S m-j ≥ 0, S m-j -S m-j ∈ [θr -K, θr + K], max k≤m-j (S k -S k ) ≤ r + s r , S m-j ≥ r + t r ),
where by (A.28) for j < m/2 and V(u) ≤ r/2, one has

P V(u) (S m-j ≥ 0, S m-j -S m-j ∈ [θr -K, θr + K], max k≤m-j (S k -S k ) ≤ r + s r , S m-j ≥ r + t r ) ≤1 {j≥m/2} + 1 {j<m/2,V(u)≥r/2} + c 5 (1 + V(u)) (1 + K 2 )(1 + r) (m -j) 3/2 1 {j<m/2,V(u)≤r/2} . (4.22)
Moreover, by (A.5), one sees that 

E Q x ∑ |z|=m,z≥u e -V(z) F 3 (z, r)|G ≤e -V(u) 1 {V(u)≥0,V(u)-V(u)≤r+sr,V(u)≥r+tr} [ c 6 (1 + V(u))(V(u) -θr + K)(1 + 2K) (m -j) 3/2 ∧ 1] + e -V(u) 1 {V(u)≥0} 1 {j≥m/2} + e -V(u) 1 {V(u)≥0} 1 {j<m/2,V(u)≥r/2} + c 5 (1 + V(u))e -V(u) 1 {V(u)≥0,V(u)≤r/2,j<m/2} (1 + K 2 )(1 + r) (m -j) 3/2 ≤c 7 (1 + V(u)) 2 e -V(u) 1 {V(u)≥0} (1 + K 2 )(1 + r) (m -j) 3/2 1 {j<m/2} + 2e -V(u) 1 {V(u)≥0} 1 {j≥m/2} + e -r/4 e -V(u)/2 1 {V(u)≥0}
UB 2 (A, B, r, 2) ≤ UB < 2 (A, B, r, 2) + UB ≥ 2 (A, B, r, 2) (4.24)
where

UB < 2 (A, B, r, 2) := Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 3 δm 3/2 m/2 ∑ j=1 E Q x   F 2 (w m , r) ∑ u∈Ω(w j ) (1 + V(u))e -V(u) 1 {V(u)≥0}   , UB ≥ 2 (A, B, r, 2) := Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x   F 2 (w m , r)   m ∑ j=m/2 ∑ u∈Ω(w j ) Br 2 δ e -V(u) 1 {V(u)≥0}   ∧ 1   ,
and that

UB 2 (A, B, r, 3) ≤ UB (1) 2 (A, B, r, 3) + UB (2) 2 (A, B, r, 3) + UB (3) 2 (A, B, r, 3), (4.25)
where

UB (1) 2 (A, B, r, 3) := Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x 2B(1 + K 2 )r 3 δm 3/2 E Q x   F 3 (w m , r)   m/2 ∑ j=1 ∑ u∈Ω(w j ) (1 + V(u)) 2 e -V(u) 1 {V(u)≥0}     , UB (2) 
2 (A, B, r, 3) := Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 2 δ e -r/4 E Q x   F 3 (w m , r)   m/2 ∑ j=1 ∑ u∈Ω(w j ) e -V(u)/2 1 {V(u)≥0}     , UB (3) 
2 (A, B, r, 3) := Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x   F 3 (w m , r)   m ∑ j=m/2 ∑ u∈Ω(w j ) 2 Br 2 δ e -V(u) 1 {V(u)≥0}   ∧ 1   .
In the rest part, we will check that all these terms are o x (1)R(x)e -x as r → ∞ and then x → ∞. We will first treat UB < 2 (A, B, r, 2), UB

2 (A, B, r, 3) and UB

(2)

2 (A, B, r, 3) in the similar way. For any u ∈ T, let ∆V(u) = V(u) -V(u * ) be its displacement. Write ∆ + V(u) for ∆V(u) ∨ 0. Then,

∑ u∈Ω(w j ) (1 + V(u))e -V(u) 1 {V(u)≥0} ≤ ∑ u∈Ω(w j ) (1 + V(u)) 2 e -V(u) 1 {V(u)≥0} ≤ e -V(w j-1 )/2 1 {V(wj-1)≥0} V + j , with V + j := ∑ u∈Ω(w j ) e -∆V(u)/2 . Consequently, UB < 2 (A, B, r, 2) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 3 δm 3/2 m/2 ∑ j=1 E Q x e V(w m )-(1-θ)r-b 1 {V(wm)≥0,V(wm)≤r+tr,V(wm)≤(1-θ)r+b} e -V(w j-1 )/2 V + j ,
which by Markov property at time j and then by (A.26), is bounded by

Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 3 δm 3/2 m/2 ∑ j=1 E Q x 1 {V(wj)≥0} e -V(w j-1 )/2 V + j E V(w j ) [e S m-j -(1-θ)r+b 1 {S m-j ≥0,S m-j ≤(1-θ)r-b} ] ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 3 δm 3/2 m/2 ∑ j=1 E Q x 1 {V(wj)≥0} e -V(w j-1 )/2 V + j (1 + V(w j )) c 8 r (m -j) 3/2 .
Here (1 + V(w j ))1 {V(wj)≥0} ≤ (1 + V(w j-1 ))1 {V(wj-1)≥0} (1 + ∆ + V(w j )) and then Markov property at time j -1 implies that

E Q x 1 {V(wj)≥0} e -V(w j-1 )/2 V + j (1 + V(w j )) ≤ E Q x 1 {V(wj-1)≥0} (1 + V(w j-1 ))e -V(w j-1 )/2 E Q [V + 1 (1 + V + (w 1 ))],
where by Proposition 4.2,

E Q [V + 1 (1 + V + (w 1 ))] = E ∑ |u|=1 (1 + V + (u))e -V(u) ∑ |v|=1,v =u e -V(v)/2 .
By Cauchy-Schwartz inequality and (1.5),

E Q [V + 1 (1 + V + (w 1 ))] 2 ≤E ( ∑ |u|=1 (1 + V + (u))e -V(u) ) 2 E ( ∑ |u|=1 e -V(u)/2 ) 2 ≤E ( ∑ |u|=1 (1 + V + (u))e -V(u) ) 2 E N ∑ |u|=1 e -V(u) ≤E ( ∑ |u|=1 (1 + V + (u))e -V(u) ) 2 E[N 2 ]E ( ∑ |u|=1 e -V(u) ) 2 < ∞.
Similarly, we also have

E Q [V + 1 (1 + V + (w 1 )) 2 ] < ∞. It follows that UB < 2 (A, B, r, 2) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x Br 3 δm 3/2 m/2 ∑ j=1 E Q x 1 {V(wj-1)≥0} (1 + V(w j-1 ))e -V(w j-1 )/2 c 8 r (m -j) 3/2 ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x c 9 r 4 δm 3 m/2 ∑ j=1 E x 1 {S j-1 ≥0} e -S j-1 /4 ≤ c 10 e -x E x ∑ j≥0 e -S j /4 1 {S j ≥0} , which by (A.15) shows that UB < 2 (A, B, r, 2) = o x (1)R(x)e -x . For UB (1) 2 (A, B, r, 3), as f(t) ≤ 1, we have E Q x   F 3 (w m , r)   m/2 ∑ j=1 ∑ u∈Ω(w j ) (1 + V(u)) 2 e -V(u) 1 {V(u)≥0}     (4.26) ≤ m/2 ∑ j=1 E Q x 1 {V(wm)≥0,V(wm)≥r+tr,maxk≤m(V(k)-V(k))≤r+sr,V(wm)-V(wm)∈[θr-K,θr+K]} e -V(w j-1 )/2 V + j = m/2 ∑ j=1 m ∑ i=1 E Q x 1 {V(wm)≥0,τ V m =i,V(w m )≥r+t r ,max k≤m (V(k)-V(k))≤r+s r ,V(w m )-V(w m )∈[θr-K,θr+K]} e -V(w j-1 )/2 V + j where τ V m := inf{i ≤ m : V(w i ) = V(w m )}.
On the one hand, if τ V m ≥ j + 1, by Markov property at time j, one sees that

m/2 ∑ j=1 m ∑ i=j+1 E Q x 1 {V(wm)≥0,τ V m =i,V(w m )≥r+t r ,max k≤m (V(k)-V(k))≤r+s r ,V(w m )-V(w m )∈[θr-K,θr+K]} e -V(w j-1 )/2 V + j ≤ m/2 ∑ j=1 E Q x 1 {V(wj)≥0} e -V(w j-1 )/2 V + j E V(w j ) 1 {S m-j ≥0,S m-j ≥r+t r ,max k≤m-j (S k -S k )≤r+s r ,S m-j -S m-j ∈[θr-K,θr+K]} ,
which by (A.28) and (A.15) is bounded by

c 11 m/2 ∑ j=1 E Q x 1 {V(wj)≥0} e -V(w j-1 )/2 V + j (1 + V(w j )) (1 + K 2 )(1 + r) (m -j) 3/2 ≤ c 11 (1 + K 2 )(1 + r) m 3/2 E x ∑ j≥1 (1 + S j-1 )e -S j-1 /2 1 {S j-1 ≥0} E Q (1 + V + (w 1 )V + 1 = c 11 (1 + K 2 )(1 + r) m 3/2 o x (1)R(x).
On the other hand, if τ V m ≤ j, again by Markov property at time j,

m/2 ∑ j=1 j ∑ i=1 E Q x 1 {V(wm)≥0,τ V m =i,V(w m )≥r+t r ,max k≤m (V(k)-V(k))≤r+s r ,V(w m )-V(w m )∈[θr-K,θr+K]} e -V(w j-1 )/2 V + j ≤ m/2 ∑ j=1 E Q x 1 {V(wj)≥0} e -V(w j-1 )/2 V + j P V(w j ) (S m-j ≥ 0, x -S m-j ∈ [θr -K, θr + K])| x=V(w j )
where by (A.5),

P V(w j ) (S m-j ≥ 0, x -S m-j ∈ [θr -K, θr + K])| x=V(w j ) ≤ c 12 (1 + K 2 )(1 + V(w j ))(1 + V(w j ) -θr) (m -j) 3/2 ,
which is bounded by

c 13 (1+K 2 )(1+V(w j )) 2 (1+r) (m-j) 3/2
because V(w j ) -V(w j ) ≤ r + s r . Again by Markov property at time j -1 and (A.15), we get that

m/2 ∑ j=1 j ∑ i=1 E Q x 1 {V(wm)≥0,τ V m =i,V(w m )≥r+t r ,max k≤m (V(k)-V(k))≤r+s r ,V(w m )-V(w m )∈[θr-K,θr+K]} e -V(w j-1 )/2 V + j ≤ c 13 (1 + K 2 )(1 + r) m 3/2 E x ∑ j≥1 (1 + S j-1 ) 2 e -S j-1 /2 1 {Sj-1≥0} E Q [V + 1 (1 + V + (w 1 )) 2 ] = c 13 (1 + K 2 )(1 + r) m 3/2 o x (1)R(x).
Combining these inequalities and going back to (4.26), we have

E Q x   F 3 (w m , r, k 0 )   m/2 ∑ j=1 ∑ u∈Ω(w j ) (1 + V(u)) 2 e -V(u) 1 {V(u)≥0}     ≤ c 14 (1 + K 2 )(1 + r) m 3/2 o x (1)R(x).
This implies that

UB

(1)

2 (A, B, r, 3) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x 2B(1 + K 2 )r 3 δm 3/2 c 14 (1 + K 2 )(1 + r) m 3/2 o x (1)R(x) = o x (1)R(x)e -x . (4.27)
Note that ∑ u∈Ω(w j ) e -V(u)/2 ≤ e -V(w j-1 )/2 V + j . So similarly as above,

UB

(2)

2 (A, B, r, 3) = o x (1)R(x)e -x .
(4.28)

Let us turn to bound UB

(3)

2 (A, B, r, 3) in (4.25). Let V(w [j,m] ) := min j≤k≤m V(w k ) and S [j,m] := min j≤k≤m S k . Observe that UB (3) 2 (A, B, r, 3) ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x F 3 (w m , r)1 {V(w [m/2-1,m] )≤6 log r} + Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x 2Br 2 δ m ∑ j=m/2 E Q x   1 {V(wm)≥0,V(w [m/2-1,m] )≥6 log r} e -V(w j-1 ) ∑ u∈Ω(w j ) e -∆V(u)   . (4.29)
On the one hand, by Proposition 4.2,

E Q x F 3 (w m , r)1 {V(w [m/2-1,m] )≤6 log r} ≤ E Q x 1 {V(wm)≥0,V(wm)≥r+tr,maxk≤m(V(wk)-V(wk))≤r+sr,V(wm)-V(wm)∈[θr-K,θr+K]} 1 {V(w [m/2-1,m] )≤6 log r} ≤ m-1 ∑ j=m/2-1 P x S m ≥ 0, S m ≥ r + t r , S [m/2-1,m] = S j ≤ 6 log r, S m -S m ∈ [θr -K, θr + K], max k≤m (S k -S k ) ≤ r + s r .
Recall that t r > s r + 6 log r. So S m > S j . By Markov property at time j, one sees that

E Q x F 3 (w m , r)1 {V(w [m/2-1,m] )≤6 log r} ≤ m-1 ∑ j=m/2-1 P x (S j ≥ 0, S j ≤ 6 log r)P(S m-j ≥ 0, max k≤m-j (S k -S k ) ≤ r + s r , S m-j -S m-j ∈ [θr -K, θr + K]) ≤ c 15 (1 + x)(6 log r) 2 m 3/2 m-1 ∑ j=m/2-1 P(S m-j ≥ 0, max k≤m-j (S k -S k ) ≤ r + s r , S m-j -S m-j ∈ [θr -K, θr + K])
where the last inequality comes from (A.5). Then by (A.29), one gets that

E Q x F 3 (w m , r)1 {V(w [m/2-1,m] )≤6 log r} ≤ c 16 (1 + K)(1 + x)(6 log r) 2 m 3/2 , which ensures that ∑ Br 2 -k 0 m=Ar 2 -k 0 e -x E Q x F 3 (z, r)1 {V(w [m/2-1,m] )≤6 log r} = o r (1)R(x)e -x .
On the other hand, by Markov property at time j,

Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x 2Br 2 δ m ∑ j=m/2 E Q x   1 {V(wm)≥0,V(w [m/2-1,m] )≥6 log r} e -V(w j-1 ) ∑ u∈Ω(w j ) e -∆V(u)   ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x 2B δr 2 m ∑ j=m/2 E Q x 1 {V(wj-1)≥0} e -V(w j-1 )/3 E Q ∑ u∈Ω(w 1 ) e -V(u) ,
where by Proposition 4.2 and (A.15),

m ∑ j=m/2 E Q x 1 {V(wj-1)≥0} e -V(w j-1 )/3 = m ∑ j=m/2 E x 1 {S j-1 ≥0} e -S j-1 /3 ≤ E x ∑ j≥0 e -S j /4 = o x (1)R(x).
Moreover by Proposition 4.2 and (1.5),

E Q ∑ u∈Ω(w 1 ) e -V(u) ≤ E ( ∑ |u|=1 e -V(u) ) 2 < ∞.
We thus deduce that

Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x 2Br 2 δ m ∑ j=m/2 E Q x   1 {V(wm)≥0,V(w [m/2-1,m] )≥6 log r} e -V(w j-1 ) ∑ u∈Ω(w j ) e -∆V(u)   = o x (1)R(x)e -x .
(4.30)

Going back to (4.29), we obtain that UB

(3)

2 (A, B, r, 3) = o x (1)R(x)e -x .

