Joint Bayesian Hyperspectral Unmixing for change detection - Archive ouverte HAL Access content directly
Conference Papers Year : 2020

Joint Bayesian Hyperspectral Unmixing for change detection

Abstract

Spectral unmixing allows to extract endmembers and estimate their proportions in hyperspectral data. Each observed pixel is considered to be a linear combination of several endmembers spectra. Based on a novel hierarchical Bayesian model, change detection into hyperspectral images is achieved by unmixing. A Gibbs sampler is proposed to overcome the complexity of integrating the resulting posterior distribution. The performance of the proposed Bayesian change detection method is evaluated on real data. It provides binary detection with a precision rate up to 98.90%.
Fichier principal
Vignette du fichier
gharbi_26413.pdf (268.11 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02942312 , version 1 (17-09-2020)

Identifiers

Cite

Walma Gharbi, Lotfi Chaari, Amel Benazza-Benyahia. Joint Bayesian Hyperspectral Unmixing for change detection. Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS 2020), Mar 2020, Tunis, Tunisia. pp.37-40, ⟨10.1109/M2GARSS47143.2020.9105275⟩. ⟨hal-02942312⟩
56 View
68 Download

Altmetric

Share

Gmail Facebook X LinkedIn More