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ABSTRACT Nowadays, a large amount of information has to be transmitted or processed. This implies high-
power processing, large memory density, and increased energy consumption. In several applications, such
as imaging, radar, speech recognition, and data acquisition, the signals involved can be considered sparse
or compressive in some domain. The compressive sensing theory could be a proper candidate to deal
with these constraints. It can be used to recover sparse or compressive signals with fewer measurements
than the traditional methods. Two problems must be addressed by compressive sensing theory: design
of the measurement matrix and development of an efficient sparse recovery algorithm. These algorithms
are usually classified into three categories: convex relaxation, non-convex optimization techniques, and
greedy algorithms. This paper intends to supply a comprehensive study and a state-of-the-art review of these
algorithms to researchers who wish to develop and use them. Moreover, a wide range of compressive sensing
theory applications is summarized and some open research challenges are presented.

INDEX TERMS
Bayesian compressive sensing, compressive sensing, convex relaxation, greedy algorithms, sparse recovery
algorithms, sparse signals.

I. INTRODUCTION
With the increasing amount of information available in the
age of big data, the complexity and the cost of process-
ing high-dimensional data systems become very critical [1].
Therefore, developing methods to acquire the previous infor-
mation of the signals is very important and useful [2].

The Shannon-Nyquist sampling theorem is traditionally
used to reconstruct images or signals from measured data.
According to this theorem, a signal can be perfectly recon-
structed from its samples if it is sampled by the Nyquist rate,
that is, a rate equal to twice the bandwidth of the signal [3].

In several applications, especially those involving ultra-
wideband communications and digital image, the Nyquist
rate can be very high, resulting in too many samples,
which makes it difficult to store or transmit them [4]–[6].
Furthermore, it can become unfeasible to implement these
scenarios.

Most real signals can be considered sparse or compressive
in some domain. Such signals have a lot of coefficients which
are equal to or close to zero. For example, many communi-
cation signals can be compressible in a Fourier basis, while
discrete cosine and wavelet bases tend to be suitable for
compressing natural images [7]. Moreover, a sparse represen-
tation of a signal allows more efficient signal processing [8].

Compressive Sensing (CS) theory can be very useful when
signals are sparse or compressible. This theory was developed
by Candès et al. [9] and Donoho [10]. CS combines the
acquisition and compression processes, exploiting the sig-
nals’ sparsity. It allows reducing time processing and energy
consumption as well as improving storage capacities [5].
While tradition methods use the Nyquist rate, that is, the rate
depends on the highest frequency component of the signal,
CS relies on sampling rate related to the signal’s sparsity.

Researchers have invested effort in developing an efficient
algorithm for sparse signal estimation. In fact, there are some
survey papers in the literature that address greedy algorithms
for sparse signal recovery [11]–[15], measurement matrices
used in compressive sensing [16], [17], and compressive
sensing applications [18]–[24]. Various works focus on one
specific category of sparse recovery algorithm or one specific
application of CS theory. Moreover, the recently work [25]
reviews the basic theoretical concepts related to CS and the
CS acquisition strategies. However, although [25] presents
some reconstruction algorithms, it is not focused on them.

Due to the significant amount of literature available, this
work aims to review some concepts and applications of
compressive sensing, and to provide a survey on the most
important sparse recovery algorithms from each category.
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TABLE 1. Definitions of acronyms and notations.

This work focuses on the single measurement vector prob-
lem. Other works focused on Multiple Measurement Vectors
(MMV) can be found in [26]–[29]. Some open research chal-
lenges related to sparse signal estimation are also discussed.
The main contributions of this paper are:
• A review of the most important concepts related to com-
pressive sensing and sparse recovery algorithms;

• A list of some applications of CS;
• Comparison of some sparse recovery algorithms;
• Open research challenges.
To facilitate the reading of this paper, Table 1 provides

the definitions of acronyms and notations. Moreover, vectors
are denoted by bolded lowercase letters, while bolded capital
letters represent matrices.

The paper is structured as follows. Section II introduces the
key concepts of the CS theory. Its applications are illustrated
in Section III. Section IV presents an overview of sparse
recovery algorithms. Discussion of these algorithms and
some open research challenges are explained in Section V.
Finally, conclusions are presented in Section VI.

II. COMPRESSIVE SENSING (CS)
The main idea of compressive sensing is to recover signals
from fewer measurements than the Nyquist rate [9], [10]. The
underlying assumption is that signals are sparse or compress-
ible by some transforms (e.g., Fourier, wavelets).

A s-sparse signal has only s non-zero coefficients.
Otherwise, the coefficients z(i) of a compressible signal
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decrease in magnitude according to:

|z(I (k))| 6 Ck−1/r k = 1, . . . , n (1)

where I (k) is the k th largest component of z sorted by magni-
tude from largest to smallest. Due to their rapid decay, such
signals can be well approximated by s-sparse signals, keeping
just the s largest coefficients of z.
Fig. 1 shows a 200 samples length time-domain signal

(Fig. 1(a)) representing 8 distinct sinusoids (Fig. 1(b)). This
figure is an example of 8-sparse signal in frequency domain,
that is, it can be seen in Fig. 1(b) that only 8 non-zero values
exist among the 200 frequencies.

FIGURE 1. Samples of 8 sinusoids in (a) time and (b) frequency domains.

CS allows two main advantages: reduce the energy for
transmission and storage through the projection of the infor-
mation into a lower dimensional space; and reduce the power
consumption by reducing the sampling rate to the signal’s
information content rather than to its bandwidth [10].

CS includes three main steps: sparse representation,
CS acquisition (measurement), and CS reconstruction (sparse
recovery) as illustrated in Fig. 2 [30], [31].

FIGURE 2. Compressive sensing main processes.

In a sparse representation, the signal is represented as a
projection on a suitable basis, i.e., a linear combination of
only s basis vectors, with s � N . It means that a signal z
with N × 1 column vector in its original representation can
be represented with a basis of N × 1 vectors {ψ i}

N
i=1. Let 9

be the N × N basis matrix, the signal can be represented in
its sparse form h by:

z = 9h (2)

Next, in the second step (measurement - CS Acquisition),
the signal z is measured by sampling it according to a matrix
8 ∈ CM×N , where φi denotes the i

th column of the matrix8.
The system model is defined by:

y = 8z+ n = 89h+ n = Ah+ n (3)

where y = [y1, y2, . . . , yM ]T denotes the received signal,
h = [h1, h2, . . . , hN ]T is the sparse signal vector with N >

M and n is the noise.
Recovery is possible if the following two fundamental

premises underlying CS are attended [10]:
• Sparsity - means that the signal could be characterized
by few significant terms in some domain.

• Incoherence - states that distances between sparse sig-
nals are approximately conserved as distances between
their respective measurements generated by the sam-
pling process.

The largest correlation between any two elements of
9 and 8 is measured by the coherence between these matri-
ces and defined by:

µ(8,9) =
√
N max

1≤k,j≤N

∣∣< ϕk , ψj >
∣∣ (4)

If 8 and 9 contain correlated elements, the coherence
is large. On the contrary, the coherence is small. Compres-
sive sensing is mainly concerned with low coherence pairs.
In [32], considering C as a constant, the authors showed that
if (5) holds, then with overwhelming probability one sparse
recovery algorithm will recover the signal.

M ≥ Cµ2(8,9)s logN (5)

Equation (5) shows that fewer measurements will be
required to recover the signal if the coherence between
9 and 8 is small [2].

As illustrated in Fig.2, the last step (sparse recovery - CS
Reconstruction) recovers the sparse signal from a small set
of measurements y through a specific sparse recovery algo-
rithm [31]. This step concerns the development of efficient
sparse recovery algorithms. Some of them are addressed in
Section IV.

Fig. 3 illustrates the relationship between the variables in
a noiseless scenario. This work considers that the signal to
be estimated is already in its sparse representation in a noisy
scenario. The system is defined by:

y = Ah+ n (6)

FIGURE 3. Representation of measurements used in compressive sensing.

One of the challenges associated with the sparse signal
estimation is to identify the locations of the non-zero signal
components. In other words, this is finding the subspace gen-
erated by no more than s columns of the matrix A, related to
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the received signal y. After finding these positions, the non-
zero coefficients can be calculated by applying the pseudoin-
version process.

CS theory addresses two main problems:
• Design of the measurement matrix A.
• Development of a sparse recovery algorithm for the
efficient estimation of h, given only y and A.

In the first problem, the goal is to design a measurement
matrix A which assures that the main information of any
s-sparse or compressible signal is in this matrix [2]. The
ideal goal is to design an appropriate measurement matrix
with M ≈ s.

The measurement matrix is very important in the process
of recovering the sparse signal. According to [10], if the
Restricted Isometry Property (RIP) defined in (7) is satis-
fied, using some recovery algorithm, it is possible to obtain
an accurate estimation of the sparse signal h, for example
solving an lp-norm problem [33]. δs ∈ (0, 1) is the RIC
(Restricted Isometry Constant) value and corresponds to the
smallest number that achieves (7).

(1− δs)‖h‖22 ≤ ‖Ah‖
2
2 ≤ (1+ δs)‖h‖22 (7)

Table 2 reproduces a comparison between deterministic
sensing and random sensing for the measurement matrix A
presented in [2]. The random matrices are one approach to
obtain a measurement matrix A that obeys the RIP condi-
tion. Many works deal with random measurement matrices
generated by identical and independent distributions (i.i.d.)
such as Bernoulli, Gaussian, and random Fourier ensem-
bles [34]–[37]. However, these matrices require signifi-
cant space for storage and they have excessive complexity
in reconstruction [2]. Furthermore, it is difficult to verify
whether these matrices satisfy the RIP property with a small
RIC value [2].