It remains to bound UB ≥

2 (A, B, r, 2) in (4.24). Similarly as above, observe that

UB ≥ 2 (A, B, r, 2) = Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x   F 2 (w m , r)   m ∑ j=m/2 ∑ u∈Ω(w j ) Br 2 δ e -V(u) 1 {V(u)≥0}   ∧ 1   ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x F 2 (w m , r)1 {V(w [m/2-1,m] )≤6 log r} + Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x m ∑ j=m/2 Br 2 δ E Q x   1 {V(wm)≥0,V(w [m/2-1,m] )≥6 log r} e -V(w j-1 ) ∑ u∈Ω(w j ) e -∆V(u)   = Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x F 2 (w m , r)1 {V(w [m/2-1,m] )≤6 log r} + o x (1)R(x)e -x ,
where the last line comes from (4.30).

For the first term on the right hand side, by Proposition 4.2,

Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x F 2 (w m , r)1 {V(w [m/2-1,m] )≤6 log r} ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x m ∑ j=m/2-1 E x e S m -(1-θ)r-b 1 {S m ≥0,S m ≤(1-θ)r+b,S j =S [m/2-1,m] ≤6 log r} ,
which by Markov property at time j, is bounded by

Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x m ∑ j=m/2-1 E x 1 {S j ≥0,S j ≤6 log r} E[e S m-j -[(1-θ)r+b-v] 1 {S m-j ≥0,S m-j ≤(1-θ)r+b-v} ]| v=S j ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x 6 log r ∑ k=0 m ∑ j=m/2-1 P x (S j ≥ 0, S j ∈ [k, k + 1])eE[e S m-j -[(1-θ)r+b-k] 1 {S m-j ≥0,S m-j ≤(1-θ)r+b-k} ].
Then by (A.5) and by (A.27), we have

Br 2 -k 0 ∑ m=Ar 2 -k 0 e -x E Q x F 2 (w m , r)1 {V(w [m/2-1,m] )≤6 log r} ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e 1-x 6 log r ∑ k=0 c 17 (1 + x)(2 + k) m 3/2 m ∑ j=m/2-1 E[e S m-j -[(1-θ)r+b-k] 1 {S m-j ≥0,S m-j ≤(1-θ)r+b-k} ] ≤ Br 2 -k 0 ∑ m=Ar 2 -k 0 e 1-x c 18 (1 + x)(6 log r) 2 m 3/2 = o r (1)R(x)e -x .
We hence completes the proof of (4.17).

5 Proof of Lemmas 2.1, 4.3, 3.1, 3.2, 3.3 and 3.4

Proof of Lemma 2.1. It suffices to show that

E (5.1) := E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {x∈A n (-a n ,-b)} 1 L x (τ n )<n θ or E (n) x ≤1
  =o(n 1-θ ).

(5.1)

E (5.2) := E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {x/ ∈A + n (a n ,b)} 1 {V(x)≥-α} 1 L x (τ n )≥n θ ,E (n) x ≥2   =o(n 1-θ ). (5.2) Proof of (5.1). Observe that E E [1 L x (τ n )<n θ or E (n) x ≤1 ] ≤ P E L x (τ n ) < n θ + P E L x (τ n ) ≥ n θ , E (n) 
x = 1 . So (5.1) follows the following convergences:

E (5.3) := E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {x∈A n (-a n ,-b)} P E L x (τ n ) < n θ   =o(n 1-θ );
(5.3)

E (5.4) := E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {x∈A n (-a n ,-b)} P E L x (τ n ) ≥ n θ , E (n) 
x = 1   =o(n 1-θ ).

(5.4)

Note that for a n = a log log n with a > 3 and x ∈ A n (-a n , -b) with |x| ≤ c 0 (log n) 3 , by (A.3) with λ = b, we get

P E (L x (τ n ) < n θ ) ≤ e -c 19 (log n) a-3 . E (5.3) ≤ e -c 19 (log n) a-3 E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {x∈A n (-a n ,-b)}  
Then by (2.1) and Many-to-One Lemma, one sees that

E (5.3) ≤e -c 19 (log n) a-3 c 0 (log n) 3 ∑ k=1 E e S k 1 {Sk-Sk≤θ log n-a n ,S k ≤(1-θ) log n-b} ≤e -c 19 (log n) a-3 n 1-θ c 0 (log n) 3 = o(n 1-θ ),
which shows (5.3). On the other hand, for n ≥ 2 and x ∈ A n (-a n , -b), we could get that

P E L x (τ n ) ≥ n θ , E (n) x = 1 =na x b n θ -1 x (1 -a x ) n-1 ≤ n 1-θ e -V(x) e -c 20 n θ Hx ≤n 1-θ e -V(x) e -c 21 (log n) a-3 .
Consequently,

E (5.4) ≤ n 1-θ e -c 21 (log n) a-3 E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {x∈A n (-a n ,-b)} e -V(x)   ,
which, by the Many-to-One Lemma, leads to

E (5.4) ≤n 1-θ e -c 21 (log n) a-3 c 0 (log n) 3 ∑ k=1 P S k -S k ≤ θ log n -a n , S k ≤ (1 -θ) log n -b ≤n 1-θ e -c 21 (log n) a-3 c 0 (log n) 3 = o(n 1-θ ),
which concludes (5.4).

Proof of (5.2). It follows from (2.2) that

E (5.2) ≤E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {V(x)≥-α} 1 {V(x)>log n+a n or V(x)>(1-θ) log n+b} P E (L x (τ n ) ≥ n θ , E (n) x ≥ 2)   .
So, to get (5.2), we only need to show that

E (5.5) :=E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {V(x)>log n+a n } P E (L x (τ n ) ≥ n θ , E (n) 
x ≥ 2)

  = o(n 1-θ );
(5.5)

E (5.6) :=E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {V(x)≤log n-a n ,V(x)>(1-θ) log n+b} P E (L x (τ n ) ≥ n θ )   = o(n 1-θ );
(5.6)

E (5.7) :=E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {V(x)≥-α,V(x)∈[log n-a n ,log n+a n ],V(x)>(1-θ) log n+b} P E (L x (τ n ) ≥ n θ , E (n) x ≥ 2)   = o(n 1-θ ).
(5.7)

Let us begin with (5.5). For x ∈ T such that V(x) > log n + a n with a n = a log log n, we have

P E L x (τ n ) ≥ n θ , E (n) x ≥ 2 ≤ n 1-θ (log n) -a e -V(x) .
It then follows from Many-to-One Lemma that for a > 3,

E (5.5) ≤ n 1-θ (log n) -a E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k e -V(x)   = c 0 (log n) 3-a n 1-θ = o(n 1-θ ).
This proves (5.5).

For E (5.6) , as

n θ (1 -b x ) = n θ H x ≥ e b na x if V(x) > (1 -θ) log n + b, by (A.1) with η = b, P E L x (τ n ) ≥ n θ ≤2na x e -c η n θ (1-b x ) ≤ c 22 n 1-θ e -V(x) e -cη 2 n θ Hx ≤c 22 n 1-θ e -V(x) e -c 23 (log n) a-3 .
This combined with Many-to-One Lemma implies that

E (5.6) ≤c 22 n 1-θ e -c 23 (log n) a-3 E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k e -V(x)   = c 24 (log n) 3 e -c 23 (log n) a-3 n 1-θ = o(n 1-θ ),
which shows (5.6).

For E (5.7) , again, as n θ (1b x ) = n θ H x ≥ e b na x , by (A.2) with η = b, one has

P E L x (τ n ) ≥ n θ , E (n) x ≥ 2 ≤ 2(na x ) 2 e -c η n θ (1-b x ) = 2n 2(1-θ) e -2V(x) ( n θ H x ) 2 e -c η n θ Hx ,
which is less than c 25 n 2(1-θ) e -2V(x) since ( n θ H x ) 2 e -c η n θ Hx ≤ sup t≥0 t 2 e -c η t < ∞. As a result of Many-to-One Lemma, we have

E (5.7) ≤c 25 n 1-θ E   c 0 (log n) 3 ∑ k=1 ∑ |x|=k 1 {V(x)≥-α,V(x)∈[log n-a n ,log n+a n ],V(x)>(1-θ) log n+b} e -V(x) e (1-θ) log n-V(x)   =c 25 n 1-θ E (5.8) ,
where

E (5.8) := c 0 (log n) 3 ∑ k=1 E e (1-θ) log n-S k 1 {S k ≥-α,S k ∈[log n-a n ,log n+a n ],S k ≥(1-θ) log n} .
(5.8)

Apparently, e (1-θ) log n-S k ≤ e -a n if S k > (1θ) log n + a n . Therefore, for a n = a log log n with a > 3, one sees that

E (5.8) ≤ o n (1) + c 0 (log n) 3 ∑ k=1 E (5.9) (k),
where

E (5.9) (k) := E e (1-θ) log n-S k 1 {S k ≥-α,S k ∈[log n-a n ,log n+a n ],S k ∈[(1-θ) log n,(1-θ) log n+a n ]} .
(5.9)

We only need to show that ∑

c 0 (log n) 3 k=1 E (5.9) (k) = o n (1). For 1 ≤ k ≤ ε(log n) 2 with ε ∈ (0, 1) small, by (A.22), ε(log n) 2 ∑ k=1 E (5.9) (k) ≤ (1-θ) log n+a n ∑ r=(1-θ) log n e (1-θ) log n-r ε(log n) 2 ∑ k=1 P (S k ≥ -α, S k ∈ [r, r + 1]) ≤c 26 (1 + α)ε = o ε (1).
For k ≥ (log n) 2 /ε, by (A.5), one has

c 0 (log n) 3 ∑ k=(log n) 2 /ε E (5.9) (k) ≤ (1-θ) log n+a n ∑ r=(1-θ) log n e (1-θ) log n-r c 0 (log n) 3 ∑ k=(log n) 2 /ε P (S k ≥ -α, S k ∈ [r, r + 1]) ≤c 27 (1 + α) 2 √ ε = o ε (1).
It remains to check that lim sup n→∞ ∑

(log n) 2 /ε k=ε(log n) 2 E (5.9) (k) = o ε (1)
. By considering the first time that (S i ) 0≤i≤k hits S k , we get that

E (5.9) (k) = k-1 ∑ j=1 E e (1-θ) log n-S k 1 {S k ≥-α,S j-1 <S j =S k ∈[log n-a n ,log n+a n ],S k ∈[(1-θ) log n,(1-θ) log n+a n ]} ≤ k-1 ∑ j=1 a n ∑ s=-a n a n ∑ t=0 e -t E 1 {S k ≥-α,S j-1 <S j =S k ∈[log n+s,log n+s+1),S k ∈[(1-θ) log n+t,(1-θ) log n+t+1)} .
By Markov property at time j, one sees that

E[1 {S k ≥-α,S j-1 <S j =S k ∈[log n+s,log n+s+1),S k ∈[(1-θ) log n+t,(1-θ) log n+t+1)} ] ≤P(S j ≥ -α, S j = S j ∈ [log n + s, log n + s + 1))P(S k-j ≤ 0, S k-j + θ log n ∈ [t -s -1, t -s + 1)).
So,

(log n) 2 /ε ∑ k=ε(log n) 2 E (5.9) (k) ≤ (log n) 2 /ε ∑ k=ε(log n) 2 k-1 ∑ j=1 P (5.11) (j, k),
(5.10)

where P (5.11) (j, k) is defined to be

a n ∑ s=-a n a n ∑ t=0 e -t P(S j ≥ -α, S j = S j ∈ [log n + s, log n + s + 1))P(S k-j ≤ 0, S k-j + θ log n ∈ [t -s -1, t -s + 1)) (5.11) Observe that ∑ k-1 j=1 P (5.11) (j, k) ≤ ∑ ε 2 (log n) 2 j=1 + ∑ k-(ε log n) 2 j=(ε log n) 2 + ∑ k-1
j=k-(ε log n) 2 P (5.11) (j, k). We bound the three sums separately. First, by (A.5) and then (A.10) for j ≤ (ε log n) 2 ≤ εk and a n = a log log n, we have

ε 2 (log n) 2 ∑ j=1 P (5.11) (j, k) ≤ ε 2 (log n) 2 ∑ j=1 P(S j ≥ -α, S j = S j ≥ log n -a n ) a n ∑ t=0 e -t c 28 1 + θ log n + 2a n (k -j) 3/2 ≤c 29 ε 2 (log n) 2 ∑ j=1 1 + α j 1/2 log n 1 + θ log n + 2a n (k -j) 3/2 ≤ c 30 (1 + α)ε log n k 3/2 . For (ε log n) 2 ≤ j ≤ k -(ε log n) 2
, by (A.5) and then (A.21), one sees that

k-(ε log n) 2 ∑ j=(ε log n) 2 P (5.11) (j, k) ≤ k-(ε log n) 2 ∑ j=(ε log n) 2 a n × sup |s|≤a n P(S j ≥ -α, S j = S j ∈ [log n + s, log n + s + 1)) a n ∑ t=0 e -t c 28 (1 + θ log n + 2a n ) (k -j) 3/2 ≤c 31 a n k-(ε log n) 2 ∑ j=(ε log n) 2 (1 + α) 4 (log n) 4 j 3 (k -j) 3/2 ≤ c 32 a n (1 + α) 4 ε 4 k 3/2 + c 32 (1 + α) 4 (log n) 3 a n εk 3 . As k ≥ ε(log n) 2 , we get that ∑ k-(ε log n) 2 j=(ε log n) 2 P (5.11) (j, k) ≤ c 33 (1 + α) 4 a n ε 4 k 3/2 . For (1 -ε)k ≤ k -(ε log n) 2 ≤ j < k, by (A.21) and (A.22), one sees that k-1 ∑ j=k-(ε log n) 2 P (5.11) (j, k) ≤ c 34 (1 + α) 4 (log n) 3 k 3 a n ∑ t=0 e -t t+a n ∑ r=t-a n (ε log n) 2 ∑ j=1 P(S j ≤ 0, S j + θ log n ∈ [r -1, r + 1)) ≤ c 35 a n (1 + α) 4 (log n) 3 k 3 ε 2 .
As a consequence,

k-1 ∑ j=1 P (5.11) (j, k) ≤ c 30 (1 + α)ε log n k 3/2 + c 33 (1 + α) 4 a n ε 4 k 3/2 + c 35 a n (1 + α) 4 (log n) 3 k 3 ε 2 .
Plugging it into (5.10) yields that

(log n) 2 /ε ∑ k=ε(log n) 2 E (5.9) (k) = o n (1) + o ε (1),
which completes the proof of (5.8). We thus conclude (5.7) and (5.2).

