A Review of Sparse Recovery Algorithms - Archive ouverte HAL
Article Dans Une Revue IEEE Access Année : 2019

A Review of Sparse Recovery Algorithms

Résumé

Nowadays, a large amount of information has to be transmitted or processed. This implies high-power processing, large memory density, and increased energy consumption. In several applications, such as imaging, radar, speech recognition, and data acquisition, the signals involved can be considered sparse or compressive in some domain. The compressive sensing theory could be a proper candidate to deal with these constraints. It can be used to recover sparse or compressive signals with fewer measurements than the traditional methods. Two problems must be addressed by compressive sensing theory: design of the measurement matrix and development of an efficient sparse recovery algorithm. These algorithms are usually classified into three categories: convex relaxation, non-convex optimization techniques, and greedy algorithms. This paper intends to supply a comprehensive study and a state-of-the-art review of these algorithms to researchers who wish to develop and use them. Moreover, a wide range of compressive sensing theory applications is summarized and some open research challenges are presented.
Fichier principal
Vignette du fichier
A_Review_of_Sparse_Recovery_Algorithms.pdf (8.87 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-02942487 , version 1 (26-01-2024)

Identifiants

Citer

Elaine Crespo Marques, Nilson Maciel, Lirida Naviner, Hao Cai, Jun Yang. A Review of Sparse Recovery Algorithms. IEEE Access, 2019, 7, pp.1300-1322. ⟨10.1109/ACCESS.2018.2886471⟩. ⟨hal-02942487⟩
58 Consultations
63 Téléchargements

Altmetric

Partager

More