TABLE 2. Comparison between random and deterministic sensing [2].

Therefore, deterministic matrices have been studied to be
used as measurement matrices. In [38] and [39], the authors
propose deterministic measurement matrices based on coher-
ence and based on RIP, respectively. Moreover, deterministic
measurement matrices are constructed via algebraic curves
over finite fields in [40]. Furthermore, a survey on determin-
istic measurement matrices for CS can be found in [16].

Defined the appropriate measurement matrix A, h can be
estimated by the least squares (LS) solution of (6), i.e., solv-
ing the problem (8), where ε is a predefined error tolerance.

min ‖ĥ‖2 subject to ‖y− Aĥ‖22 < ε (8)

This system is ‘‘underdetermined’’ (the matrix A has more
columns than rows). Let A† be the pseudo-inverse matrix
of A and AAH has an inverse matrix, according to the LS
algorithm, the unique solution ĥ of this optimization problem
is given by (9) [41].

ĥLS = A†y = AH (AAH )−1y (9)

It is worth noting that the least squares minimization prob-
lem cannot return a sparse vector, so alternatives have been
sought. By focusing on the sparsity constraint on the solution
and solving the l0 norm minimization described by (10), it is
possible to obtain a sparse approximation ĥ.

min ‖ĥ‖0 subject to ‖y− Aĥ‖22 < ε (10)

The Lemma 1.2 of [42] shows that if the matrix A obeys
the RIP condition with constant δ2s < 1, (10) has an
unique solution and h can be reconstructed exactly from
y and A.
Unfortunately, an exhaustive search over all

(N
s

)
possible

sparse combinations is required in the l0 minimization prob-
lem, which is computationally intractable for some practical
applications. Thus, although this gives the desired solution,
in practice it is not feasible to solve this equation. The
excessive complexity of such a formulation can be avoided
with the minimization of the l1 problem (11), which can
efficiently compute (10) under certain conditions, as demon-
strated in [43].

min ‖ĥ‖1 subject to ‖y− Aĥ‖22 < ε (11)

One of the advantages of the l1 norm minimization
approach is that it can be solved efficiently by linear program-
ming techniques [44].Moreover, Donoho and Tanner [45] say
that sparse signals can be recovered through l1 minimization
if M ≈ 2s log(N ).

III. APPLICATION OF COMPRESSIVE SENSING
This section overviews some application areas for the CS the-
ory and its sparse recovery algorithms.

A. IMAGE AND VIDEO
1) COMPRESSIVE IMAGING
Natural images can be sparsely represented in wavelet
domains, so the required number of measurements in com-
pressive imaging can be reduced using CS [46], [47]. One
example of application is the single-pixel camera that allows
reconstructing an image in a sub-Nyquist image acquisition,
that is, from fewer measurements than the number of recon-
structed pixels [48].

2) MEDICAL IMAGING
CS can be very useful for medical imaging. For example,
the magnetic resonance imaging (MRI) is a time-consuming
and costly process. CS allows to decrease the number of
samples, and then to reduce the time of acquisition [49].
Similarly, bio-signals such as ECG signals are sparse in either
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wavelet or Fourier domain [50]. CS allows to take advantage
of the sparsity and reduces the required number of collected
measurements [49]–[52]. A hardware implementation on a
system on chip (SoC) platform of a solution to tackle big data
transmission and privacy issues is presented in [53].

3) VIDEO CODING
Due to the development and the increase of video surveil-
lance, mobile video, and wireless camera sensor networks,
wireless video broadcasting is becoming more popular and
finding several real-time applications [54], [55]. In these
cases, a single video stream is simultaneously transmitted
to several receivers with different channel conditions [55].
In order to do this, many new video codecs have been pro-
posed using compressive sensing [55]–[58].

4) COMPRESSIVE RADAR
Radar imaging systems aim to determine the direction,
altitude, and speed of fixed and moving objects [15].
By solving an inverse problem using the compressive sensing
theory, the received radar signal can be recovered from fewer
measurements [15]. Therefore, the cost and the complexity of
the hardware of the receiver are extremely reduced [15], [59].
Moreover, the CS has been a novel way to deal with the
Inter-Burst Translational Motion Compensation (IBTMC) to
achieve the exact recovery of Inverse Synthetic Aperture
Radar (ISAR) images from limited measurements [60].

B. COMPRESSIVE TRANSMISSION DATA
1) WIRELESS SENSORS NETWORKS (WSNs)
Wireless sensor networks (WSNs) require high communica-
tion costs and energy consumption. Due to critically resource
constraints as limited power supply, communication band-
width, memory, and processing performance, CS can be used
to reduce the number of bits to be transmitted or to represent
the sensed data in WSNs [61]–[64].

2) INTERNET OF THINGS (IoT)
The use of internet of things (IoT) devices has increased and
it is estimated that it will continue to do so in the follow-
ing years. This includes home automation/control devices,
security cameras, mobile phones, and sensing devices [65].
However, the IoT devices have computation, energy, and
congestion constraints. Even if they need to transmit large
amounts of data, they usually have limited power and low-
computation capabilities. Moreover, given the large number
of devices connected, they can suffer from congestion and
packet drops [65]. Thus, special data transmission strategies
have to be developed to enable low-power and low-cost
signal processing operations, and energy-efficient communi-
cations [65]. Multimedia data usually possesses sparse struc-
tures. Therefore, the CS theory emerges as a good strategy
to reduce the amount of data that the IoT devices need to
transmit with a high fidelity recovery data [66].

3) ASTROPHYSICAL SIGNALS
Radio receivers located in outer space suffer from strong
restrictions on storage capacity, energy consumption, and
transmission rate. To overcome these challenges, sampling
architectures using CS provide a data acquisition technique
with fewer measurements. Thus, the amount of collected
data to be downloaded to Earth and the energy consumption
are reduced. The simple coding process with low compu-
tational cost provided by the CS promotes its use in real-
time applications often found onboard spacecrafts. Moreover,
the reconstruction of the signals will be done on Earth where
there are much more computing and energy resources than
onboard a satellite [67], [68].

4) MACHINE LEARNING
Machine learning algorithms perform pattern recognition
(e.g., classification) on data that is too complex to model
analytically to solve high-dimensional problems. However,
the amount of information generated by acquisition devices
is always huge and ever-growing. It can achieve gigabytes of
data or more that exceeds the processing capacity of the most
sophisticated machine learning algorithms [69]. To reduce
the energy consumption of the applications, as in low-power
wireless neural recording tasks, signals must be compressed
before transmission to extend battery life. In these cases,
the CS can be used and it was demonstrated its potential in
neural recording applications [69]–[71].

C. COMMUNICATION SYSTEMS
1) COGNITIVE RADIOS (CRS)
Cognitive radios aim to provide a solution to the inefficient
usage of the frequency spectrum. Spectrum sensing tech-
niques suffer from computational complexity, hardware cost,
and high processing time [31]. Since usually only some of
the available channels are occupied by the users, the signal of
interest is normally sparse in the frequency domain. Hence,
the CS can be used to sense a wider spectrum with reduced
sampling requirements, resulting in more power efficient
systems [4], [18], [72], [73].

2) SPARSE CHANNEL ESTIMATION
Channels of several communication systems, e.g., under-
water communication systems [74], [75], WideBand
HF [76], [77], high-definition television (HDTV) [78], [79],
Ultra-WideBand communications [6], [80], [81], and
mmWave system [82], [83], can be considered or well mod-
elled as sparse channels. That is, the impulse response of
these channels are mainly characterized by few significant
components widely separated in some domain. In these cases,
better results can be achieved using the compressive sensing
theory to estimate these sparse channels [84]–[86]. In [87],
a low-complexity CS hardware implementation for channel
estimation in the integrated services digital broadcasting-
terrestrial (ISDB-T) system is proposed in FPGA.
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3) ANALOG TO INFORMATION CONVERSION (AIC)
The analog to digital conversion (ADC) is based on the
Nyquist sampling theorem in order to have a perfectly recon-
struction of the information. That is, the signal is uniformly
sampled at a rate at least twice its bandwidth. In several appli-
cations, the information of the signal is much smaller than its
bandwidth. In these cases, this represents a waste of hardware
and software resources to sample the whole signal. To deal
with this, an analog to information conversion (AIC) can
use the CS theory to acquire a large bandwidth with relaxed
sampling rate requirements, enabling faster, less expensive,
and more energy-efficient solutions [88]–[92]. Examples of
AIC are: random demodulator [91], [93], [94], modulated
wideband converter [95] and non-uniform sampling [90],
[96]–[98]. All these architectures have advantages and lim-
itations. While the random demodulator AIC employs finite
temporal sampling functions with infinite spectral support,
the modulated wideband converter AIC has finite spectral
sampling functions with infinite temporal support. Moreover,
the modulated wideband converter AIC requires a large num-
ber of branches, so synchronization among the branches is
also needed, thus consuming more area and power. On the
other hand, the non-uniform sampling AIC is sensitive to
timing jitter, i.e., a sampling time with a small error can lead
to a big error in the sample value for input signals that change
rapidly.

D. DETECTION AND RECOGNITION SYSTEMS
1) SPEECH RECOGNITION
Dictionary of example speech tokens can be used to sparsely
represent speech signals [99]. Moreover, the speech signal
can have sparse representation for a suitable selection of
sparse basis functions, but for the noise, it will be difficult
to derive a sparse representation. So, it is possible to exploit
this characteristic and through the CS theory achieve a better
speech recognition performance [20], [99], [100].