Proof of Lemma 4.3. Let

E (4.8) := E   ε(log n) 2 ∑ m=1 ∑ |z|=m e -V(z) F 2 (z, log n)1 {V(z)≥-α}   , E (4.9) := E   c 0 (log n) 3 ∑ m=(log n) 2 /ε ∑ |z|=m e -V(z) F 2 (z, log n)1 {V(z)≥-α}   .
Let us bound E (4.8) first. By Many-to-One Lemma,

E (4.8) = ε(log n) 2 ∑ k=1 E e S k -(1-θ) log n-b 1 {S k ≥-α,S k ≤log n+a n ,S k ≤(1-θ) log n+b} ≤ ε(log n) 2 ∑ k=1 e -1-θ 2 log n-b + ε(log n) 2 ∑ k=1 E e S k -(1-θ) log n-b 1 {S k ≥-α,S k ≤log n+a n ,S k ∈[ 1-θ 2 log n,(1-θ) log n+b]} ≤o n (1) + (1-θ) log n+b ∑ t= 1-θ 2 log n e t-(1-θ) log n-b ε(log n) 2 ∑ k=1 P(S k ≥ -α, S k ∈ [t, t + 1]).
We then deduce from (A.22) that E (4.8) = o n (1) + o ε (1). This suffices to conclude (4.8).

On the other hand, by Many-to-One Lemma,

E (4.9) = c 0 (log n) 3 ∑ k=(log n) 2 /ε E e S k -(1-θ) log n-b 1 {S k ≥-α,S k ≤log n+a n ,S k ≤(1-θ) log n+b} ≤ c 0 (log n) 3 ∑ k=(log n) 2 /ε e -1-θ 2 log n-b + c 0 (log n) 3 ∑ k=(log n) 2 /ε (1-θ) log n+b ∑ t= 1-θ 2 log n e t-(1-θ) log n-b P(S k ≥ -α, S k ∈ [t, t + 1]).
By use of (A.5), we obtain that

E (4.9) ≤o n (1) + c 0 (log n) 3 ∑ k=(log n) 2 /ε c 36 (1 + α)(1 + (1 -θ) log n + b + α) k 3/2 = o n (1) + o ε (1).
This ends the proof of Lemma 4.3.

Proof of Lemma 3.1. In fact, as

P E (L x (τ n ) ≥ n θ , E (n) x = 1) = na x (1 -a x ) n-1 b n θ -1 x
, we only need to show that

E (5.12) := c 0 (log n) 3 ∑ =1 E ∑ |x|= na x (1 -a x ) n-1 b n θ -1 x 1 {V(x)≤log n-a n } = o(n 1-θ );
(5.12)

E (5.13) := c 0 (log n) 3 ∑ =1 E ∑ |x|= na x (1 -a x ) n-1 b n θ -1 x 1 {V(x)-V(x)>θ log n+a n } = o(n 1-θ );
(5.13)

E (5.14) := c 0 (log n) 3 ∑ =1 E ∑ |x|= na x (1 -a x ) n-1 b n θ -1 x 1 {V(x)-V(x)<θ log n-a n } = o(n 1-θ ).
(5.14) First, observe that if V(x) ≤ log na n with a n = a log log n and |x| ≤ c 0 (log n) 3 , then

na x (1 -a x ) n-1 b n θ -1 x ≤ n 1-θ e -V(x) n θ H x e -n θ 2Hx e -(n-1)a x ≤ n 1-θ e -V(x) e -c 37 (log n) a-3 , as a x ≥ 1 |x|e V(x)
. This follows that

E (5.12) ≤ n 1-θ e -c 37 (log n) a-3 c 0 (log n) 3 ∑ =1 E ∑ |x|= e -V(x) ,
which by Many-to-One lemma, is bounded by n 1-θ c 0 (log n) 3 e -c 37 (log n) a-3 = o(n 1-θ ). This proves (5.12). Next, note that if

V(x) -V(x) ≥ θ log n + a n , na x (1 -a x ) n-1 b n θ -1 x ≤ n 1-θ e -V(x) n θ H x ≤ n 1-θ e -V(x) (log n) -a .
This brings out that

E (5.13) ≤n 1-θ (log n) -a c 0 (log n) 3 ∑ =1 E ∑ |x|= e -V(x) = o(n 1-θ ).
(5.15)

On the other hand, if

V(x) -V(x) ≤ θ log n -a n and |x| ≤ c 0 (log n) 3 , one has n θ H x ≥ 1 c 0 (log n) a-3 and na x (1 -a x ) n-1 b n θ -1 x ≤ n 1-θ e -V(x) e -n θ 2Hx ≤ n 1-θ e -V(x) e -c 38 (log n) a-3 .
As a consequence,

E (5.14) ≤n 1-θ e -c 38 (log n) a-3 c 0 (log n) 3 ∑ =1 E ∑ |x|= e -V(x) = o(n 1-θ ).
(5.16)

This completes the proof of Lemma 3.1.

Proof of Lemma 3.2. Note that

P E (L x (τ n ) ≥ n θ , E (n) x = 1) = na x (1 -a x ) n-1 b n θ -1 x ≤ n 1-θ e -V(x) n θ H x e -n θ 2Hx , which is bounded by 2n 1-θ e -V(x) ( n θ H x ∧ H x n θ ) as xe -x/2 ≤ 2(x ∧ 1 x ) ≤ 2. So, it suffices to show that lim sup n→∞ ε(log n) 2 ∑ =1 E ∑ |x|= e -V(x) ( n θ H x ∧ H x n θ )1 {x∈B - n ∩D n ,V(x)≥-α} =o ε (1); (5.17) lim sup n→∞ c 0 (log n) 3 ∑ =(log n) 2 /ε E ∑ |x|= e -V(x) ( n θ H x ∧ H x n θ )1 {x∈B - n ∩D n ∩L n ,V(x)≥-α} =o ε (1);
(5.18)

(log n) 2 /ε ∑ =ε(log n) 2 E ∑ |x|= e -V(x) 1 {x∈D n } 1 {V(x)∈[log n-a n ,log n+a n ],V(x)≥-α} =o n (1). (5.19)
Proof of (5.17). Let

E (5.17) := ε(log n) 2 ∑ =1 E ∑ |x|= e -V(x) ( n θ H x ∧ H x n θ )1 {x∈B - n ∩D n ,V(x)≥-α} .
It suffices to show that E (5.17) = o n,ε (1) as n → ∞ and then ε ↓ 0. By Many-to-One Lemma,

E (5.17) = ε(log n) 2 ∑ =1 E ( n θ H S ∧ H S n θ ); S ≥ -α, S ≥ log n -a n , S -S ∈ [θ log n -a n , θ log n + a n ] ,
where H S := ∑ k=0 e S k -S . Note that H S = ∑ k=0 e S k -S e S -S ≥ e S -S . It then follows that

E (5.17) ≤ ε(log n) 2 ∑ =1 -1 ∑ x=-a n E e x+1 ∑ k=0 e S k -S 1 {S ≥-α,S ≥log n-a n ,S -S ∈[θ log n+x,θ log n+x+1]} + ε(log n) 2 ∑ =1 a n -1 ∑ x=0 E e -x 1 {S ≥-α,S ≥log n-a n ,S -S ∈[θ log n+x,θ log n+x+1]} ,
On the one hand, for x ≥ 0 and n 1,

ε(log n) 2 ∑ =1 a n -1 ∑ x=0 E e -x 1 {S ≥-α,S ≥log n-a n ,S -S ∈[θ log n+x,θ log n+x+1]} = a n -1 ∑ x=0 e -x ε(log n) 2 ∑ =1 P(S ≥ -α, S ≥ log n -a n , S -S ∈ [θ log n + x, θ log n + x + 1])
which is o ε (1) by (A.29). On the other hand, by considering the first time hitting S , one gets that

ε(log n) 2 ∑ =1 -1 ∑ x=-a n E e x+1 ∑ k=0 e S k -S 1 {S ≥-α,S ≥log n-a n ,S -S ∈[θ log n+x,θ log n+x+1]} = -1 ∑ x=-a n e x ε(log n) 2 ∑ =1 -1 ∑ j=1 ∑ k=0 E e S k -S j 1 {S ≥-α,S j ≥log n-a n ,S j-1 <S j =S ,S j -S ∈[θ log n+x,θ log n+x+1]}
For k ≥ j, by Markov property at time j, one sees that

ε(log n) 2 ∑ =1 -1 ∑ j=1 ∑ k=j E e S k -S j 1 {S ≥-α,S j ≥log n-a n ,S j-1 <S j =S ,S j -S ∈[θ log n+x,θ log n+x+1]} ≤ ε(log n) 2 ∑ =1 -1 ∑ j=1 P(S j ≥ -α, S j = S j ≥ log n -a n )E -j ∑ i=0 e S i 1 {S -j ≤0,-S -j ∈[θ log n+x,θ log n+x+1]} ≤ ε(log n) 2 ∑ j=1 P(S j ≥ -α, S j = S j ≥ log n -a n ) ε(log n) 2 ∑ =j+1 E -j ∑ i=0
e S i 1 {S -j ≤0,-S -j ∈[θ log n+x,θ log n+x+1]} , which by (A.19) and (A.23), is bounded by

∑ j≤ε(log n) 2 c 39 (1 + α) j log n e -c 40 (log n) 2 j × ε = o ε (1).
For k < j, by Markov property at time j again and by time-reversing, one gets that

ε(log n) 2 ∑ =1 -1 ∑ j=1 j-1 ∑ k=0 E e S k -S j 1 {S ≥-α,S j ≥log n-a n ,S j-1 <S j =S ,S j -S ∈[θ log n+x,θ log n+x+1]} ≤ ε(log n) 2 ∑ =1 -1 ∑ j=1 E j-1 ∑ k=0 e S k -S j 1 {S j ≥-α,S j >S j-1 ,S j ≥log n-a n } P(S -j ≤ 0, -S -j -θ log n ∈ [x, x + 1]) ≤ ε(log n) 2 ∑ j=1 E j ∑ k=1 e -S k 1 {S j ≥0,S j ≥log n-a n ,S j -S j ≤α} ε(log n) 2 ∑ =j+1 P(S -j ≤ 0, -S -j -θ log n ∈ [x, x + 1]),
which by (A.30) and (A.22) is bounded by

ε(log n) 2 ∑ j=1 c 41 j log n e -c 42 (log n) 2 j ε + ε(log n) 2 ∑ j=1 c 43 e -c 44 (log n) 1-δ ε = o ε (1),
for all n 1. This suffices to conclude (5.17).

Proof of (5.18). Let

E (5.18) := c 0 (log n) 3 ∑ =(log n) 2 /ε E ∑ |x|= e -V(x) ( n θ H x ∧ H x n θ )1 {x∈B - n ∩D n ∩L n ,V(x)≥-α} .
Similarly as above, one sees that

E (5.18) ≤ c 0 (log n) 3 ∑ =(log n) 2 /ε a n -1 ∑ x=0 e -x E 1 {S ≥-α,S ≥log n-a n ,max k≤ (S k -S k )≤log n,S -S ∈[θ log n+x,θ log n+x+1]} + c 0 (log n) 3 ∑ =(log n) 2 /ε -1 ∑ x=-a n e x E ∑ k=0 e S k -S 1 {S ≥-α,S ≥log n-a n ,max k≤ (S k -S k )≤log n,S -S ∈[θ log n+x,θ log n+x+1]} .
So, it suffices to prove that uniformly for x ∈ [-a n , a n ],

c 0 (log n) 3 ∑ =(log n) 2 /ε E 1 {S ≥-α,S ≥log n-a n ,max k≤ (S k -S k )≤log n,S -S ∈[θ log n+x,θ log n+x+1]} =o n,ε (1) (5.20) c 0 (log n) 3 ∑ =(log n) 2 /ε E ∑ k=0 e S k -S 1 {S ≥-α,S ≥log n-a n ,max i≤ (S i -S i )≤log n,S -S ∈[θ log n+x,θ log n+x+1]} =o n,ε (1). (5.21)
Note that (5.20) follows from (A.31) and (5.21) follows from (A.32). We thus conclude (5.18).