2) SEISMOLOGY
The compressive sensing theory has an important use in
data acquisition, that is, situations when it is intricate to
obtain a lot of samples, for example in the case of seismic
data [101]. The layers of the Earth can be estimated by
measuring the reflections of a signal from different layers
of the Earth. However, this requires a large data collection
that is a time-consuming and expensive process. To deal with
this, several works have proposed the CS for different seismic
applications [101]–[103].

3) DIRECTION-OF-ARRIVAL (DOA)
Direction-of-Arrival (DOA) estimation is the process of
determining which direction a signal impinging on an array
has arrived from [104] and [105]. Because there are only
a few non-zeros in the spatial spectrum of array signals,
which represent their corresponding spatial locations, this
sparsity can be applied to the DOA estimation [106].

Hence, the compressive sensing theory can be applied to the
problem of DOA estimation by splitting the angular region
into N potential DOAs, where only s � N of the DOAs
have an impinging signal (alternatively N − s of the angular
directions have a zero-valued impinging signal present)
[107], [108]. These DOAs are then estimated by finding the
minimumnumber of DOAswith a non-zero valued impinging
signal that still gives an acceptable estimate of the array
output [23], [104].

IV. SPARSE RECOVERY ALGORITHMS
Several sparse recovery algorithms have been proposed in the
last years. They have to recover a sparse signal from an under-
sampled set of measurements. They are usually classified
into three main categories: convex relaxations, non-convex
optimization techniques, and greedy algorithms [109].
Fig. 4 shows the algorithms that will be addressed in more
details in this work. For the following algorithms, the sys-
tem model is defined by (6) and the notation is presented
in Table 1.

FIGURE 4. Classification of sparse recovery algorithms.

Section IV-A presents some algorithms from the first cate-
gory. These algorithms result in convex optimization prob-
lems whose efficient solutions exist relying on advanced
techniques, such as projected gradient methods, interior-point
methods, or iterative thresholding [84].

On the other hand, non-convex optimization approaches
can recovery the signal by taking into account a previous
knowledge of its distribution (see Section IV-B) [31]. Thanks
to a posterior probability density function, these solutions
offer complete statistics of the estimate. Nonetheless, they
can be unsuitable for high-dimensional problems due to their
intensive computational requirements [110].

The third category is composed of the greedy algo-
rithms. They recover the signal in an iterative way, making
a local optimal selection at each iteration hoping to find
the global optimum solution at the end of the algorithm
(see Section IV-C).
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A. CONVEX RELAXATIONS
1) BASIS PURSUIT (BP)
Basis Pursuit (BP) is a signal processing technique that
decomposes the signal into an superposition of basic
elements. This decomposition is optimal in the sens that it
leads to the smallest l1 norm of coefficients among all such
decompositions [111]. The BP algorithm seeks to determine
a signal’s representation that solves the problem:

min ‖h‖1 subject to y = Ah (12)

BP is a principle of global optimization without any spec-
ified algorithm. One of a possible algorithm to be used is the
BP-simplex [111] that is inspired by the simplex method of
linear programming [112]. For the BP-simplex, first, an initial
basis A(3) is found by selecting M linearly independent
columns of A. Then, at each step, the swap which best
improves the objective functions is chosen to update the
current basis, that is, one term in the basis is swapped for one
term that is not in the basis [111].

Huggins and Zucker [113] propose an algorithm for BP
called Greedy Basis Pursuit (GBP). Unlike standard linear
programming methods for BP, the GBP algorithm proceeds
more like the MP algorithm, that is, it builds up the repre-
sentation by iteratively selecting columns based on computa-
tional geometry [113]. Moreover, the GBP allows discarding
columns that have already been selected [113].

2) BP DE-NOISING (BPDN) / LEAST ABSOLUTE SHRINKAGE
AND SELECTION OPERATOR (LASSO)
The Basis Pursuit Denoising (BPDN) [111] / Least Absolute
Shrinkage and Selection Operator (LASSO) [114] algorithm
considers the presence of the noise n:

min ‖h‖1 subject to y = Ah+ n (13)

and aims to solve the optimization problem defined by:

min(
1
2
‖y− Ah‖22 + λp‖h‖1) (14)

where λp > 0 is a scalar parameter [111], [114]. Its value
greatly influences on the performance of the LASSO algo-
rithm and therefore should be chosen carefully. In [111],
the authors suggest:

λp = σ
√
2 log(p) (15)

where σ > 0 is the noise level and p is the cardinality of the
dictionary [111].

Comparing with the LS cost function, it is possible to see
that (14) basically includes a l1 norm penalty term. Hence,
under certain conditions, the solution would achieve the
minimal LS error [115]. Since ‖h‖1 is not differentiable for
any zero position of h, it is not possible to obtain an analytical
solution for the global minimum of (14).

There are several iterative techniques to find the minimum
of (14) [111], [114]. One of these is called ‘‘Shooting’’ [116]
and starts by the solution:

ĥ = (AHA+ I)−1AHy (16)

where I is the identity matrix. Let aj be the jth column of the
matrix A and Bj be defined by (18), each jth element of ĥ is
updated by:

ĥj =



λ− Bj
aTj aj

, if Bj > λ

−λ− Bj
aTj aj

, if Bj < −λ

0, if |Bj| ≤ λ

(17)

Bj = −aTj y+
∑
l 6=j

aTj al ĥl (18)

The original Shooting method is applied to real variables.
For complex variables, an adaptation is necessary. In [117],
two schemes are presented to adapt the LASSO algorithm to
estimate a complex signal h:
• r-LASSO: Let imag(.) and real(.) be the imaginary and
real parts of a complex vector, respectively, it is defined
by [117]:

yR =
( real(y)
imag(y)

)
, hR =

( real(h)
imag(h)

)
,

AR
=

( real(A) −imag(A)
imag(A) real(A)

)
(19)

These definitions are used in the Shooting method in
(16) and each jth element of ĥ is calculated by [117]:

ĥj = ĥRj +
√
−1ĥRj+N (20)

• c-LASSO: The complex l1-norm can be solved by some
methods [117], [118]. It is defined by:

‖h‖1 =
∑
i

|hi| =
∑
i

√
real(hi)2 + imag(hi)2 (21)

In many applications, the imaginary and real components
tend to be either zero or non-zero simultaneously [117].
However, the r-LASSO does not take into account the
information about any potential grouping of the real and
imaginary parts [117]. On the other hand, the c-LASSO con-
siders this extra information [117]. A comparison between
r-LASSO and c-LASSO performed in [117] concludes that
the c-LASSO outperforms the r-LASSO since it exploits the
connection between the imaginary and the real parts.

3) LEAST ANGLE REGRESSION (LARS)
The Least Angle Regression (LARS) algorithm begins with
ĥ = 0, the residual vector b0 = y, and the active set
3 = ∅. This algorithm selects a new column from the
matrix A at each iteration i and adds its index to the set
3i [119]. The column aj1 that has a smaller angle with b0
is selected at the first iteration. Then, the coefficient ĥ1(j1)
associated with the selected column aj1 is increased [119].
Next, the smallest possible steps in the direction of the col-
umn aj1 is taken until another column aj2 has asmuch absolute
correlation value with the current residual as the column aj1 .
The algorithm continues in a direction equiangular between
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the two active columns (aj1 ,aj2 ) until a third column aj3 earns
its way into the most correlated set [119]. The algorithm stops
when no remaining column has correlation with the current
residual [119].

Fig. 5 illustrates the begin of the LARS algorithm consid-
ering a two-dimensional system. As said before, LARS starts
with ĥ0 = 0 and the residual vector b0 = y. Let θt (i) be the
angle between the column aji and the current residual vector
bi = y−Aĥi at iteration i, the column aj1 is selected due to its
absolute correlation with the initial residual vector compared
to aj2 (θ1(1) < θ1(2)) [120]. Next, the algorithm continues in
the direction of aj1 by adding the step size γ1. γ1 is chosen
in a way to guarantee that the columns aj1 and aj2 have the
same absolute correlation with the current residual vector at
the next iteration (θ2(1) = θ2(2)). The solution coefficient
is ĥ1(j1) = γ1 [120]. The column aj2 is added to the set 3 at
the second iteration, and the LARS continues in a equiangular
direction with aj1 and aj2 . Then, the step size γ2 that leads to
the vector y is added [120]. Finally, the solution coefficients
are equal to: ĥ2(j1) = γ1 + γ2 d2(j1) and ĥ2(j2) = γ2 d2(j2),
where d2 is the updated direction at the second iteration that is
equiangular with the active columns (aj1 , aj2 ). The estimated
vector ĥ is updated by multiplying the step size γ with the
updated direction d [120]. The algorithm continues until the
residual be zero.

FIGURE 5. LARS approximates the vector y by using aj1
and aj2

[120].

A modified LARS called ‘‘homotopy algorithm’’ was pro-
posed by Donoho and Tsaig to find a sparse solution of an
underdetermined linear system [44].

These steps can summarize the LARS algorithm [120]:
• Step 1: Initialize the residual vector b0 = y, the active
set 3 = ∅, ĥ0 = 0 and the iteration counter i = 1.

• Step 2: Calculate the correlation vector: ci = ATbi−1.
• Step 3: Find the maximum absolute value in the correla-
tion vector: λi = ‖ci‖∞.

• Step 4: Stop the algorithm if λ ≈ 0. If not, go to Step 5.
• Step 5: Find the active set: 3 = {j : |ci(j)| = λi}.
• Step 6: Solve the following least square problem
to find active entries of the updated direction:
AT (3)A(3)di(3) = sign(ci(3)).

• Step 7: Set the inactive entries of the updated direction
to zero: di(3C ) = 0.

• Step 8: Calculate the step size γi by:

γi = min
j∈3c

{
λi − ci(j)

1− aTj A(3)di(3)
,

λi + ci(j)

1+ aTj A(3)di(3)

}

• Step 9: Calculate ĥi = ĥi−1 + γidi.
• Step 10: Update bi = y− Aĥi.
• Step 11: Stop the algorithm if ‖bi‖2 < ε. Otherwise, set
i = i+ 1 and return to Step 2.

4) THE DANTZIG SELECTOR (DS)
The Dantzig Selector (DS) is a solution to l1 minimization
problem [121]:

min ‖ĥ‖1 subjet to ‖ATb‖∞ ≤
√
1+ δ1λNσ (22)

where b = y − Aĥ is the residual vector, σ is the stan-
dard deviation of the Additive White Gaussian Noise in (6),
λN > 0 and all the columns of A have norm less than
√
1+ δ1. ‖ATb‖∞ is defined by:

‖ATb‖∞ = sup
1≤i≤N

|(ATb)i| (23)

For an orthogonal matrix A, the Dantzig Selector is the
l1-minimizer subject to the constraint ‖AT y − ĥ‖∞ ≤ λNσ ,
and the ith element of ĥ is calculated by:

ĥ(i) = max(|(AT y)i| − λNσ, 0)sgn((AT y)i) (24)

5) APPROXIMATE MESSAGE PASSING (AMP)
The Approximate Message Passing (AMP) algorithm is
described in [122] and [123]. This algorithm starts by ĥ0 = 0
and b0 = y. Then, in each iteration i, it updates these vectors
by:

ĥi = ηi−1(ĥi−1 + ATbi−1) (25)

bi = y− Aĥi +
1
δ
bi−1

〈
η′i−1(A

Tbi−1 + ĥi−1)
〉

(26)

where δ = M/N , ηi(.) is the soft thresholding function,
〈u〉 =

∑N
i=1 ui/N for u = (u1, . . . , uN ) and η′i(s) =

∂
∂sηi(s).

The term 1
δ
bi−1

〈
η′i(A

Tbi−1 + ĥi−1)
〉
is from theory of belief

propagation in graphical model [122].
The thresholding function ηi(.) depends on iteration and

problem setting. Donoho et al. [123] consider the threshold
control parameter λ and ηi(.) = η(.; λσi) defined by:

η(u; λσi) =


(u− λσi), if u ≥ λσi
(u+ λσi), if u ≤ −λσi
0, otherwise

(27)

where σi is the mean square error of the current estimate
solution ĥi at iteration i. The optimal value of λ is [122]:

λ(δ) =
1
√
δ
argmax

x≤0

{
1− (2/δ)[(1+x2)8(−x)− xφ(x)]
1+x2 − 2[(1+ x2)8(−x)− xφ(x)]

}
(28)

where 8(x) =
∫ x
−∞

e−t
2/2
√
2π

dt and φ(x) = e−x
2/2

√
2π

.
A high-speed FPGA implementation of AMP is presented

in [124]. Moreover, Gallo et al. [125] present an imple-
mentation of AMP based on memristive crossbar arrays.
Furthemore, an adaptive complex approximate message pass-
ing (CAMP) algorithm and its hardware implementation in
FPGA are proposed in [126].
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6) GRADIENT DESCENT WITH SPARSIFICATION (GRADES)
This algorithm was proposed in [127]. It considers a mea-
surement matrix A which satisfies the RIP with an isometric
constant δ2s < 1/3. This algorithm finds a sparse solution for
the l1 minimization problem in an iterative way.
First, the algorithm initializes the signal estimation ĥ0 = 0.

Then, in each iteration i, it estimates the signal by:

ĥi = Hs

(
ĥi−1 +

1
γ
AH (y− Aĥi−1)

)
(29)

where γ > 1 and the operator Hs() sets all components to
zero except the s largest magnitude components.

7) ITERATIVE SOFT THRESHOLDING (IST)
Daubechies et al. [128] demonstrate that soft thresholding can
be used to minimize equations of the form:

1
2
‖Ah− y‖22 + τ ‖h‖1 (30)

The solution is given by the limit of the sequence, where
each iteration called Landweber iteration is defined by [128]:

ĥi = Sτ
(
ĥi−1 + βAH

(
y− Aĥi−1

))
(31)

where ĥ0 = 0, β is a stepsize, and Sτ (.) is the soft threshold-
ing function defined by (32) applied to each element of the
vector.

Sτ (x) =


x − τ, if x > τ

0, if |x| 6 τ

x + τ, if x < −τ

(32)

Let BR ⊂ Rn be the l1 ball of radius R defined by:

BR = {h ∈ Rn
: ‖h‖1 6 R} (33)

Daubechies et al. [129] suggest a different form of (31)
which calls the projected Landweber iteration given by:

ĥi = PR
(
ĥi−1 + AH

(
y− Aĥi−1

))
(34)

where PR(x) is the projection of a point x to the closest point
(under the l2 norm) onto the convex set BR.
The next steps calculate PR(x), that is, calculate the vector t

that is the closest point (under l2 distance) in the l1 ball of
radius R to x [11]:
• Step 1: If ‖x‖1 6 R, then t = x.
• Step 2: Sort the components of x by magnitude to get the
vector x̂ where |x̂1| > |x̂2| > . . . > |x̂n|.

• Step 3: Let
∥∥Sx̂k (x)∥∥1 =∑k−1

i=1 (x̂i−x̂k ), find k such that:∥∥Sx̂k (x)∥∥1 6 R 6
∥∥Sx̂k+1 (x)∥∥1 ,

k−1∑
i=1

(x̂i − x̂k ) 6 R 6
k∑
i=1

(x̂i − x̂k+1) (35)

• Step 4: Calculate µ = x̂k + 1
k (R −

∥∥Sx̂k (x)∥∥1). Then
t = Sµ(x).

According to [129], the projected Landweber iterative step
with an adaptive descent parameter βi > 0 as in (36) will

converge to solve argminĥ‖Aĥ − y‖2, that is, minimize ĥ in
the l1 ball BR.

ĥi = PR
(
ĥi−1 + βi−1AH

(
y− Aĥi−1

))
(36)

βi can be chosen by [118]:
• βi = 1, ∀i.

• βi =

∥∥∥AH (y−Aĥi)∥∥∥2
2∥∥∥AAH (y−Aĥi)∥∥∥2
2

Although IST is guaranteed to converge [128], it converges
slowly. Therefore, several modifications have been proposed
to speed it up such as the ‘‘fast ISTA’’ (FISTA) [130].

B. NON-CONVEX OPTIMIZATION TECHNIQUES
1) BAYESIAN COMPRESSIVE SENSING (BCS)
Let σ 2 be the noise variance, the sparse Bayesian learning
(SBL) assumes the Gaussian likelihood model [131]:

p(y|h; σ 2) = (2πσ 2)−M/2 exp
(
−1
2σ 2 ‖y− Ah‖2

)
(37)

In a Bayesian formulation, the formalization that h is
sparse is made by placing a sparseness-promoting prior
on h [132]. The Laplace density function is a widely used
sparseness prior [133], [134]:

p(h|λ) =
(
λ

2

)N
exp

(
−λ

N∑
i=1

|hi|

)
(38)

and henceforth the subscript s on h is dropped, recognizing
that the interest is in a sparse solution for the weights [132].
Thus, the solution of (6) corresponds to a maximum a poste-
riori (MAP) estimate for using the prior in (38) [114], [133].

According to the Bayesian probability theory, we consider
that a class of prior probability distributions p(θ ) is conjugate
to a class of likelihood functions p(x|θ ) if the resulting poste-
rior distributions p(θ |x) are in the same family as p(θ ) [132].
Since the Laplace prior is not conjugate to the Gaussian
likelihood, the relevance vector machine (RVM) is used.

Assuming the hyperparameters α and α0 are known, a mul-
tivariate Gaussian distribution with mean and covariance
given by (39) and (40) can express the posterior for h [132].

µ = α06AT y (39)
6 = (α0ATA+ D)−1 (40)

where D = diag(α1, α2, . . . αN ). Therefore, the search for
the hyperparameters α and α0 can be seen as a learning
problem in the context of the RVM. A type-II maximum
likelihood (ML) procedure can be used to estimate these
hyperparameters from the data [135].

The logarithm of the marginal likelihood for α and α0,
noted L(α, α0), is given by [132]:

log p(y|α, α0) = log
∫
p(y|h, α0)p(h|α)dh

= −
1
2

[
M log 2π + log |C| + yTC−1y

]
(41)
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with C = σ 2I + AD−1AT . The maximization of (41) can
be obtained with a type-II ML approximation that uses the
point estimates for α and α0. This can be achieved through
the Expectation-Maximization (EM) algorithm [132], [135],
to yield:

αnewi =
γi

µ2
i

(42)

where µi is the ith posterior mean weight from (39) and
γi = 1− αi6ii with 6ii the ith diagonal element of (40).

2) FOCAL UNDERDETERMINED SYSTEM
SOLUTION (FOCUSS)
The Focal Underdetermined System Solution (FOCUSS) was
proposed in [136] to solve (6). First, a low-resolution ini-
tial estimate of the real signal is made. Then, the iteration
process refines the initial estimate to the final localized
energy solution [136]. The FOCUSS iterations are based
on a weighted minimum norm solution defined as the solu-
tion minimizing a weighted norm ‖W−1h‖2. It is given
by [136]:

ĥ =W(AW)†y (43)

where the definition of a weighted minimum norm solu-
tion is to find h = Wq where q : min‖q‖2, subject to
AWq = y. When W is diagonal, the cost objective simply

becomes
∥∥∥W†h

∥∥∥ = ∑N
i=1,wi 6=0

(
hi
wi

)2
, where wi are the

diagonal entries of W [136].
The basis of the basic FOCUSS algorithm lies the Affine

Scaling Transformation (AST):

q = Ĥ†
k−1ĥ (44)

where Ĥ†
k−1 = diag(ĥk−1) [136]. Let Wpk be the

a posteriori weight in each iteration, the AST is used in the
basic FOCUSS algorithm to construct the weightedminimum
norm constraint (45) by setting Wpk = Ĥk−1 [136].