Proof of (5.19). Let E (5.19) ( ) := E ∑ |x|= e -V(x) 1 {x∈D n } 1 {V(x)∈[log n-a n ,log n+a n ],V(x)≥-α} . We are going to show that

(log n) 2 /ε ∑ =ε(log n) 2 E (5.19) ( ) = o n (1). (5.22)
It follows directly from Many-to-One Lemma that

E (5.19) ( ) = P S ≥ -α, S ∈ [log n -a n , log n + a n ], S -S ∈ [θ log n -a n , θ log n + a n ] .
Then we conclude by (A.33).

Proof of Lemma 3.3. Proof of (3.6). Recall that for x ∈ B + n ∩ D n ∩ L n , one has

P E (L x (τ n ) ≥ n θ , E (n) x = 1) = na x (1 -a x ) n-1 b n θ -1 x = (1 + o n (1))n 1-θ e -V(x) f( n θ H x ),
with f(t) = te -t . It then follows that

1 n 1-θ E   (log n) 2 /ε ∑ =ε(log n) 2 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B + n } 1 {x∈D n } 1 {V(x)≥-α,γ n ≤max z≤x H z <n}   =(1 + o n (1)) (log n) 2 /ε ∑ =ε(log n) 2 E ∑ |x|= e -V(x) f( n θ H x )1 {x∈B + n } 1 {x∈D n } 1 {V(x)≥-α,γ n ≤max z≤x H z <n} =(1 + o n (1)) (log n) 2 /ε ∑ =ε(log n) 2 E f( n θ H S )1 {S ≥-α,S ≥log n+a n ,S -S ∈[θ log n-a n ,θ log n+a n ],γ n ≤max k≤ H S k ≤n} (5.23)
which is less than

c (log n) 2 /ε ∑ =ε(log n) 2 E f( n θ H S )1 {S ≥-α,S ≥log n+a n ,S -S ∈[θ log n-a n ,θ log n+a n ],log n-r log log n-log ≤max k≤ (S k -S k )≤log n} , as e S k -S k ≤ H S k ≤ ke S k -S k .
To conclude, we only need that for any a n = o(log n),

lim n→∞ B(log n) 2 ∑ =A(log n) 2 E f( n θ H S )1 {S ≥-α,S ≥log n+a n ,S -S ∈[θ log n-a n ,θ log n+a n ],max k≤ (S k -S k )≤log n+a n } = R(α) B A G( 1 √ u , θ √ u ) du u , (5.24)
which follows immediately from (A.36) and (3.7). By comparing the convergences for a n = 0 and a n = -(r + 3) log log n, we obtain what we want.

Proof of (3.7). Similarly as (5.23), we get that

1 n 1-θ E   (log n) 2 /ε ∑ =ε(log n) 2 ∑ |x|= 1 L x (τ n )≥n θ ,E (n) x =1 1 {x∈B + n } 1 {x∈D n \D K n } 1 {V(x)≥-α,max z≤x H z <n}   =(1 + o n (1)) (log n) 2 /ε ∑ =ε(log n) 2 E f( n θ H S )1 {S ≥-α,S ≥log n+a n ,S -S ∈[θ log n-a n ,θ log n+a n ]\[θ log n-K,θ log n+K],max k≤ H S k ≤n} .
Note that f(x) ≤ (x ∧ 1 x ). Similarly as in the proof of (5.17) and (5.18), one has

(log n) 2 /ε ∑ =ε(log n) 2 E f( n θ H S )1 {S ≥-α,S ≥log n+a n ,S -S ∈[θ log n-a n ,θ log n+a n ]\[θ log n-K,θ log n+K],max k≤ H S k ≤n} ≤ (log n) 2 /ε ∑ =ε(log n) 2 -K ∑ x=-a n e x E ∑ k=0 e S k -S 1 {S ≥-α,S ≥log n+a n ,S -S ∈[θ log n+x,θ log n+x+1],max k≤ (S k -S k )≤log n} + (log n) 2 /ε ∑ =ε(log n) 2 a n ∑ x=K e -x E 1 {S ≥-α,S ≥log n+a n ,S -S ∈[θ log n+x,θ log n+x+1],max k≤ (S k -S k )≤log n} .
Using the same arguments as for (A.36), one sees that

(log n) 2 /ε ∑ =ε(log n) 2 E f( n θ H S )1 {S ≥-α,S ≥log n+a n ,S -S ∈[θ log n-a n ,θ log n+a n ]\[θ log n-K,θ log n+K],max k≤ H S k ≤n} ≤ c 45 (1 + α)e -K + o n (1), which is o K (1) + o n (1) as n → ∞ and then K → ∞.
This is what we need.

Proof of Lemma 3.4. Let us consider the quenched variance of Ξ n ( ,

B + n ∩ D n ∩ L γ n , α) which is Var E (Ξ n ( , B + n ∩ D n ∩ L γ n , α)) = E E (Ξ n ( , B + n ∩ D n ∩ L γ n , α) -E E [Ξ n ( , B + n ∩ D n ∩ L γ n , α)]) 2 = ∑ |x|= na x (1 -a x ) n-1 b n θ -1 x [1 -na x (1 -a x ) n-1 b n θ -1 x ]1 {x∈B + n ∩D n ∩L γn ,V(x)≥-α} + Σ Var , (5.25)
where

Σ Var := ∑ |x|=|z|= ,x =z 1 {x,z∈B + n ∩D n ∩L γn ,V(x)≥-α,V(z)≥-α} × E E 1 L x (τ n )≥n θ ,E (n) x =1 1 L z (τ n )≥n θ ,E (n) z =1 -n 2 a x a z (1 -a x ) n-1 b n θ -1 x (1 -a z ) n-1 b n θ -1 z . (5.26)
On the one hand, for the first term on the right hand side of (5.25), as = Θ((log n) 2 ),

∑ |x|= na x (1 -a x ) n-1 b n θ -1 x [1 -na x (1 -a x ) n-1 b n θ -1 x ]1 {x∈B + n ∩D n ∩L γn ,V(x)≥-α} ≤ ∑ |x|= na x (1 -a x ) n-1 b n θ -1 x 1 {x∈B + n ∩D n ∩L γn ,V(x)≥-α} ,
whose expectation under E is Θ( n 1-θ ) according to (A.36) and (5.23). For x = z, one sees that {E

(n)

x = E (n) z = 1} means that either x and z are visited in two different excursions or they are both visited in the same excursion. Let a x,z := P E ρ (T x ∧ T z < T ρ * ). Then,

E E (1 L x (τ n )≥n θ ,E (n) x =1 1 L z (τ n )≥n θ ,E (n) z =1 ) =n(n -1)a x a z (1 -a x,z ) n-2 (b x b z ) n θ -1 + n(1 -a x,z ) n-1 P E (L x (τ 1 ) ≥ n θ , L z (τ 1 ) ≥ n θ ) ≤n 2 a x a z (1 -a x,z ) n-2 (b x b z ) n θ -1 + n(1 -a x,z ) n-1 E E L x (τ 1 )L z (τ 1 ) n 2θ .
Let u = x ∧ z be the latest common ancestor of x and z. Say that u x is the child of u such that u x ≤ x and u z is the child of u such that u z ≤ z.

Then

E E L x (τ 1 )L z (τ 1 ) =E E L u x (τ 1 )L u z (τ 1 ) e -V(x)-V(z)+V(u x )+V(u z ) =E E L u (τ 1 )(L u (τ 1 ) + 1) e -V(x)-V(z)+2V(u)
=2H u e -V(u) × e -V(x)-V(z)+2V(u) , where for x, z ∈ L γ n , H u ≤ γ n . Going back to (5.26), we thus bound Σ Var by

∑ x =z,|z|=|x|= n 2 a x a z (b x b z ) n θ -1 [(1 -a x,z ) n-2 -(1 -a x ) n-1 (1 -a z ) n-1 ]1 {x,z∈B + n ∩D n ∩L γn ,V(x)≥-α,V(z)≥-α} + -1 ∑ k=0 ∑ |u|=k ∑ |x|=|z|= ,x∧z=u 2n 1-2θ γ n e -V(u) × e -V(x)-V(z)+2V(u) 1 {x,z∈B + n ∩D n ∩L γn ,V(x)≥-α,V(z)≥-α} . By Lemma 4.2 of [AC18], (1 -a x,z ) n-2 -(1 -a x ) n-1 (1 -a z ) n-1 ≤ na z + na x . Moreover, a x ≤ e -V(x) ≤ e -log n-a n for x ∈ B + n . Consequently, for x, z ∈ B + n , n 2 a x a z (b x b z ) n θ -1 [(1 -a x,z ) n-2 -(1 -a x ) n-1 (1 -a z ) n-1 ] ≤n 1-θ e -V(x) [ n θ H x e -n θ 2Hx ]n 1-θ e -V(z) [ n θ H z e -n θ 2Hz ](e -a n + e -a n ) ≤ 2n 2-2θ (log n) a e -V(x)-V(z) .
Note also that γ n = n (log n) γ and that V(u) ≥ V(x) ≥ -α. Therefore,

Σ Var ≤ 2n 2-2θ (log n) a∧γ -1 ∑ k=0 ∑ |u|=k ∑ |x|=|z|= ,x∧z=u e -V(x)-V(z)+V(u)+α 1 {x,z∈B + n ∩D n ∩L γn ,V(x)≥-α,V(z)≥-α} .
Observe that

E -1 ∑ k=0 ∑ |u|=k ∑ |x|=|z|= ,x∧z=u e -V(x)-V(z)+V(u) 1 {x,z∈B + n ∩D n ∩L γn ,V(x)≥-α,V(z)≥-α} ≤E     -1 ∑ k=0 ∑ |u|=k ∑ u * z =u * x =u u z =u x e -V(u x )-∆V(u z ) ∑ z>u z ,|z|= e -[V(z)-V(u z )] 1 {V(z)≥-α} ∑ x>u x ,|x|= e -[V(x)-V(u x )] 1 {V(x)≥-α}     ,
which by Many-to-One Lemma and (A.4), is bounded by

E     -1 ∑ k=0 ∑ |u|=k ∑ u * z =u * x =u u z =u x e -V(u x )-∆V(u z ) 1 {V(u x )∧V(u z )≥-α} P V(u z ) (S -1-k ≥ -α)P V(u x ) (S -1-k ≥ -α)     ≤c 46 E     -1 ∑ k=0 ∑ |u|=k (1 + α + V(u)) 2 e -V(u) 1 {V(u)≥-α} ∑ u * z =u * x =u u z =u x e -∆V(u x )-∆V(u z ) (1 + ∆ + V(u z ))(1 + ∆ + V(u x )) -k     ≤ -1 ∑ k=0 c 47 -k E[(1 + α + S k ) 2 ; S k ≥ -α] ≤ -1 ∑ k=0 c 48 k + (1 + α) 2 -k ≤ c 49 2 .
We therefore end up with

Σ Var ≤ c 50 n 2-2θ (log n) a∧r 2 ≤ c 51 n 2-2θ (log n) a∧r-4 .
which suffices to conclude Lemma 3.4.

A Appendix

A.1 Quenched probability for edge local times

We collect some inequalities for the quenched law of the edge local times. They are inspired by Lemma

of [HS15] and (30) of [AD20].

Lemma A.1. Let a, b ∈ (0, 1). Suppose that (ζ i ) i≥1 are i.i.d. random variables taking values in N such that andP

P(ζ 1 = 0) = 1 -a,
(ζ 1 ≥ k) = ab k-1 , ∀k ≥ 1. 1. If n θ (1 -b) ≥ (1 + η)na
with some η > 0, then there exists c η > 0 such that for any n ≥ 1,

P n ∑ i=1 ζ i ≥ n θ ≤ 2nae -c η n θ (1-b) , (A.1)
and

P n ∑ i=1 ζ i ≥ n θ ; n ∑ i=1 1 {ζ i ≥1} ≥ 2 ≤ 2(na) 2 e -c η n θ (1-b) . (A.2)
2. For A > 0, 0 < λ < 1 and for any n ≥ 1,

P n ∑ i=1 ζ i ≤ A ≤ e -λ( na 1+λ -(1-b)A) . (A.3)
Proof. We first prove (A.3). Observe that as b ∈ (0, 1), for any λ > 0, by Markov inequality,

P n ∑ i=1 ζ i ≤ A =P e -λ(1-b) ∑ n i=1 ζ i ≥ e -λ(1-b)A ≤e λ(1-b)A E e -λ(1-b)ζ 1 n ,
where

E[e -λ(1-b)ζ 1 ] = 1 -a(e λ(1-b) -1) e λ(1-b) -b .
We have 1x ≤ e -x for any x ∈ [0, 1]. It follows that

P n ∑ i=1 ζ i ≤ A ≤ exp{λ(1 -b)A -na (e λ(1-b) -1) e λ(1-b) -b } = exp{λ(1 -b)A -na (e λ(1-b) -1) (e λ(1-b) -1) + (1 -b) }. Since 0 < 1 -b ≤ e λ(1-b) -1 λ , one gets (e λ(1-b) -1) (e λ(1-b) -1)+(1-b) ≥ λ λ+1 and then P n ∑ i=1 ζ i ≤ A ≤ e -λ( na 1+λ -(1-b)A) , ∀n ≥ 1.
Let us turn to check (A.1) and (A.2). We only prove (A.1), (A.2) follows from similar arguments. Note that for any s ∈ [1, 1 b ), Markov inequality implies that

P n ∑ i=1 ζ i ≥ n θ ≤s -n θ E s ∑ n i=1 ζ i ; n ∑ i=1 1 {ζ i ≥1} ≥ 1 = E[s ζ 1 ] n -P(∑ n i=1 1 {ζ i ≥1} = 0) s n θ = 1 s n θ (1 -a + a(1 -b)s 1 -bs ) n -(1 -a) n ≤ 1 s n θ na(1 -b)s 1 -bs (1 -a + a(1 -b)s 1 -bs ) n-1 , since (1 -a + x) n -(1 -a) n ≤ nx(1 -a + x) n-1
for any x > 0. Now take s = 1+δb (1+δ)b with some δ > 0. Apparently, s ∈ [1, 1 b ) and for any η ∈ (0, 1), there exists