‖WTh‖22 = ‖q‖
2
2 =

n∑
i=1,wi 6=0

(
h(i)
w(i)

)2

(45)

Let ĥ0 = 0, the steps of the algorithm are:

Step 1: Wpk = (diag(ĥk−1)) (46)

Step 2: qk = (AWpk )
†y (47)

Step 3: ĥk =Wpkqk (48)

The algorithm continues until a minimal set of the columns
of A that describe y is obtained [136].

By introducing two parameters, the authors extend the
basic FOCUSS into a class of recursively constrained opti-
mization algorithms in [136]. In the first extension, ĥk−1 is
raised to some power l [136]. While in the second extension
an additional weight matrix Wak which is independent of

the a posteriori constraints is used [136]. The follow steps
describe the algorithm:

Step 1: Wpk = (diag(ĥlk−1)), l ∈ N+ (49)

Step 2: qk = (AWakWpk )
†y (50)

Step 3: ĥk =WakWpkqk (51)

It can be assumed that Wak is constant for all iterations.
According to [136], l > 0.5 when h(i) > 0 is imposed.

3) ITERATIVE REWEIGHTED LEAST SQUARES (IRLS)
The Iterative Reweighted Least Squares (IRLS) algorithm
is used for solving (52) through a weigthed l2 norm given
by (53), where the weights are computated from the previous
iterate hn−1, so wi = |hn−1(i)|p−2 [137].

min
h
‖h‖pp subject to Ah = y (52)

min
h

N∑
i=1

wih2(i) subject to Ah = y (53)

Let Qn be the diagonal matrix with entries 1/wi =
|hn−1(i)|2−p, the solution of (53) can be given by:

hn = QnAT (AQnAT )−1y (54)

To deal with the case 0 ≤ p ≤ 1, where wi will be
undefined for hn−1(i) = 0, the authors in [137] regularize
the optimization problem by incorporating a small ε > 0:

wi = ((hn−1(i))2 + ε)p/2−1 (55)

C. GREEDY ALGORITHMS
Several greedy algorithms follow the steps showed in Fig. 6.
There are some differences in the choice of the quantity
of the column in each iteration, that is, the way to choose
the indices j to compose the set Ji. For the MP, the OMP,
and the MPLS algorithms only one column is chosen in
each iteration. In contrast, the StOMP algorithm chooses
all columns whose the projection value is bigger than the
threshold value tS . The calculation of the residual vector bi
and the estimation of the non-zero values of ĥ in each iteration
are other differences between the algorithms. For example,
the MPLS and the SP algorithms estimate ĥ only at the end
of the algorithms as is explained in the subsections below.
Table 3 summarizes the inputs, the calculation of the resid-

ual vector bi and the signal estimate components ĥi in each
iteration. In the next subsections, the algorithms presented
in Fig. 4 are explained.

1) MATCHING PURSUIT (MP)
The Matching Pursuit (MP) algorithm is proposed in [138].
Let ĥ0 = 0, each iteration i of the MP algorithm consists in
finding the column aki ∈ A which is best aligned with the
residual vector bi−1 (b0 = y) according to (56) [138].

ki = argmax
l
|alHbi−1|, l = 1, 2, . . . .,N (56)
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TABLE 3. Main parameters and calculations of Greedy Algorithms.

FIGURE 6. Greedy algorithms diagram.

The index set 3i stores the indices of the best aligned
columns after i iterations. Let Di be the matrix formed by the
columns aki chosen until iteration i, the next step is 3i =

3i−1 ∪ ki and Di = [Di−1, aki ], if ki /∈ 3i−1. Otherwise,
3i = 3i−1 and Di = Di−1.
Then, a new residual vector is computed as (57) by remov-

ing the projection of bi−1 along this direction, and the esti-
mated coefficient is calculated by (58).

bi = bi−1 − Pakibi−1 = bi−1 −
(aki

Hbi−1)aki
‖aki‖

2
2

(57)

ĥi(ki) = ĥi−1(ki)+
(aki

Hbi−1)

‖aki‖
2
2

(58)

The stop criterion of the algorithm can be, for example,
‖bi‖ ≤ ε. The signal estimate corresponds to the projections
of the best columns of thematrixA. AnASIC implementation
of MP algorithm is proposed in [139].

2) MATCHING PURSUIT BASED ON LEAST SQUARES (MPLS)
Similarly to the MP algorithm, in each iteration of the Match-
ing Pursuit based on Least Squares (MPLS) [140] algorithm,

the column aki ∈ A which is best aligned with the residual
vector bi−1 (where b0 = y) is selected according to (59).

ki = argmax
l
|alHbi−1|, l = 1, 2, . . . .,N (59)

Let 3i be the index set of the best aligned columns
of A until the iteration i, 3i is updated by 3i = 3i−1 ∪ ki
if ki /∈ 3i−1. Otherwise, 3i = 3i−1.

Then, the new residual vector is computed as:

bi = bi−1 − Pakibi−1 = bi−1 −
(aki

Hbi−1)aki
‖aki‖

2
2

(60)

The MP and the MPLS algorithms are different in the way
that they calculate the non-zero signal components. In the
MPLS algorithm, these components are estimated through the
LS calculation only in the end of the algorithm.

After reaching the stop criterion, the signal is estimated
by (61), where T is the number of iterations and A(3T ) is
a submatrix of A consisting of the ai columns with i ∈ 3T .

ĥ = A†(3T )y (61)

3) ORTHOGONAL MATCHING PURSUIT (OMP)
The Orthogonal Matching Pursuit (OMP) algorithm is an
improvement of the MP [141]. It can be stated as follows:
• Step 1: Initialize b0 = y, 3i = ∅, and i = 1.
• Step 2: Find l that solves the maximization problem
max
l
‖Palbi−1‖2 = max

l

alHbi−1
‖al‖22

and update3i = 3i−1 ∪

{l}.
• Step 3: Calculate ĥi = A†(3i)y and update bi = y −
A(3i)ĥi.

• Step 4: Stop the algorithm if the stopping condition is
achieved (e.g. ‖bi‖ ≤ ε). Otherwise, set i = i + 1 and
return to Step 2.

In the OMP, the residual vector bi is always orthog-
onal to the columns that have already been selected.
Therefore, there will be no columns selected twice and the
set of selected columns is increased through the iterations.
Moreover, the sufficient and worst-case necessary conditions
for recovering the signal sparsity are investigated in [142].
Furthermore, the condition for the exact support recovery
with the OMP algorithm based on RIP and the minimum
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magnitude of the non-zero taps of the signal are studied
in [143] and [144].

Kulkarni and Mohsenin [145] propose two modifications
to the OMP in order to reduce the hardware complexity
of the OMP: Thresholding technique for OMP and Gradi-
ent Descent OMP. Reconfigurable, parallel, and pipelined
architectures for the OMP and its two modifications are
implemented on 65 nm CMOS technology operating at 1V
supply voltage to reconstruct data vector sizes ranging from
128 to 1024. These modifications lead to a 33% reduction in
reconstruction time and to a 44% reduction in chip area when
compared to the OMP ASIC implementation.

However, several other OMP hardware implementations
are proposed in the literature [124], [146]–[152]. The Step 3,
specifically the least squares operation, is the most costly
part of the OMP implementation. The most used methods to
deal with this are the QR decomposition and the Cholesky
decomposition.

Due to the OMP selects only one column in each iteration,
it is very sensitive to the selection of the index [153]. Alter-
natively, various approaches investigating multiple columns
chosen in each iteration have been proposed such as the SP,
the StOMP, the CoSaMP, the ROMP, theGOMP, theGOAMP,
the MMP, and the GP algorithms. Furthermore, the Block
Orthogonal Matching Pursuit (BOMP) algorithm [154] was
developed to recover block sparse signals and its performance
was investigated in [155] and [156].

4) SUBSPACE PURSUIT (SP)
At each stage, in order to refine an initially chosen estimate
for the subspace, the Subspace Pursuit (SP) algorithm tests
subsets of s columns in a group [157]. That is, maintaining s
columns of A, the algorithm executes a simple test in the
spanned list of space, and after refines the list by discarding
the unreliable candidates, retaining reliable oneswhile adding
the same number of new candidates [157]. Basically, the steps
of the SP are:
• Step 1: Initialize the support set 30 with the s indices
corresponding to the largest magnitude entries in the
vectorAHy, the residual vector b0 = y−A(30)A(30)†y
and the iteration counter i = 1.

• Step 2: 3̂i = 3i−1 ∪ Ji, where Ji is the set of the s
indices corresponding to the largest magnitude entries
in the vector ci = AHbi−1.

• Step 3: Calculate xi = A†(3̂i)y.
• Step 4: Update 3i = {s indices corresponding to the
largest magnitude elements of xi}.

• Step 5: Update bi = y− A(3i)A†(3i)y.
• Step 6: Stop the algorithm if the stopping condition is
achieved. Otherwise, set i = i+ 1 and return to Step 2.

After T iterations, the signal estimated is given by ĥ =
A†(3T )y.

When the signal is very sparse, the SP algorithm has
computational complexity upper-bounded by O(sMN ) (s ≤
const.

√
N ), that is, lower computational complexity than

the OMP algorithm [157]. However, when the non-zero

components of the sparse signal decay slowly, the com-
putational complexity of the SP can be further reduced to
O(MNlogs) [157].

5) STAGEWISE ORTHOGONAL MATCHING
PURSUIT (STOMP)
The Stagewise Orthogonal Matching Pursuit (StOMP) [158]
algorithm is inspired by the OMP. Different from the OMP
algorithm, the StOMP algorithm selects multiple columns at
each iteration. That is, according to a threshold, the StOMP
algorithm selects the subspaces composed of the columns
with the highest coherence between the remaining columns
and the residual vector [158]. The number of iterations is
fixed.

The input parameters are: the number of iterations T to
perform, the threshold value tS , the received signal y, and the
measurement matrix A. The StOMP algorithm can be stated
as follows:
• Step 1: Initialize the residual vector b0 = y, 30 = ∅,
and i = 1.

• Step 2: Find al that ‖Palbi−1‖ > tS , that is,
max
l

alHbi−1
‖al‖2

> tS and add the al columns to the set of

selected columns. Update 3i = 3i−1 ∪ {l}
• Step 3: Let ĥi = A(3i)†y. Update bi = y− A(3i)ĥi
• Step 4: If the stopping condition is achieved
(i = Nit = T ), stop the algorithm. Otherwise, set
i = i+ 1 and return to Step 2.

6) COMPRESSIVE SAMPLING MATCHING
PURSUIT (COSAMP)
The Compressive Sampling Matching Pursuit (CoSaMP)
algorithm is presented in [159] to mitigate the unstability
of the OMP algorithm. Similarly to the OMP, it starts by
initializing a residual vector as b0 = y, the support set as
30 = ∅, the iteration counter as i = 1, and additionally sets
ĥ0 = 0. The CoSaMP performs these steps [159]:
• Step 1 - Identification: a proxy of the residual vector
from the current samples is formed and the largest com-
ponents of the proxy ci = |AHbi−1| are located. The first
2s entries of ci with largest absolute values are selected,
and the indices selected compose Ji.

• Step 2 - Support merger: the set of newly identified com-
ponents is united with the set of components that appears
in the current approximation. 3i = Ji ∪ supp(ĥi−1)
is defined as the augmentation of the support of the
previous estimate ĥi−1 with the 2s indices corresponding
to the entries of ci with largest absolute values.

• Step 3 - Estimation: a least-squares problem to approxi-
mate the target signal on the merged set of components
is solved. x̂i = A(3i)†y.

• Step 4 - Pruning: a new approximation by retaining only
the largest entries in this least-squares signal approxima-
tion is produced. ĥi is the first s entries of x̂i with largest
absolute values.

• Step 5 - Sample update: update bi = y− A(3i)ĥi.
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FPGA implementations of CoSaMP are presented
in [160] and [161]. While an iterative Chebyshev-type
method is used in [161] to calculate the matrix inversion
process during the algorithm, [160] uses a QR decomposition
method.

7) REGULARIZED OMP (ROMP)
The Regularized OMP (ROMP) algorithm was proposed
in [162]. Firstly, the ROMP algorithm initializes 30 = ∅

and the residual vector b0 = y. Then, during each iteration i,
the ROMP performs these three steps:
• Step 1 - Identification: 3̂i = {s biggest indices in
magnitude of the projection vector ci = AHbi−1}.

• Step 2 - Regularization: Among all subsets Ji ⊂ 3̂i with
comparable coordinates |c(l)| ≤ 2|c(j)| for all l, j ∈ Ji,
choose Ji with the maximal energy ‖c(Ji)‖2.

• Step 3 - Updating: Add the set Ji to the index set: 3i =

3i ∪ Ji. Calculate ĥi = A(3i)†y and update the residual
vector bi = y− A(3i)ĥi.

The regularization step can be done in linear time. The
running time of the ROMP is comparable to that of the OMP
in theory, but it is often better than the OMP in practice [162].

8) GENERALIZED ORTHOGONAL MATCHING
PURSUIT (GOMP)
The Generalized Orthogonal Matching Pursuit (GOMP)
algorithm is a direct extension of the OMP algorithm [163].
The GOMP selects Q ≥ 1 largest correlation columns of the
matrixAwith the residual vector b. WhenQ = 1, the GOMP
becomes the OMP.Moreover,Q ≤ s andQ ≤

√
M . The steps

of the GOMP are:
• Step 1: Initialize the residual vector b0 = y,30 = ∅ and
i = 1.

• Step 2: Find the Q biggest al1 , .., alQ columns that
solves the maximization problem max

k
‖Palk bi−1‖2 =

max
k

alk
Hbi−1
‖alk ‖

2
2

and add the ali columns to the set of selected

columns. Update 3i = 3i−1 ∪ {l1, . . . , lQ}.
• Step 3: Calculate ĥi = A(3i)†y. Update bi = y −
A(3i)ĥi.

• Step 4: Stop the algorithm if the stopping condition is
achieved (Nit = min(s,M/Q) or ‖bi‖2 ≤ ε). Otherwise,
set i = i+ 1 and return to Step 2.

The complexity of the GOMP algorithm is approximately
2NitMN + (2Q2

+ Q)N 2
itM [163]. The RIP based sufficient

conditions for the exact support recovery with the GOMP in
the noisy case are investigated in [164].

9) GENERALIZED ORTHOGONAL ADAPTIVE MATCHING
PURSUIT (GOAMP)
The Generalized Orthogonal Adaptive Matching Pursuit
(GOAMP) algorithm considers that the signal’s sparsity is not
known, so it adapts the variable Q of the GOMP algorithm
during the iterations [165]. Basically, the GOAMP inserts a
new Step after the update of the residual vector:

• Step 1: Initialize the residual vector b0 = y,30 = ∅ and
i = 1.

• Step 2: Find the Q biggest al1 , .., alQ columns that
solve the maximization problem max

k
‖Palk bi−1‖2 =

max
k

alk
Hbi−1
‖alk ‖

2
2

and add the ali columns to the set of selected

columns. Update 3i = 3i−1 ∪ {l1, . . . , lQ}.
• Step 3: Calculate ĥi = A(3i)†y. Update bi = y −
A(3i)ĥi.

• Step 4: If ‖bi−1 − bi‖22/‖bi−1‖
2
2 < ε2, Q = f (Q).

Otherwise, go to Step 5.
• Step 5: Stop the algorithm if the stopping condition is
achieved (‖bi‖2 ≤ ε1). Otherwise, set i = i + 1 and
return to Step 2.

where f (Q) is a function that increases the value ofQ. Accord-
ing to [165], ε2 is about 0.7− 0.9.

10) GRADIENT PURSUIT (GP)
The Gradient Pursuit (GP) algorithms were proposed in [166]
as variations of the MP algorithm. In the GP, at iteration i,
the signal estimate ĥi is:

ĥi = ĥi+1 + γidi (62)

where di is the update direction and γi is the optimal step size
defined by:

γi =
< bi−1,A(3i)di >
‖A(3i)di‖

(63)

In the MP and the OMP algorithms, the update direction
is taken to be in the direction of the best aligned column
of the matrix A. In the OMP, once added, the column will
not be selected again as the process of orthogonalisation
ensures that all future residuals will remain orthogonal to all
currently selected columns. However, in the MP and the GP
the orthogonality is not ensured. Hence, it is possible select
again the same column.

Each iteration i consists into find the column ali ∈ Awhich
is best aligned with the signal vector residual bi−1. The GP
algorithms perform these steps:
• Step 1: Initialize b0 = y, 30 = ∅ and i = 1.
• Step 2: Find li that solves the maximization

problem max
li
‖Palibi−1‖2 = max

li

ali
Hbi−1
‖ali‖

2
2
. Update 3i =

3i−1 ∪ {li}.
• Step 3: Update the direction di. Calculate γi =

<bi−1,A(3i)di>
‖A(3i)di‖

and ĥi = ĥi−1 + γidi. Update bi =
bi−1 − γiA(3i)di.

• Step 4: Stop the algorithm, if the stopping condition is
achieved. Otherwise, set i = i+ 1 and return to Step 2.

There are three different methods for calculating the update
direction di [11], [166]:
• Gradient Pursuit: uses the direction that minimises
‖y− Aĥi−1‖2, that is:

di = AT (3i)
(
y− A(3i)ĥi−1(3i)

)
(64)
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• Conjugate Gradient Pursuit: it is a directional optimiza-
tion algorithm that is guaranteed to solve quadratic opti-
mization problems in as many steps as the dimension of
the problem [167]. Let φ(h) = 1

2h
TGh− fTh be the cost

function to be minimised, this method chooses di that is
G-conjugate to all the previous directions, that is:

diGdk = 0, ∀k < i (65)

In this case, G = AT (3i)A(3i). Let Di be the matrix
whose columns are the update directions for the first i
iterations and let gi be the gradient of the the cost
function in iteration i, the new update direction di in
iteration i is given by [167]:

di = gi + Di−1f (66)

where f = −
(
DT
i−1GDi−1

)−1 (DT
i−1Ggi−1

)
.

The OMP uses a full conjugate gradient solver at every
iteration. Instead, in this method, only a directional
update step occurs for each new added element.