M η > 1 such that log(1 + 1-b (1+δ)b ) ≥ (1 -η/3) 1-b (1+δ)b as long as δb ≥ M η . Consequently, for δ ≥ M η /b > 0, P n ∑ i=1 ζ i ≥ n θ ≤na 1 + δb δb (1 + 1 -b (1 + δ)b ) -n θ (1 + a δb ) n-1 ≤2(na)e -(1-η/3) n θ (1-b) (1+δ)b +n a δb . Now we take η ∈ (0, 1) such that n θ (1 -b) > na(1 + η) and δ = max{ M η b , 2 η-η 2 } so that na δb ≤ n θ (1 -b) (1 + η)δb = n θ (1 -b) (1 + δ)b 1 + δ δ(1 + η) ≤ (1 -η/2) n θ (1 -b) (1 + δ)b .
This yields that

P n ∑ i=1 ζ i ≥ n θ ≤ 2(na)e -η 6(1+δ)b n θ (1-b) ,
where

(1 + δ)b ≤ 1 + M η + 2 η-η 2 . We hence conclude (A.1) with c η = η 6(1+M η + 2 η-η 2 ) ∈ (0, ∞).
3. For any B > 0 fixed, there exists c(B) > 0 such that for any n ≥ 1 and -B

√ n ≤ -α ≤ 0 < a < b ≤ B √ n, P(S n ≥ -α, S n = S n ∈ [a, b]) ≤ c(B)(1 + α)(b -a) n 3/2 . (A.11)
4. For A > 0 sufficiently large and any λ > 0, α ≥ 0 and n ≥ 1,

E[e λ(S n -S n ) ; max 1≤k≤n (S k -S k ) ≤ A, S n ≥ -α] ≤ C 10 (1 + α)[ log n n 3/2 + 1 n e -C 11 n/A 2 ]. (A.12) 5. For any A ≥ 1, λ > 0, α ≥ 0 and n ≥ 1, E[e λ(S n -S n ) ; S n ≥ A, S n ≥ -α] ≤ C 12 (1 + α) A √ n . (A.13)
6. For α ≥ 0 and A ≥ 1 sufficiently large,

P(S n ≥ -α, S n = S n , max 1≤k≤n (S k -S k ) ≤ A) ≤ C 13 1 + α n e -C 14 n A 2 . (A.14) 7. As x → ∞, E x ∞ ∑ n=0 e -S n /4 1 {S n ≥0} = o x (1)R(x). (A.15)
According to [START_REF] Afanasyev | A limit theorem for a critical branching process in a random environment[END_REF], conditioned on {S n ≥ 0}, the rescaled path (

S nt √

n ; 0 ≤ t ≤ 1) and ∑ n i=0 e -S n converge jointly in law to a Brownian meander (m t , t ∈ [0, 1]) and a positive random variable H ∞ which is independent of the Brownian meander. One can refer to [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF] for more details. Let us state (A.12) of [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF] here.

Fact A.3. Let α ≥ 0, a, b > 0 fixed and a n = o( √ n), b n = o( √ n).
For any uniformly continuous and bounded

function g : [1, ∞) → R + , we have lim n→∞ nE g( n ∑ j=1 e S j -S n )1 {S n ≥-α,S n >S n-1 ,max 1≤i≤n (S i -S i )≤a √ n+a n ,S n ≥b √ n+b n } = C a,b R(α)E[g(H ∞ )]. (A.16)
where R is the renewal function and C a,b is defined in (3.20) of [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF].

The previous two Facts can be found in [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF]. The following lemmas state some inequalities that will be proved in Appendix A.3.

Lemma A.4. Let α ≥ 0. There exists ε 0 ∈ (0, 1) such that for m sufficiently large and for any 1 ≤ r ≤ ε 0 m, we have and

P(S m ≥ -α, S m ∈ [r, r + 1]) ≤ C 15 1 + α m e -C 16 r 2 m , (A.
P(S m ≥ -α, S m ≥ r) ≤ C 17 1 + α r e -C 18 r 2 m . (A.18)
Moreover,

P(S m ≥ -α, S m = S m ≥ r) ≤ C 19 1 + α √ mr e -C 20 r 2 m . (A.19) Lemma A.5.
1. For δ ∈ [0, 1) and A ≥ 1 sufficiently large,

A 1+δ ∑ k=1 P(S k ≥ A) ≤ e -C 21 A 1-δ . (A.20)
2. Let α ≥ 0, for any n ≥ 1 and r ≥ 0,

P(S n ≥ -α, S n = S n ∈ [r, r + 1]) ≤ C 22 (1 + α) 4 (1 + r) 3 n 3 (A.21)
3. Let η > 0, α ≥ 0. For r sufficiently large, one has

∑ 1≤k≤ηr 2 P(S k ≥ -α, S k ∈ [r, r + 1]) ≤ C 23 (1 + α)η. (A.22)
Moreover,

ηr 2 ∑ k=1 E k ∑ i=0 e -S i ; S k ≥ 0, S k ∈ [r, r + 1] ≤ C 24 η. (A.23) 4. For any x ≥ 0 and n ≥ 1, E n ∑ k=0 e S k ; S n ≤ 0, S n ∈ [-x -1, -x] ≤ C 25 1 + x n 3/2 . (A.24)
5. For any A ≥ 0, α ≥ 0 and n ≥ 1,

E α [e -S n ; S n ≥ 0, S n ≥ A] ≤ C 26 (1 + α) n 3/2 e -A/2 . (A.25)
6. For any α, A > 0 and n ≥ 1,

E α [e S n -A ; S n ≥ 0, S n ≤ A] ≤ C 27 (1 + α)(1 + A) n 3/2 . (A.

26)

7. There exists c ∈ R * + such that for any A > 0,

∑ n≥0 E[e S n -A ; S n ≥ 0, S n ≤ A] < C 28 . (A.27) 8. For α ≥ 0, a, b, c > 0, K ≥ 1, n ≤ Ar 2 with A > 0, P(S n ≥ -α, S n ≥ ar, max k≤n (S k -S k ) ≤ br, S n -S n ∈ [cr -K, cr + K]) ≤ C 29 (1 + α) (1 + K 2 )r n 3/2 . (A.28)
9. Let α ≥ 0. For a, b, η > 0 and r 1 sufficiently large,

ηr 2 ∑ k=1 P(S k ≥ -α, S k ≥ ar, S k -S k ∈ [br, br + 1]) ≤ C 30 (a, b)η 3/2 . (A.29)
10. Let α ≥ 0. For r 1 and 1 ≤ m ≤ ηr 2 with some sufficiently small η,

E m ∑ k=1 e -S k 1 {S m ≥0,S m ≥r,S m -S m ≤α} ≤ C 31 (1 + α) 2 √ mr e -C 32 r 2 m + C 31 e -C 32 r 1-δ , (A.30)
with some δ ∈ (0, 1).

11. Let α ≥ 0. For a, b, c > 0, 0 < η 1 small and r 1 sufficiently large,

c 0 r 3 ∑ =r 2 /η P S ≥ -α, S ≥ ar, max k≤ (S k -S k ) ≤ br, S -S ∈ [cr, cr + 1] = o η (1) + o r (1). (A.31)
Moreover,

c 0 r 3 ∑ =r 2 /η E ∑ k=0 e S k -S 1 {S ≥-α,S ≥ar,max i≤ (S i -S i )≤br,S -S ∈[cr,cr+1]} = o η (1) + o r (1). (A.32) 12. Let α ≥ 0. For η, a, b > 0, a r = O(log r), b r = O(log r) with r 1, r 2 /η ∑ =ηr 2 P S ≥ -α, S ∈ [ar -a r , ar + a r ], S -S ∈ [br -b r , br + b r ] = o r (1). (A.33) 
The following lemma focus on asymptotic results that we need.

Lemma A.6. Let α ≥ 0. Then the following convergences hold.

1. For any continuous and bounded function g : [0, ∞) → R + , the following convergence holds uniformly for x, y in any compact set of (0, ∞) and for z

= o( √ n), h > 0, E g( n ∑ i=1 e -S i )1 {S n ≥-α,S n ≤x √ n,S n ∈[y √ n+z,y √ n+z+h)} = c + hR(α) σn E α [g(e α H ∞ -1)]C 0 (x -y, y) + o n (1) n , (A.34) 
where

c + = lim n→∞ √ nP(S n ≥ 0) and C 0 (a, b) = ϕ( b σ )P(R 1 -R 1 ≤ a σ |R 1 = b σ ), (A.35) with ϕ(x) = xe -x 2 /2 1 {x≥0} and (R s , s ≥ 0) a 3-dimensional Bessel process started from 0.
2. Let a, b > 0 be fixed constants. For F(x, y) = x y e -x/y with x ∈ R and y ≥ 1 and for a n = o(

√ n), a n = o( √ n) and fixed K > 0, we have lim n→∞ nE F(e b √ n-(S n -S n ) , n ∑ i=0 e S i -S n )1 {S n ≥-α,S n ≥a √ n+a n ,max 0≤k≤n (S k -S k )≤a √ n+a n ,S n -S n ∈[b √ n-K,b √ n+K]} = G(a, b)R(α) K -K E[(F(e -s , H ∞ + H (-) ∞ -1)]ds, (A.36) where G(a, b) := 1 0 C a √ u , a √ u c - σ C 0 ( a -b √ 1 -u , b √ 1 -u )1 {a>b} du u(1 -u) (A.37) with C a,b defined in (3.20) of [AC18], c -:= lim n → ∞ √ nP(S n ≤ 0) and H (-) ∞ := ∑ ∞ k=0 e -ζ (-) k with (ζ (-) 
k ) k≥0 the Markov chain obtained from the reflected walk -S. Moreover, this convergences holds uniformly for a, b in any compact set of (0, ∞).

The following result is a direct consequence of (A.34).

Corollary A.7. Let α ≥ 0 and a, b > 0. For a n = o( √ n) and b n = o( √ n), the following convergence holds. lim n→∞ nE e S n -b √ n-b n ; S n ≥ -α, S n -S n ≤ a √ n + a n , S n ≤ b √ n + b n = c + R(α) σ C 0 (a, b); (A.38) lim n→∞ nE e S n -b √ n-b n ; S n ≥ -α, S n ≤ (a + b) √ n + a n , S n ≤ b √ n + b n = c + R(α) σ C 0 (a, b). (A.39) where C 0 (a, b) = ϕ( b σ )P(R 1 -R 1 ≤ a σ |R 1 = b σ ) is defined in (A.35).

Finiteness of Λ(θ).

At the end of this section, we check that

∞ 0 C 0 ( θ √ u , 1 -θ √ u ) du u < ∞,
which ensures the finiteness of Λ 0 (θ) in (1.9) and that of C i (A, B), i = 1, 2 in Lemma 4.4. By (A.35), one has C 0 (a, b) ≤ ϕ(b/a). So,

∞ 0 C 0 ( θ √ u , 1 -θ √ u ) du u ≤ ∞ 0 ϕ( 1 -θ σ √ u ) du σu = ∞ 0 1 -θ σ 2 √ t e -(1-θ) 2 t/(2σ 2 ) dt < ∞.
We also verify that

∞ 0 G( 1 √ s , θ √ s ) ds s < ∞,
which ensures the finiteness of Λ 1 (θ) defined in (1.11) and that of C 3 (A, B) in Lemma 4.4. In fact, by change of variables r = s(1u) and t = su, one sees that

∞ 0 G( 1 √ s , θ √ s ) ds s = c - σ ∞ 0 1 0 C 1 √ su , 1 √ su C 0 ( 1 -θ s(1 -u) , θ s(1 -u) ) du (1 -u)u ds s = c - σ ∞ 0 C 0 ( 1 -θ √ r , θ √ r ) dr r ∞ 0 C 1 √ t , 1 √ t dt t
where the finiteness of

∞ 0 C 1 √ t , 1
√ t dt t has been verified in Lemma A.1 of [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF]. We thus obtain the finiteness of

∞ 0 G( 1 √ s , θ √ s ) ds s . Moreover, one sees that Λ(θ) = c - c R c + ΛΛ 0 (1 -θ) + Λ 0 (θ) with Λ introduced in [AC18].

A.3 Proofs of (A.17) -(A.36)

Proof of (A.17). This is given in Lemma B6 of [START_REF] Andreoletti | Spread of visited sites of a random walk along the generations of a branching process[END_REF] when α = 0 and the increments are bounded. Let us prove the general case.