• Approximate Conjugate Gradient Pursuit: the new direc-
tion is conjugate to the previous direction, but this can
be extended to a larger number of directions:

di = gi + di−1f (67)

The G-conjugacy implies that:

〈(Gdi−1) , (gi + bdi−1)〉 = 0 (68)

f = −
〈(A(3i)di−1) , (A(3i)gi)〉

‖A(3i)di−1‖22
(69)

11) MULTIPATH MATCHING PURSUIT (MMP)
With the help of the greedy strategy, the Multipath Matching
Pursuit (MMP) algorithm executes the tree search [153].
First, the MMP algorithm searches multiple promising
columns of the matrix A candidates and then it chooses one
minimizing the residual in the final moment. The MMP algo-
rithm can not be represented by Fig. 6. Let L be the number
of child paths of each candidate, f ki be the k th candidate in
the ith iteration, Fi = {f 1i , . . . , f

u
i } be the set of candidates

in the ith iteration and |Fi| be the number of elements of
Fi, �k is the set of all possible combinations of k columns
in A, for example, if � = {1, 2, 3} and k = 2, then �k

=

{{1, 2}, {1, 3}, {2, 3}} [153].
Fig. 7 shows a comparison from an hypothetical choice of

columns in the 3 first iterations of the OMP and the MMP
algorithms. In this figure, the OMP selects the column with
index 2 in the first iteration, then the index 1 in the next
iteration and in the third iteration, it selects the index 4. On the
other hand, the MMP algorithm selects the index 2 and 4 in
the first iteration, after for each index selected, the algorithm
will select others L = 2 index in each iteration. Then,
in the second iteration, it selects the index 1 and 5 for the
index 2 and for the index 4, but it is not necessary select the
same index as can be noted in the third iteration where the
MMP selects the index 4 and 5 for the {2, 1} composing f 13 =
{2, 1, 4} and f 23 = {2, 1, 5}, and the index 2 and 3 for the {4, 1}

FIGURE 7. Comparison between the OMP and the MMP algorithms
(L = 2): (a) OMP (b) MMP [153].

composing f 13 = {2, 1, 4} and f 53 = {4, 1, 3}. Moreover,
it can be noticed that although the number of candidates
increases as an iteration goes on (each candidate brings forth
multiple children), the increase is actually moderate since
many candidates are overlapping in the middle of search as
the case of f 13 , f

2
3 and f 33 in [153, Fig. 7].

The residual vector of the k th candidate in the ith iteration
is bki = y − A(f ki )ĥ

k
i , where A(f ki ) is the matrix A using

only the columns indexed by f ki . Given the measurement
matrix A, the received signal y, the signal’s sparsity s and
the parameter L, the MMP follows the steps bellow:
• Step 1: Initialize b0 = y, F0 = ∅ and i = 1.
• Step 2: Set Fi = ∅, u = 0 and k = 1.
• Step 3: Choose L best indices of columns that solve the
maximization problem argmax ‖AHbki−1‖

2
2 to compose

π and set j = 1.
• Step 4: Set f temp = f ki−1∪{πj}, where πj is the j

th element
of the set π .

• Step 5: If f temp /∈ Fi then u = u + 1, f ui = f temp, Fi =
Fi ∪ {f ui }, update ĥ

u
i = A†(f ui )y and bui = y− A(f ui )ĥ

u
i .

Otherwise, go to Step 6.
• Step 6: Set j = j + 1. If j ≤ L then go to Step 4.
Otherwise, go to Step 7.

• Step 7: Set k = k + 1. If k ≤ |Fi−1| then go to Step 3.
Otherwise, go to Step 8.

• Step 8: Set i = i+1. If i > s then go to Step 9. Otherwise,
go to Step 2.

• Step 9: Find the index of the best candidate, that is, u∗ =
argminu ‖bus‖

2
2. Set 3 = f u

∗

s and calculate the estimate
signal ĥ = A†(3)y.

If the argmax ‖AHbki−1‖
2
2 in the Step 3 is calculated as in

the OMP algorithm, the MMP algorithm is called Tree-based
Orthogonal Matching Pursuit (TOMP) algorithm [168].

12) ITERATIVE HARD THRESHOLDING (IHT)
The Iterative Hard Thresholding (IHT) algorithm [169] is an
iterative method that performs some thresholding function on
each iteration. This algorithm can’t be represented by Fig. 6.
Let ĥ0 = 0, i = 1, for each iteration:

ĥi = Hs(ĥi−1 + AH (y− Aĥi−1)) (70)
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where Hs() is a non-linear operator that sets all elements to
zero except the s elements having largest amplitudes.

The IHT algorithm can stop after a fixed number of
iterations or it can terminate when the sparse vector
does not change much between consecutive iterations, for
example [170].

D. OTHER ALGORITHMS
This work presents some sparse recovery algorithms. How-
ever, if the reader wants to know other algorithms, in addi-
tion to the vast list presented above, some of them can be
found in: Back-tracking based Adaptive Orthogonal Match-
ing Pursuit (BAOMP) [171], Chaining Pursuit (CP) [172],
Conjugate Gradient Iterative Hard Thresholding [173],
Differential Orthogonal Matching Pursuit (D-OMP) [174],
Fast Iterative Shrinkage Thresholding Algorithm
(FISTA) [130], Forward-Backward Pursuit (FBP) [175],
Fourier sampling algorithm [176], Hard Thresholding Pur-
suit [177], Heavy Hitters on Steroids (HHS) [178], Normal-
ized Iterative Hard Thresholding [179], lp-Regularized Least-
Squares Two Pass [180], Sequential Least Squares Matching
Pursuit (SLSMP) [115], Sparse Adaptive Orthogonal Match-
ing Pursuit (SpAdOMP) [181], Sparse Reconstruction by
Separable Approximation (SpaRSA) [182], Stochastic Gradi-
ent Pursuit (SGP) [183], Stochastic Search Algorithms [184],
Tree Search Matching Pursuit (TSMP) [185], and Vector
Approximate Message Passing (VAMP) [186].

V. ALGORITHM DISCUSSION
This section presents a generic comparison of some
algorithms previously mentioned and some performance
comparison found in the literature. Moreover, open research
challenges related to the CS theory, especially concerned to
sparse recovery algorithms, are presented.

A. GENERIC DISCUSSION
1) BP × OMP
While the OMP algorithm begins with an empty set
of columns and adds to the support set only the most
important new column among all those in each step, the
BP-simplex begins with a ‘‘full’’ index set and then iteratively
improves this set by placing negligible terms with useful new
ones [111].

2) OMP × SP
The difference between the OMP and the SP algorithms
lies in the way that they generate the index set 3i. In the
case of the OMP, after an index is included in the set 3i,
it stays there during all the process. In a different way from
this, SP holds an estimate 3i with size s that is refined
in each iteration [157]. Hence, the index can be added to
or removed from the estimated support set at any iteration
of the algorithm [157]. Moreover, the SP solves two least
squares problems in each iteration while the OMP solves
only one.

3) SP × CoSaMP
The SP and the CoSaMP algorithms add the new candidate
columns in a different way. With the SP algorithm, only
s index are added at each iteration, while 2s columns are
added in the CoSaMP algorithm [157]. Futhermore, the signal
estimate ĥ is different for SP and CoSaMP. While the SP
solves a LS problem again to get the final approximation
of the current iteration, the CoSaMP algorithm keeps the s
largest components of x̂ [157]. Therefore, the SP solves two
least squares problems in each iteration whereas the CoSaMP
solves only one [157], [187].

4) STOMP × OMP
The StOMP and the OMP algorithms differ in the number
of columns selected at each iteration: the OMP selects one
column, while the StOMP selects several columns. Thus,
the StOMP algorithm is generally faster than the OMP.
StOMP can produce a good approximation with a small num-
ber of iterations [15], but it has to determine an appropriate
threshold value since different threshold values could lead to
different results [15], [158].

5) ROMP × SP
The ROMP and the SP algorithms generate the support set3i
in a different way. The ROMP algorithm generates it sequen-
tially, by adding one or many reliable indexes to the existing
list in each iteration. While the SP algorithm re-evaluates all
the indexes at each iteration, in the ROMP algorithm, an index
added to the list can not be removed [162].

6) ROMP × StOMP
The threshold value is the difference between the ROMP and
the StOMP algorithms. While the ROMP uses all columns
that have a dot product above half the size of the largest dot
product, the StOMP uses a preset threshold value [162].

7) GP × IHT
The difference between the GP and the IHT algorithms is
in how the sparsity constraint is enforced. For the gradient
pursuit algorithms, in each iteration, a new dictionary element
is added and cannot be removed afterwards. Otherwise, in the
IHT algorithm, the indices can be added and removed because
it keeps only the most important (decided by the largest
magnitude) dictionary elements [166].

8) TOMP × OMP
The major difference between the TOMP and the OMP algo-
rithms is themanner (quantity) of selecting the columns of the
measurement matrix A. While the TOMP algorithm sequen-
tially selects the whole next ‘‘good’’ family of columns,
the OMP algorithm sequentially selects the next ‘‘good’’
column [168].

B. PERFORMANCE DISCUSSION
A performance comparison between algorithms from each
category is analyzed below. From the Convex Relaxation
category, the AMP and FISTA algorithms were implemented.
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The BCS via RVM was implemented representing the
Non-convex Optimization category. And finally, from the
Greedy algorithms, the MP and OMP were implemented.

Let Ns be the number of realizations, the average normal-
ized mean squared error (NMSE) described by (71) is used to
evaluate the algorithms in terms of the size of the measured
signal y (M ) and the signal’s sparsity.