For 1 ≤ r ≤ A √ m with A > 10 fixed, by (A.5), it is clear that

P(S m ≥ -α, S m ∈ [r, r + 1]) ≤ C 5 (1 + α)(1 + r + α) m 3/2 ≤ C 5 1 + α m e -r 2 /m sup 0≤t≤A te t .
It suffices to show (A.17) for A √ m ≤ r ≤ ε 0 m. For any x ∈ R, let

T + x := inf{k ≥ 0 : S k ≥ x}, and T - x := inf{k ≥ 0 : S k < x}.
Then it is known that for any 0 ≤ x ≤ y,

P x (T + y < T - 0 ) ≤ C 33 x + 1 y + 1 .
Recall that the increments of S are ξ k , k ≥ 0 which have finite exponential moments. Therefore, one has

P(S m ≥ -α, S m ∈ [r, r + 1]) ≤ P(max k≤m ξ k ≥ r/2) + P(S m ≥ -α, S m ∈ [r, r + 1], S T + √ m ≤ √ m + r 2 ) ≤C 34 me -δ 0 r/2 + m ∑ j=1 P α (S m ≥ 0, S m ∈ [r + α, r + α + 1], T + √ m+α = j, S j ∈ [ √ m + α, r/2 + √ m + α]).
By Markov property at

T + √ m , m ∑ j=1 P α (S m ≥ 0, S m ∈ [r + α, r + α + 1], T + √ m+α = j, S j ∈ [ √ m + α, r/2 + √ m + α]) ≤ m-1 ∑ j=1 P α (S j ≥ 0, T + √ m+α = j) max √ m+α≤x≤ √ m+α+r/2 P(S m-j ∈ [r + α -x, r + α -x + 1]) ≤P α (T + √ m+α < T - 0 ) max 1≤j≤m max r/3≤x≤r P(S j ∈ [x, x + 1]) ≤ C 35 α + 1 √ m + α + 1 max 1≤j≤m max r/3≤x≤r P(S j ∈ [x, x + 1]).
On the one hand, for j ≥ Kr with K ≥ 1 fixed and r 1, by Chernoff's bound, max 1≤j<Kr max r/3≤x≤r

P(S j ∈ [x, x + 1]) ≤ max 1≤j<Kr P(S j ≥ r/3) ≤ e -C 36 r .
On the other hand, for Kr ≤ j ≤ m, we use the following change of measure

P (t) ((S 1 , • • • , S j ) ∈ •) = E[e tS j -jφ S (t) ; (S 1 , •, S j ) ∈ •]
with φ S (t) := log E[e tξ 1 ]. The probability P (t) is well defined when φ S (t) < ∞. The corresponding expectation is denoted by E (t) . It hence follows that for t ∈ (-δ 0 /2, δ 0 /2),

P(S j ∈ [x, x + 1]) =E (t) [e -tS j +jφ S (t) ; S j ∈ [x, x + 1]]
≤e -tx+jφ S (t) P (t) (S j ∈ [x, x + 1]) ≤ e -tr/3+C 37 jt 2 P (t) (S j ∈ [x, x + 1]), as φ S (t) ≤ C 37 t 2 for |t| ≤ δ 0 /2. Let us take t = t j = r 6C 37 j so that e -tr/3+C 37 jt 2 ≤ e -r 2 36C 37 j . Moreover, as under P (t) , (S k ) is a random walk with i.i.d. increments and E (t) [e sS 1 ] < ∞ for s ∈ (0, δ 0 /2), Berry-Esseen theorem shows that there exists C such that for Kr ≤ j ≤ m,

P (t) (S j ∈ [x, x + 1]) ≤ C j .
As a result, max Kr≤j≤m max r/3≤x≤r

P(S j ∈ [x, x + 1]) ≤ max Kr≤j≤m C j e -r 2 36C 37 j ≤ C √ m e -r 2
36C 37 m , as long as r ≥ A √ m with A ≥ √ 18C 37 . We thus end up with

P(S m ≥ -α, S m ∈ [r, r + 1]) ≤ C 34 me -δ 0 r/2 + C 35 α + 1 √ m + α + 1 e -C 36 r ∨ C √ m e -r 2
36C 37 m which suffices to obtain (A.17).

Proof of (A.18). Observe that by (A.17) and Chernoff's bound,

P(S m ≥ -α, S m ≥ r) ≤ ε 0 m ∑ t=r P(S m ≥ -α, S m ∈ [t, t + 1]) + P(S m ≥ ε 0 m) ≤ ε 0 m ∑ t=r C 15 1 + α m e -C 16 t 2 m + e -C 38 m ≤C 17 1 + α r e -C 18 r 2 /m .
Proof of (A.19). Note that (S m -S m-i ) 0≤i≤m/2 is an independent copy of (S i ) 0≤i≤m/2 . So, by (A.18) and (A.4),

P(S m ≥ -α, S m = S m ≥ r) ≤P(S m/2 ≥ -α, S m/2 ≥ r/2)P(S m/2 ≥ 0) + P(S m/2 ≥ -α)P(S m/2 ≥ 0, S m/2 ≥ r/2) ≤C 19 1 + α √ mr e -C 20 r 2 /m .
Proof of (A.20). Because of (4.2), for λ ∈ (0, 1 + δ 0 ) and k ≥ 1,

P(S k ≥ A) ≤ e -λA E[e λS k ] = e -λA+kφ S (λ) ,
where φ S (λ) = log E[e λS 1 ]. Note that φ S (0) = E[S 1 ] = 0 and φ S (λ) ≤ C 37 λ 2 for λ ∈ (0, δ 0 /2) small. By taking λ = 1 2C 37 A δ with A sufficiently large, we have

∑ 1≤k≤A 1+δ P(S k ≥ A) ≤ ∑ 1≤k≤A 1+δ e -λA+kφ S (λ) ≤ ∑ 1≤k≤A 1+δ
e -λA+C 37 kλ 2 ≤ A 1+δ e

-A 1-δ 4C 37
which suffices to conclude (A.20) for δ ∈ (0, 1). In particular, for δ = 0, we can take C 37 > 1/δ 0 so that (A.20) holds.

Proof of (A.21). Observe that by Markov property at time n/2,

P(S n ≥ -α, S n = S n ∈ [r, r + 1]) ≤ E 1 {S n/2 ≥-α,S n/2 ≤r+1} P(S n/2 = S n/2 ∈ [r -x, r -x + 1])| x=S n/2 =E[1 {S n/2 ≥-α,S n/2 ≤r+1} P(S n/2 ≥ 0, S n/2 ∈ [r -x, r -x + 1])| x=S n/2 ]
which by (A.5), is bounded by

C 39 E[1 {S n/2 ≥-α,S n/2 ≤r+1} (2 + r -S n/2 ) n 3/2 ] ≤ C 39 (2 + r + α) n 3/2 P(S n/2 ≥ -α, S n/2 ≤ r + 1)
which by (A.5) implies that

P(S n ≥ -α, S n = S n ∈ [r, r + 1]) ≤ C 40 (1 + α)(2 + r + α) 3 n 3 ≤ C 40 (1 + α) 4 (1 + r) 3 n 3 .
This completes the proof of (A.21).

Proof of (A.22). By use of (A.20) and (A.17), we see that for r ≥ η -2 sufficiently large,

∑ 1≤k≤ηr 2 P(S k ≥ -α, S k ∈ [r, r + 1]) ≤ r 3/2 ∑ k=1 P(S k ≥ r) + ηr 2 ∑ k=r 3/2 P(S k ≥ -α, S k ∈ [r, r + 1]) ≤e -C 21 r 1/2 + ηr 2 ∑ k=r 3/2 C 15 1 + α k e -C 16 r 2 k ≤ C 41 (1 + α)η as ∑ ηr 2 k=r 3/2 1 k e -C 16 r 2 k ≤ ηr 2 +1 r 3/2 2 x e -C 16 r 2 /x dx ≤ √ r 1 2η 1 t e -C 16 t dt ≤ 2η C 16 .
Proof of (A.23). It is immediate that

∑ 1≤k≤ηr 2 E k ∑ i=0 e -S i ; S k ≥ 0, S k ∈ [r, r + 1] ≤ ∑ 1≤k≤ηr 2 kP(S k ≥ 0, S k ∈ [r, r + 1]) ≤r 3/2 r 3/2 ∑ k=1 P(S k ≥ r) + ηr 2 ∑ k=r 3/2 kP(S k ≥ -α, S k ∈ [r, r + 1])
which by (A.20) and (A.17), is bounded by C 42 η.

Proof of (A.24). In fact, we only need to check that n-1

∑ k=1 E[e -S k ; S n ≥ 0, S n ∈ [x, x + 1]] ≤ C 43 1 + x n 3/2 .
By Markov property time at time k and then by (A.5), one sees that

n-1 ∑ k=1 E[e -S k ; S n ≥ 0, S n ∈ [x, x + 1]] = n-1 ∑ k=1 E[e -S k 1 {S k ≥0} P S k (S n-k ≥ 0, S n-k ∈ [x, x + 1])] ≤ n-1 ∑ k=1 C 5 (2 + x) (n -k) 3/2 E[(1 + S k )e -S k 1 {S k ≥0} ] ≤ n-1 ∑ k=1 C 44 (1 + x) (n -k) 3/2 ∞ ∑ t=0 (1 + t) 2 e -t k 3/2 ≤ C 45 (1 + x) n-1 ∑ k=1 1 k 3/2 (n -k) 3/2 , which is less than C 46 (1 + x)n -3/2 .
Proof of (A.25). Observe that by (A.5),

E α [e -S n ; S n ≥ 0, S n ≥ A] ≤ ∞ ∑ t=A e -t P α (S n ≥ 0, S n ∈ [t, t + 1]) ≤ ∞ ∑ t=A e -t C 5 (1 + α)(2 + t) n 3/2 ≤ C 47 1 + α n 3/2 e -A/2 .
Proof of (A.26). Note that by (A.5),

E α [e S n -A ; S n ≥ 0, S n ≤ A] ≤ A ∑ t=0 e t+1-A P α (S n ≥ 0, S n ∈ [t, t + 1]) ≤C 5 1 + α n 3/2 A ∑ t=0 (2 + t)e t+1-A ≤ C 48 (1 + α)(1 + A) n 3/2 .
Proof of (A.27). In fact, by setting τ -:= inf{k ≥ 0 : S k < 0} and R -(dx) the renewal measure associated with the weak ascending ladder process of (S n ) n≥0 , we have

∑ n≥0 E[e S n -A ; S n ≥ 0, S n ≤ A] =E τ --1 ∑ n=0 e S n -A 1 {S n ≤A} = A 0 e x-A R -(dx) ≤ C 49 ,
because there exists a constant c - R > 0 such that for any

h > 0, R -([x, x + h]) ∼ c - R h as x → ∞.
Proof of (A.28). Let P (A.28) := P(S n ≥ -α, S n ≥ ar, max

k≤n (S k -S k ) ≤ br, S n -S n ∈ [cr -K, cr + K]).
By considering the first time hitting S n and by Markov property,

P (A.28) = n-1 ∑ j=1 P(S n ≥ -α, S j = S n ≥ ar, S j -S n ∈ [cr -K, cr + K]) ≤ n-1 ∑ j=1 P(S j ≥ -α, S j = S j ≥ ar)P(S n-j ≤ 0, -S n-j ∈ [cr -K, cr + K])
which by (A.10) and by (A.5) for (-S n ) n≥0 is bounded by

n-1 ∑ j=1 C 50 (1 + α) jar (1 + cr + K)(1 + 2K) (n -j) 3/2 .
which is bounded by

C 29 (1+α)(1+K) 2 (1+r) n 3/2
as n ≤ Ar 2 .

Proof of (A.29). By considering the first time hitting S n and by Markov property, we have P(S j ≥ -a, S j = S j ≥ r/3)P(S n-j ≤ 0, S n-j ≥ -α)

ηr 2 ∑ k=1 P(S k ≥ -α, S k ≥ ar, S k -S k ∈ [br, br + 1]) ≤ ηr 2 ∑ k=1 k-1
By (A.20) for the first sum on the right hand side and by (A.19) and (A.5) for the second sum, one gets that

P(S n ≥ -a, S n ≥ r/2, S n -S n ≤ α) ≤ e -C 21 (r/3) 1-δ + n ∑ j=r 1+δ C 19 1 + a jr e -C 20 r 2 /j C 5 (1 + α) 2 (n -j + 1) 3/2 ≤e -C 21 (r/3) 1-δ + C 51 (1 + a)(1 + α) 2 √ nr e -C 20 r 2 /n
Plugging it into (A.40) yields that

E m ∑ k=1 e -S k 1 {S m ≥0,S m ≥r,S m -S m ≤α} ≤ηr 2 e -r/2 + m ∑ k=1 E[e -S k 1 {S k ≥0} ]e -C 21 (r/3) 1-δ + m ∑ k=1 E[e -S k 1 {S k ≥0,S k ≤r/2} (1 + S k )]C 51 (1 + α) 2 √ m -kr e -C 20 r 2 m-k ≤ηr 2 e -r/2 + e -C 21 (r/3) 1-δ + C 52 (1 + α) 2 √ mr e -C 20 r 2 m ,
which suffices to conclude (A.30).

Proof of (A.31). First, we observe that

P (A.31) ( ) :=P S ≥ -α, S ≥ ar, max k≤ (S k -S k ) ≤ br, S -S ∈ [cr, cr + 1] ≤ -1 ∑ j=1 P (A.41) (j, ), (A.41)
where

P (A.41) (j, ) := P S j ≥ -α, max k≤j (S k -S k ) ≤ br, S j = S j ≥ ar × P S -j ≤ 0, S -j ≥ -br, -S -j ∈ [cr, cr + 1] . (A.42)
Observe that for j ≤ r 1+δ or j ≥r 1+δ with δ ∈ (0, 1), by (A.20),

c 0 r 3 ∑ =r 2 /η   r 1+δ ∑ j=1 P (A.41) (j, ) + -1 ∑ j= -r 1+δ P (A.41) (j, )   ≤ c 0 r 3 ∑ =r 2 /ε   r 1+δ ∑ j=1 P(S j ≥ ar) + -1 ∑ j= -r 1+δ P(-S -j ≥ cr)   ≤c 0 r 3 e -C 53 r 1-δ = o n (1).
For r 1+δ ≤ j ≤ r 2 , by (A.42), (A.19) and (A.5), one has

c 0 r 3 ∑ =r 2 /η r 2 ∑ j=r 1+δ P (A.41) (j, ) ≤ c 0 r 3 ∑ =r 2 /η r 2 ∑ j=r 1+δ P(S j ≥ -α, S j = S j ≥ ar)P(S -j ≤ 0, -S -j ∈ [cr, cr + 1]) ≤ c 0 r 3 ∑ =r 2 /η r 2 ∑ j=r 1+δ C 54 1 + α jr e -C 55 r 2 j cr + 1 ( -j) 3/2 ≤ c 0 r 3 ∑ =r 2 /η C 56 (1 + α) r 3/2 , which is o η (1) as η ↓ 0.
For r 2 ≤ j ≤r 2 , by (A.42), (A.14) and (A.5), one has

c 0 r 3 ∑ =r 2 /η -r 2 ∑ j=r 2 P (A.41) (j, ) c 0 r 3 ∑ =r 2 /η -r 2 ∑ j=r 2 P(S j ≥ -α, max k≤j (S k -S k ) ≤ br, S j = S j )P(S -j ≤ 0, -S -j ∈ [cr, cr + 1]) ≤ c 0 r 3 ∑ =r 2 /η -r 2 ∑ j=r 2 C 57 1 + α j e -C 58 j r 2 cr + 1 ( -j) 3/2 ≤ c 0 r 3 ∑ =r 2 /η C 59 (1 + α) r 3/2 ,
which is also o η (1).

Forr 2 ≤ j ≤r 1+δ , similarly as above, by (A.42), (A.14) and (A.17), one has

c 0 r 3 ∑ =r 2 /η -r 1+δ ∑ j= -r 2 P (A.41) (j, ) ≤ c 0 r 3 ∑ =r 2 /η -r 1+δ ∑ j= -r 2 C 60 1 + α j e -C 61 j r 2 1 -j e -C 62 r 2 -j ≤ c 0 r 3 ∑ =r 2 /η C 63 1 + α e -C 64 r 2 ,
which is o η (1). We hence end up with

c 0 r 3 ∑ =r 2 /η P (A.31) ( ) = o r (1) + o η (1),
which shows (A.31).

Proof of (A.32). Let E (A.32) ( ) :=E ∑ k=0 e S k -S 1 {S ≥-α,S ≥ar,max i≤ (S i -S i )≤br,S -S ∈[cr,cr+1]} , and

E (A.43) (j, k, ) :=E e S k -S j 1 {S =S j >S j-1 } 1 {S ≥-α,S ≥ar,max i≤ (S i -S i )≤br,S -S ∈[cr,cr+1]} . (A.43)
By considering the first time hitting S , one sees that

c 0 r 3 ∑ =r 2 /η E (5.21) ( ) = c 0 r 3 ∑ =r 2 /η -1 ∑ j=1 j-1 ∑ k=0 E (A.43) (j, k, ) + c 0 r 3 ∑ =r 2 /η -1 ∑ j=1 ∑ k=j E (A.43) (j, k, ). (A.44)
For k ≥ j, by Markov property at time j, .45) Similarly as above, we use different inequalities for different j to bound the second sum on the right hand side of (A.44).

E (A.43) (j, k, ) ≤ P(S j ≥ -α, S j = S j ≥ ar, max 1≤i≤j (S i -S i ) ≤ br)E e S k-j 1 {S -j ≤0;-S -j ∈[cr,cr+1]} . (A
First, for j ≤ r 1+δ with δ ∈ (0, 1), by (A.45), (A.24) and (A.20), one sees that

c 0 r 3 ∑ =r 2 /η r 1+δ ∑ j=1 ∑ k=j E (A.43) (j, k, ) ≤ c 0 r 3 ∑ =r 2 /η r 1+δ ∑ j=1 P(S j ≥ ar)E -j ∑ k=0 e S k 1 {S -j ≤0;-S -j ∈[cr,cr+1]} ≤ c 0 r 3 ∑ =r 2 /η r 1+δ ∑ j=1 P(S j ≥ ar)C 65 cr + 1 ( /2) 3/2 ≤ C 66 √ ηe -C 67 r 1-δ ,
which is o r (1). Secondly, for r 1+δ ≤ j ≤ r 2 , by (A.45), (A.19) and (A.24), one sees that

c 0 r 3 ∑ =r 2 /η r 2 ∑ j=r 1+δ ∑ k=j E (A.43) (j, k, ) ≤ c 0 r 3 ∑ =r 2 /η r 2 ∑ j=r 1+δ P(S j ≥ -α, S j = S j ≥ ar)E -j ∑ k=0 e S k 1 {S -j ≤0;-S -j ∈[cr,cr+1]} ≤ c 0 r 3 ∑ =r 2 /η r 2 ∑ j=r 1+δ C 68 1 + α jr e -C 69 r 2 j cr + 1 ( -j) 3/2 ≤ c 0 r 3 ∑ =r 2 /η C 70 (1 + α) r 3/2 ,
which is o η (1). Thirdly, for r 2 ≤ j ≤r 2 , similarly as above, by (A.45), (A.14) and (A.24), one sees that

c 0 r 3 ∑ =r 2 /η -r 2 ∑ j=r 2 ∑ k=j E (A.43) (j, k, ) ≤ c 0 r 3 ∑ =r 2 /η -r 2 ∑ j=r 2 C 71 1 + α j e -C 72 j r 2 cr + 1 ( -j) 3/2 ≤ c 0 r 3 ∑ =r 2 /η C 73 (1 + α) r 3/2 ,
which is o η (1). Finally, forr 2 ≤ j ≤ , by (A.45), (A.14) and (A.23), one sees that

c 0 r 3 ∑ =r 2 /η -1 ∑ j= -r 2 ∑ k=j E (A.43) (j, k, ) ≤ c 0 r 3 ∑ =r 2 /η C 74 1 + α e -C 75 r 2 r 2 ∑ -j=1 E -j ∑ k=0 e S k 1 {S -j ≤0;-S -j ∈[cr,cr+1]} ≤ c 0 r 3 ∑ =r 2 /η C 76 1 + α e -C 77 r 2 ,
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which is o η (1). Combining all these terms, we get that

c 0 r 3 ∑ =r 2 /η -1 ∑ j=1 ∑ k=j E (A.43) (j, k, ) = o r (1) + o η (1). (A.46) Next, let us bound ∑ c 0 r 3 =r 2 /η ∑ -1 j=1 ∑ j-1 k=0 E (A.43) (j, k,
). For k < j, Markov property at time j implies that E (A.43) (j, k, ) ≤ E e S k -S j 1 {S j ≥-α,S j >S j-1 ,S j ≥ar,max 0≤i≤j (S i -S i )≤br} P(S -j ≤ 0, -S -j ∈ [cr, cr + 1]).

If S k ≤ ar 2 , then E (A.43) (j, k, ) ≤ e -ar 2 . Therefore,

E (A.43) (j, k, ) ≤ e -ar/2 + E e S k -S j 1 {S j ≥-α,S k ≥ ar 2 ,S j >S j-1 ,S j ≥ar,max 0≤i≤j (S i -S i )≤br} × P(S -j ≤ 0, -S -j ∈ [cr, cr + 1]). (A.47)
By Markov property at time k and by the fact that (S j-k -S j-k-i ) 0≤i≤j-k is distributed as (S i ) 0≤i≤j-k , E e S k -S j 1 {Sk≥ ar 2 ,S j ≥-α,S j >S j-1 ,S j ≥ar,max 0≤i≤j (S i -S i )≤br}

≤E 1 {S k ≥-α,S k ≥ ar 2 ,max i≤k (S i -S i )≤br} E[e -S j-k 1 {S j-k ≥0,S j-k ≥x 0 } ]| x 0 =S k -S k which by (A.25) is less than C 78 (j-k) 3/2 E e (S k -S k )/2 1 {S K ≥-α,S k ≥ ar 2 ,max i≤k (S i -S i )≤br} . As a result, c 0 r 3 ∑ =r 2 /η -1 ∑ j=1 j-1 ∑ k=0 E (A.43) (j, k, ) ≤ o r (1) + c 0 r 3 ∑ =r 2 /η ( /2 ∑ j=1 + -r 2 ∑ j= /2 + -1 ∑ j= -r 2 ) j-1 ∑ k=1 C 78 (j -k) 3/2 E (A.48) (j, k, ), (A.48)
where E (A.48) (j, k, ) := E e (S k -S k )/2 1 {S K ≥-α,S k ≥ ar 2 ,max i≤k (S i -S i )≤br} P(S -j ≤ 0, -S -j ∈ [cr, cr + 1]). For j ≤ /2, by (A.5), we have

/2 ∑ j=1 j-1 ∑ k=1 C 78 (j -k) 3/2 E (A.48) (j, k, ) ≤ /2 ∑ j=1 j-1 ∑ k=1 C 79 (j -k) 3/2 E e (S k -S k )/2 1 {S K ≥-α,S k ≥ ar 2 ,max i≤k (S i -S i )≤br} cr + 1 ( /2) 3/2 ≤ r ( /2) 3/2 /2-1 ∑ k=1 E e (S k -S k )/2 1 {S K ≥-α,S k ≥ ar 2 ,max i≤k (S i -S i )≤br} /2 ∑ j=k+1 C 79 (j -k) 3/2 ≤C 80 r 3/2 r 2 ∑ k=1 + /2 ∑ k=r 2 E e (S k -S k )/2 1 {S K ≥-α,S k ≥ ar 2 ,max i≤k (S i -S i )≤br}
. By (A.13) for k ≤ r 2 and by (A.12) for k ≥ r 2 , we then see that

c 0 r 3 ∑ =r 2 /η /2 ∑ j=1 j-1 ∑ k=1 C 78 (j -k) 3/2 E (A.48) (j, k, ) ≤ c 0 r 3 ∑ =r 2 /η C 81 r 3/2 r 2 ∑ k=1 1 + α √ kr + /2 ∑ k=r 2 ( (1 + α) log k k 3/2 + (1 + α) k e -C 82 k r 2 ) = o η (1). (A.49)
For /2 ≤ j ≤r 2 , again applying (A.5) to bound P(S -j ≤ 0, -S -j ∈ [cr, cr + 1]), and using (A.13) for k ≤ r 2 and using (A.12) for k ≥ r 2 , we could get that

c 0 r 3 ∑ =r 2 /η -r 2 ∑ j= /2 j-1 ∑ k=1 C 78 (j -k) 3/2 E (A.48) (j, k, ) = o η (1). (A.50)
Forr 2 ≤ j ≤ -1, again by (A.13) for k ≤ r 2 and by (A.12) for k ≥ r 2 , one sees that

-1 ∑ j= -r 2 j-1 ∑ k=1 C 78 (j -k) 3/2 E (A.48) (j, k, ) ≤ C 83 (1 + α)( log 3/2 + e -C 84 r 2 ) r 2 ∑ j=1 P(S j ≤ 0, -S j ∈ [cr, cr + 1]),
which by (A.22) is less than

C 85 (1 + α)( log 3/2 + e -C 86 r 2
).

Consequently,

c 0 r 3 ∑ =r 2 /η -1 ∑ j= -r 2 j-1 ∑ k=1 C 78 (j -k) 3/2 E (A.48) (j, k, ) = o r (1) + o η (1). (A.51)
In view of (A.49), (A.50) and (A.51), we end up with

c 0 r 3 ∑ =r 2 /η -1 ∑ j=1 j-1 ∑ k=1 C 78 (j -k) 3/2 E (A.48) (j, k, ) = o r (1) + o η (1).
Proof of (A.33). By considering the first time hitting S , one sees that

r 2 /η ∑ =ηr 2 P S ≥ -α, S ∈ [ar -a r , ar + a r ], S -S ∈ [br -b r , br + b r ] = r 2 /η ∑ =ηr 2 -1 ∑ j=1 P S ≥ -α, S j-1 < S j = S ∈ [ar -a r , ar + a r ], S -S ∈ [br -b r , br + b r ] ≤ r 2 /η ∑ =ηr 2 -1 ∑ j=1 P (A.52) (j, ) ≤ r 2 /η ∑ =ηr 2 r 1+δ ∑ j=1 + r 2 /η ∑ =ηr 2 /2 ∑ j=r 1+δ + r 2 /η ∑ =ηr 2 -ηr 2 /2 ∑ j= /2 + r 2 /η ∑ =ηr 2 -1 ∑ j= -ηr 2 /2 P (A.52) (j, ),
where δ ∈ ( 1 2 , 1) and

P (A.52) (j, ) := P(S j ≥ -α, S j = S j ∈ [ar -a r , ar + a r ])P(S -j ≤ 0, -S -j ∈ [br -b r , br + b r ]). (A.52)
We will consider the four sums on the right hand side separetly and prove that each term is o r (1).

1. For 1 ≤ j ≤ r 1+δ with δ ∈ (0, 1), we use (A.5) and (A.20) to obtain that

r 2 /η ∑ =ηr 2 r 1+δ ∑ j=1 P (A.52) (j, ) ≤ r 2 /η ∑ =ηr 2 r 1+δ ∑ j=1 P(S j ≥ ar -a r )C 79 r × b r ( -j) 3/2 = o r (1).
2. For r 1+δ ≤ j ≤ /2 with δ ∈ (1/2, 1), we use (A.21) and (A.5).

r 2 /η ∑ =ηr 2 /2 ∑ j=r 1+δ P (A.52) (j, ) ≤ r 2 /η ∑ =ηr 2 /2 ∑ j=r 1+δ C 80 (1 + α) 4 r 3 × a r j 3 r × b r ( -j) 3/2 ≤ r 2 /η ∑ =ηr 2 C 81 (1 + α) 4 a r b r r 2(1-δ) 3/2 = o r (1).
3. For /2 ≤ j ≤ηr 2 /2, we use (A.11) and (A.5). 

≤ C 91 (1 + α)(1 + 2K) n ε = o ε (1) n .
Thus, it remains to study ∑ n-εn j=εn ∑ K/h-1 =-K/h nE (A.36) (j, n, ). Recall that F(x, y) = x y e -x/y with x > 0 and y ≥ 1. So, for any fixed h > 0 sup Moreover, let (S (-) k ) k≥0 be the random walk distributed as the reflected walk -S, and independent of S. Observe that for ∈ [-K, K] with K ≥ 1/h fixed integer E (A.36) (j, n, ) = E 1 {S j ≥-α,S j-1 <S j ,S j ≥a √ n+a n ,max 0≤k≤j (S k -S k )≤a √ ]| t=∑ j i=0 e S i -S j ,s=S j . By use of (A.34) for S (-) , one sees that εn ≤ j ≤ nεn with ε ∈ (0, 1/2), for n 1 and s ≥ a √ n + a n 

  17

  )

  k ≥ -α, S j = S j ≥ ar)P(S k-j ≤ 0, -S k-j ∈ [br, br + 1]) k ≥ -α, S j = S j ≥ ar) k ≤ 0, -S k ∈ [br, br + 1]), which by (A.10) and by (A.22) for (-S n ) n≥0 is bounded byηr 2 ∑ j=1 C 51 (1 + α) jar η b 2 ≤ C 30 (a, b)(1 + α)η 3/2 .Proof of (A.30). Observe that if m ≤ r 1+δ , then by (A.20), one hasE m ∑ k=1 e -S k 1 {S m ≥0,S m ≥r,S m -S m ≤α} ≤ r 1+δ e -C 21 r 1-δ . If r 1+δ ≤ m ≤ ηr 2 , then by Markov property, k 1 {S m ≥0,S m ≥r,S m -S m ≤α} ≤ ηr 2 e -r/2 + E m ∑ k=1 e -S k 1 {Sk≤r/2,S m ≥0,S m ≥r,S m -S m ≤α} ≤ηr 2 e -r/2 + m ∑ k=1 E[e -S k 1 {S k ≥0,S k ≤r/2} P S k (S m-k ≥ 0, S m-k ≥ r, S m-k -S m-k ≤ α)]. (A.40)Now we write n = mk and a = S k for convenience, thenP S k (S m-k ≥ 0, S m-k ≥ r, S m-k -S m-k ≤ α)is less than P(S n ≥ -a, S n ≥ r/2, S n -S n ≤ α) j ≥ -a, S j = S j ≥ r/2α)P(S n-j ≤ 0, S n-j ≥ -α)

C

  83 (1 + α) a r b r 3/2 = o r (1).