NMSE =
1
Ns

∑ ‖h− ĥ‖22
‖h‖22

(71)

The system model is defined by (6). For these simulations,
Ns = 1000, N = 1024, A is i.i.d. Gaussian, with elements
distributedN (0,M−1). The sparse signal h to be estimated is
Bernoulli-Gaussian, that is, its elements are i.i.dN (0, 1) with
probability γ and the others are set to 0. Signal-to-noise ratio
(SNR) is 30 dB. The results are compared to the theoretical
performance bound ‘‘Oracle’’. It has the previous knowledge
of the non-zero tap positions. The non-zero coefficients are
calculated by applying the Least Square algorithm using the
submatrix As composed of the column related to the non-zero
tap positions of the signal to be estimated.

First, the algorithms performances are analyzed varying
the size of M for γ = 0.05 as shown in Fig. 8.

FIGURE 8. Algorithms performances varying M for γ = 0.05.

It can be seen that the performances of all the algorithms
increase when the number of measurements M increases.
However, it can be noticed that a low M value (M < N )
allows the algorithms to recover the sparse signal resulting in
low NMSE values. Among the algorithms analyzed, the BCS
presents the best performance. Furthermore, its performance
is close to the one achieved by the ‘‘Oracle’’. It confirms the
good results achieved by the algorithms from the Bayesian
theory.

The algorithms performances are also analyzed varying γ
for M = 512 as shown in Fig. 9.

According to Fig. 9, as the signal becomes less sparse
(i.e. γ increases), the performances of all algorithms
decrease, that is, the NMSE values increase. When γ is low,
BCS is the algorithm that achieves the best performance
(lower NMSE value), which is close to the one achieved by

FIGURE 9. Algorithms performances varying γ for M = 512.

the ‘‘Oracle’’. However, when the signal to be estimated is
less sparse (big γ values), FISTA shows a better performance
in recovering the signal.

Table 4 shows the percentage of non-zero tap positions
correctly found for the five algorithms analyzed. The result
of FISTA is not presented for M = 200 because in this
scenario this algorithm did not converge. It can be observed
that when the M value increases, the percentage of non-zero
tap positions correctly found increases. Moreover, notice that
although AMP and FISTA algorithms present the highest
percentage values forM = 400 and γ = 0.05, the algorithms
BCS and OMP are the ones that achieve the best results
in terms of NMSE (see Fig. 8). It means that even if BCS
and OMP correctly find less non-zero tap positions than the
algorithms AMP and FISTA, BCS and OMP are better able to
estimate the non-zero coefficients resulting in lower NMSE
values.

TABLE 4. Percentage of non-zero tap positions correctly found.

Moreover, it can be observed that when the γ value
increases, that is, the signal become less sparse, the percent-
age of non-zero tap positions correctly found decreases. This
occurs for all the algorithms analyzed and confirms what was
suggested in Fig. 9.

Other performance comparisons between other algorithms
can be found in the literature. Some of them are presented
below.

A performance comparison of the SP, the OMP, the ROMP,
the GOMP, and the GOAMP algorithms is made in [12]
for the reconstruction of an image. The recovery perfor-
mance was analyzed in the form of Peak Signal to Noise
Ratio (PSNR) value achieved and running time elapsed.
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From these simulations, the PSNR value is better when the
GOAMP algorithm is used.

Arjoune et al. [31] compare the BCS, the BP, the GraDeS,
the OMP, and the IHT algorithms to estimate a noisy sparse
signal of length N = 1024. The metrics used were: phase
transition diagram, recovery time, recovery error, and covari-
ance. The results show that techniques of convex relaxation
perform better in terms of recovery error, while greedy algo-
rithms are faster, and Bayesian based techniques appear to
have an advantageous balance of small recovery error and a
short recovery time [31].

A comparison between the OMP and the modified LARS
for solving LASSO algorithms is made in [120] consider-
ing the solution accuracy and the convergence time. The
results show that generally the OMP requires fewer itera-
tions than the LARS to converge to the final solution, sug-
gesting that the OMP is much faster than the LARS [120].
However, for the cases where some columns of A are highly
correlated, the OMP was considered less accurate than the
LARS [120].

Wang et al. [163] compare the GOMP, the OMP,
the StOMP, the ROMP, and the CoSaMP algorithms for a
measurement matrix A 128 × 256 generated by a Gaussian
distribution N (0, 1/128). The sparse signal varies from s = 1
to s = 70 and it is generated in two ways: Gaussian signals
and pulse amplitude modulation (PAM) signals. The results
show that the critical sparsity of the GOMP algorithm is
larger than that of the OMP, the ROMP, the StOMP, and the
CoSaMP algorithms [163].

Algorithms OMP, StOMP, CoSaMP, MMP, and BPDN are
compared in [153] varying the SNR for two different sparsity
values (s = 20 and s = 30). The 100 × 256 measurement
matrix is generated by a Gaussian distribution. The results
show that the MMP performs close to the OMP to s = 20,
but for s = 30, the performance of the MMP is better [153].
Moreover, the running time of these algorithms is shown as
a function of s. The MMP algorithm has the highest running
time and the OMP and the StOMP algorithms have the lowest
running time among algorithms under test [153].

In [137], the authors compare the performance of the IRLS
algorithm using the regularization. The results show that for
p = 1 the unregularized IRLS and regularized IRLS are
almost identical but for p = 0 and p = 1/2, the regularized
IRLS algorithm recovers the greatest range of signals [137].

The authors in [168] compare the performance of the
TOMP, the BP, and the OMP algorithms. According to their
results, TOMP needs less iteration than the OMP because the
TOMP algorithm selects the whole tree at a time and not only
one element. Moreover, the TOMP can achieve better results
than the BP and the OMP in reconstruction quality [168].

In [124], the authors implement the algorithms OMP and
AMP in FPGA. As the OMP processing time increases
quadratically with the number of non-zero coefficients of
the signal to be estimated, this algorithm is more suitable to
recover very sparse signals. On the other hand, if the signal
to be estimated has several non-zero components it is more

efficient to use the AMP algorithm to recover the signal than
the OMP.

The algorithms GraDeS and LARS have complexity
O(MN ). Table 5 presents the complexity of other algorithms
as well as the minimum measurement (M ) requirement.

TABLE 5. Complexity and minimum measurement (M) requirement.

The storage cost per iteration (number of floating point
numbers) of some sparse recovery algorithms presented
in [189] are reproduced in Table 6, where E is the compu-
tational cost of storing A or AT , k is the size of the support
set 3i in the iteration i, and η is the number of conjugate
gradient steps used per iteration that is lower or equal to the
number of elements selected.

TABLE 6. Storage cost [189].

Finally, Table 7 presents the recovery condition related to
the RIC value of the matrix A of some algorithms.

TABLE 7. The RIC value of the matrix A.

C. RESEARCH CHALLENGES
As can be observed, several papers have addressed CS appli-
cations, designing of the measurement matrix, and sparse
recovery algorithms. However, there are still many research
challenges to overcome.

Each domain of application has its characteristics and these
should be used to improve the estimation of the sparse signal.
For example, Pareschi et al. [50] optimize the sensing matrix
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by a proper specialization of a specific sparsity matrix taking
advantage of the input signal statistical features.

As said before, the two important challenges addressed
to compressive sensing are the design of the measure-
ment matrix and the development of an efficient recovery
algorithm.

Concerning the first challenge, while randommeasurement
matrices have been widely studied, only a few deterministic
measurement matrices have been considered [2]. However, in
structures that allow fast implementation with reduced stor-
age requirements, deterministic measurement matrices are
highly desirable [2]. Therefore, this domain can be improved.

Addressed to the second challenge, a lot of CS approaches
assume that the signal’s sparsity is known. However, in sev-
eral applications such as the cognitive radio networks it is
not true. Thus, it is necessary to develop sparse recovery
algorithms that do not need this information and that are
able to be adaptive to time changes. Another alternative is to
develop a sparsity order estimation method, so the sparsity
order can be accurately estimated before using a recovery
algorithm [191].

Moreover, in some cases, the signal’s sparsity can be time-
varying. Hence, the investigation of adaptive sparsity order
estimation methods to capture the dynamicity of the signal of
interest constitutes an important research challenge [72].

Another opportunity is the development of the sparse
recovery algorithm on a distributed platform such as a sensor
network as is made in [192].

Furthermore, sparse recovery algorithms can be com-
bined with deep learning to improve sparse signal recovery.
Some different deep-learning approaches to solve sparse
linear inverse problems have already been reported in the
literature [193]–[197]. However, some improvements in their
performances can be suggested. For example vary the opti-
mization algorithm used in the neural network, the loss
function, or the activation function of some of these neural
network, or even suggest a new neural network to sparse sig-
nal estimation in order to produce faster and accurate results.

VI. CONCLUSION
The compressive sensing and its sparse recovery algorithms
are used in several areas and have been extensively studied
in this work. With growing demand for cheaper, faster, and
more efficient devices, the usefulness of compressive sensing
theory is progressively greater and more important. This
paper has provided a review of this theory. We have presented
mathematical and theoretical foundations of the key concepts.
More specifically, we have focused on the sparse recovery
algorithms illustrating numerous algorithms. Some compar-
isons of them were also discussed. Furthermore, several
applications of compressive sensing have been presented
such as Image and Video, Compressive Transmission Data,
Systems Communication, and Detection and Recognition
Systems. The importance of choosing an efficient sparse
recovery algorithm to increase the performance of the sparse
signal estimation was also highlighted. As shown in the

previous sections of this paper, the compressive sensing
theory can provide useful and promising techniques in future.
Indeed, this theme is in significant and wide development
in several applications. However, it still faces a number of
open research challenges. For example, to determine the
suitable measurement matrix and develop a sparse recovery
algorithm that does not need know the signal’s sparsity and
can be adaptive to time-varying sparsity. Moreover, signal
statistical information can be added in the CS acquisition or
CS reconstruction to reduce the amount of required resources
(time, hardware, energy, etc.).
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