E

  ζ i = e α H ∞ -1.As g is bounded, one obtains (A.34) by dominated convergence.Proof of (A.36). LetE (A.36) := E F(e b √ n-(S n -S n ) , n ∑ i=0 e S i -S n )1 {S n ≥-α,S n ≥a √ n+a n ,max 0≤k≤n (S k -S k )≤a √ n+a n ,S n -S n ∈[b √ n-K,b √ n+K)} .By considering the first time hitting S n , we haveE (A.36) = n-1 ∑ j=1 E F(e b √ n-(S n -S n ) , n ∑ i=0 e S i -S n )1 {S n ≥-α,S j-1 <S j ,S j =S n ≥a √ n+a n } ×1 {max0≤k≤n(Sk-Sk)≤a √ n+a n ,S n -S n ∈[b √ n-K,b √ n+K)} . (A.56)By Markov property at time j, this is equal to∑ n-1 j=1 ∑ K/h-1 =-K/h E (A.36) (j, n, )whereE (A.36) (j, n, ) := E F(e b √ n+R n-j , )1 {S j ≥-α,S j-1 <S j ,S j ≥a √ n+a n ,max 0≤k≤j (S k -S k )≤a √ n+a n } ×1 {maxk≤n-j R k ≤0,min 0≤k≤n-j (-R k )≤(a √ n+a n )∧(α+S j ),-R n-j ∈[b √ n+ h,b √ n+ h+h)} (A.57)with (R k ) k≥0 is an independent copy of the random walk (S k ) k≥0 . First, let us prove that for n 1, ∑ j≤εn or j≥n-εnK/h-1 ∑ =-K/h nE (A.36) (j, n, ) = o ε (1)For j ≤ εn, similarly to (A.42), by (A.20), (A.10) and (A.5) one has (A.36) (j, n, ) ≤ ∑ j≤n 3/4

F

  x>0,y≥1 |F(xe h , y) -F(x, y)| ≤ 2(e h -1) and sup x>0,y≥1 |F(x, y + h) -F(x, y)| ≤ 2h. Therefore, on -R n-j ∈ [b √ n + h, b √ n + h + h), ) + o h (1).

k

  (nj)E[(F(e -h , t + eh , t + H (-)∞ -1) + o n (1))]C 0 ( ab nj , b nj ) + o n (1),where c -:= lim n→∞ √ nP(S n ≤ 0) and H ) k≥0 the Markov chain obtained from the reflected walk. It follows thatnE (A.36) (j, n, ) = n nj E 1 {S j ≥-α,S j-1 <S j ,S j ≥a √ n+a n ,max 0≤k≤j (S k -S k )≤a √ n+a n } × c -h σ E[F(e -h , j ∑ i=0 e S i -S j + H (-) ∞ -1) + o n (1)]C 0 ( ab nj , b nj ) + o n (1) ,

  4. Forηr 2 /2 ≤ j ≤ -1, we use (A.11) and (A.22). ≤ 0, -S j ∈ [r, r + 1]) = o r (1). S n ≥-α,S [n δ ,n] ≥n δ/6 ,S n δ ≤n δ ,S n ≤x Error (A.34) ≤||g|| ∞ E 1 S n ≥-α,S [n δ ,n] ≤n δ/6 ,S n ∈[y+ ||g|| ∞ E 1 {S n ≥-α,S n δ ≥n δ ,S n ∈[y First, let us check that Error (A.34) = o n ( 1 n ).On the one hand, by (A.20),E 1 {S n ≥-α,S n δ ≥n δ ,S n ∈[y ≥ n δ ) ≤ e -C 21 n δ = o n ( 1 n). the other hand, by considering the first time hitting S [n δ ,n] ,E 1 S n ≥-α,S [n δ ,n] ≤n δ/6 ,S n ∈[y {S j ≥-α,S j ≤n δ/6 } P(S n-j ≥ 0, S n-j ∈ [y√ n + zt, y √ n + zt + h])| t=S j (1 + α)(1 + α + n δ/6 ) 2 j 3/2 P(S n-j ≥ y √ n + zn δ/6 )where the last inequality follows from (A.5). By (A.20),E 1 S n ≥-α,S [n δ ,n] ≤n δ/6 ,S n ∈[y ≤ C 85 (1 + α) 4 n -δ/6-1 + C 85 (1 + α) 3 n δ/3-3/2 e -C 86 √ n which is o n ( 1 n ).It remains to prove the convergence ofE + S n ≥-α,S [n δ ,n] ≥n δ/6 ,S n δ ≤n δ ,S n ≤xAs S [n δ ,n] ≥ n δ/6 and g is uniformly continuous on any compact set of [0, ∞),In fact, we need to work on {∑ n i=1 e -S i ≤ K} with K > 0 fixed. It is easy to check that{S i ≥0} P S i (S n-i ≥ 0, S n-i ∈ [y √ n + z, y √ n + z + h))] + e -y S n ≥ -α, S [n δ ,n] ≥ n δ/6 , S n δ ≤ n δ , S n ≤ x √ n, S n ∈ [y √ n + z, y √ n + z + h) ≤o n (1)P S n ≥ -α, S n ∈ [y √ n + z, y √ n + z + h) -S i )1 S n ≥-α,S [n δ ,n] ≥n δ/6 ,S n δ ≤n δ ,S n ≤x {S n ≥-α,S n δ ≤n δ ,S n ≤x -S i )1 {S n δ ≥-α,S n δ ≤n δ } P S n δ S n-n δ ≥ -α, S n-n δ ≤ x √ n, S n-n δy √ nz ∈ [0, h) + o n ( A.55)where the last equality is obtained by Markov property at time n δ . For t = S n δ ∈ [-α, n δ ], one sees thatP t S n-n δ ≥ -α, S n-n δ ≤ x √ n, S n-n δy √ nz ∈ [0, h) =P t+α S n-n δ ≤ x √ n + α|S n-n δ ≥ 0, S n-n δy √ nz + α ∈ [0, h) × P t+α (S n-n δ ≥ 0, S n-n δy √ nz ∈ [α, α + h)). P t+α (S n-n δ ≥ 0, S n-n δy √ the constant c + = lim n→∞ √ nP(S n ≥ 0) ∈ (0, ∞).Moreover, in the spirit of Theorem 2.4 of[START_REF] Caravenna | An invariance principle for random walk bridges conditioned to stay positive[END_REF], we can say thatP t+α S n-n δ ≤ x √ n + α|S n-n δ ≥ 0, S n-n δy √ nz + α ∈ [0, h) → P(R 1 ≤ xuniformly for (x, y) in a compact set of (0, ∞) 2 . In fact, in Theorem 2.4 of[START_REF] Caravenna | An invariance principle for random walk bridges conditioned to stay positive[END_REF], the Hypothesis 2.2 is needed for the density of increments. However, in this work, as we consider {S n ∈ [y, y + h]} instead of {S n = y}, the Hypothesis 2.2 is not necessary. As a result,P t S n-n δ ≥ -α, S n-n δ ≤ x √ n, S n-n δy √ nz ∈ [0, h) | t=S n δ ) i≥0 is a Markov chain taking values in R + , satisfying P α (ζ 0 = α) = 1,with transition probability p(x, dy) = 1 {y>0} R(y) R(x) P x (S 1 ∈ dy). It is known that for any δ ∈ (0, 1/2) small, P α -a.s., ζ n ≥ n 1/2-δ for n 1. So H ∞ = ∑ ∞ i=0 e -ζ i is a positive random variable taking values in R + . It is obvious that

	r 2 /η ∑ =ηr 2 ≤ j= -ηr 2 /2 -1 ∑ + n-1 ∑ j=n-√ n P (A.52) (j, ) ≤ C 5 √ n+z,y g( r 2 /η ∑ =ηr 2 √ n+z,y C 84 √ n+z+h]} ≤P(S n δ ≥ n δ ) (1 + α)a r 3/2 br+b r ∑ r=br-b r ηr 2 /2 ∑ √ n,S n ∈[y √ n+z,y √ n,S n ∈[y √ n+z,y √ √ √ n+z,y √ n+z+h] n+z+h] √ n+z,y √ n+z+h]} ≤ n δ ∑ k=1 √ n+z+h] √ n,S n ∈[y √ n+z,y √ n ∑ i=1 e -S i ) = g( n δ ∑ i=1 e -S i ) + o n (1). E[( √ n+z,y √ n+z+h)} ] n-1 ∑ ≤ n-1 ∑ i=1 C 87 (1 + α)(1 + y √ n + z + h)e α i 3/2 (n -i) 3/2 ≤ C 88 n . E (A.34) = E g( n ∑ i=1 e -S i )1 {S n ≥-α,S n ≤x √ n,S n ∈[y √ n+z,y √ n+z+h),∑ n i=1 e -S i ≤K} + + Error (A.34) n+z+h) . √ n-z o K (1) n . Let us work directly with (A.54). By (A.5), it is clear that where So, o n (1)P h) n 3/2 = o n ( 1 n ). By (5.3) of [CC13], σ |R 1 = y σ ) = c + nσ R(S n δ + α)ψ( y σ )hP(R 1 ≤ x σ |R 1 = y σ )(1 + o n (1)). (A.53) (A.54) Plugging it into (A.55) yields that E + (A.34) =E g( n δ ∑ i=1 e -S i )1 {S n δ ≥-α,S n δ ≤n δ } c + nσ R(S n δ + α)ψ( y σ )hP(R 1 ≤ x σ |R 1 = y σ )(1 + o n (1)) + o n ( 1 n ) =E α g( n δ ∑ i=1 e α-S i )1 {S n δ ≥0} R(S n δ ) c + nσ ψ( y σ )hP(R 1 ≤ x σ |R 1 = y σ )(1 + o n (1)) + o n ( 1 n ) =R(α)E α g( n δ ∑ i=1 e α-ζ i ) c + nσ ψ( y σ )hP(R 1 ≤ x σ |R 1 = σ )(1 + o n (1)) + o n ( 1 n ) y P(S On √ n+z,y √ n+z+h] ≤ n-1 ∑ j=n δ E 1 ≤ n-√ n ∑ j=n δ C 5 (1 + α)(1 + α + n δ/6 ) 2 j 3/2 C 5 (1 + h)(1 + y n + z + α + h) (n -j) 3/2 =E g( ∑ i=1 n ). e 1 n δ √ It then follows that E + (A.34) = E g( n δ ∑ i=1 e √ n,S n ∈[y √ n+z,y √ n+z+h) + o n ( 1 n ) =E g( n δ ∑ i=1 e -S i )1 √ n,S n ∈[y √ n+z,y √ n+z+h)} + o n ( 1 n ) where (ζ i n δ
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j=1

P(S j Proof of (A.34). Let

E (A.34) := E g( n ∑ i=1 e -S i )1 {S n ≥-α,S n ≤x n+z+h]} .

Let δ ∈ (0, 1/2).

E (A.34) = E g( n ∑ i=1 e -S i )1 k (A.34) := E g( n ∑ i=1 e -S i )1 n ∑ i=1 e -S i )1 {S n ≥-α,S n ∈[y i=1 E α [e α-S i 1 ≤o n (1) C 5 (1 + α)(1 + h)(1 + y √ n + z + α + (nz ∈ [α, α + h)) = c + σn R(t + α)(ψ( y σ )h + o n (1)),

where

  ≥ -α, S j = S j ≥ a √ n + a n )P(S n-j ≤ 0, -S n-j ∈ [b ≥ nεn, by (A.9) and (A.22), one has ≥ -α, S n-j = S n-j ≥ a √ n + a n )P(S j ≤ 0, -S j ∈ [b √ n -K, b √

	For j n	K/h-1	
		∑		∑	E (A.36) (j, n, )
		j=n-εn	=-K/h	
		εn				
	≤	∑	P(S n-j	
		j=1				
							P(S j ≥ a	√	n + a n )
		+	δn ∑	P(S j √	n -K, b	√	n + K])
	j=n 3/4 ≤e -C 89 n 1/4 + ∑ εn j=n 3/4	C 90 (1 + α) j(a √ n + a n )	(1 + b (n -j) 3/2 √ n + K)	=	o n (1) + o ε (1) n	.
							58
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A.2 Results on one-dimensional random walks

We state some facts and inequalities on centred random walk (S n ) n≥0 introduced in the Many-to-One Lemma. The proofs are postponed in Section A.3.

We start with some well known inequalities (see [START_REF] Andreoletti | Range and critical generations of a random walk on galton-watson trees[END_REF] for instance). Recall that S n = min 0≤k≤n S k and S n = max 0≤k≤n S k . Note that the inequalities in the following hold also for the random walk (-S n ) n≥0 . For any α ≥ 0 and n ≥ 1, we have

For any α ≥ 0, b ≥ a ≥ -α and for any n ≥ 1,

We define the renewal function associated with the strict descending ladder process as follows:

Moreover there exist 0 < C 6 < C 7 < ∞ such that for any u ≥ 0,

Recall that there exists some positive constant c + such that

1. For any u, α ≥ 0 and for any n ≥ 1,

2. For any n ≥ 1 and A > 0, α ≥ 0,

This leads to n-εn

∞ -1)]ds + o n (1) + o h (1)Kh

Letting n → ∞ then letting h → 0 and ε → 0, we conclude (A.36).