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ABSTRACT

Spectral unmixing allows to extract endmembers and estimate

their proportions in hyperspectral data. Each observed pixel

is considered to be a linear combination of several endmem-

bers spectra. Based on a novel hierarchical Bayesian model,

change detection into hyperspectral images is achieved by

unmixing. A Gibbs sampler is proposed to overcome the

complexity of integrating the resulting posterior distribution.

The performance of the proposed Bayesian change detection

method is evaluated on real data. It provides binary detection

with a precision rate up to 98.90%.

Index Terms— Change Detection, Hyperspectral Imag-

ing, Bayesian methods, MCMC methods, Linear unmixing.

1. INTRODUCTION

Among the new generation of remote sensing sensors, Hyper-

Spectral (HS) ones have a very high spectral resolution (e.g.,

5-10 nm) that allows acquiring images in hundreds and even

thousands of contiguous spectral channels. Due to the rich

information in HS Images (HSIs) and their detailed spectral

sampling, Change Detection (CD) is dramatically improved

[1]. Therefore, it is possible to detect subtle changes in con-

trast to multispectral images where only significant changes

are detected. Thus, it is important to exploit the fine spectral

variations of HSIs for CD while taking into consideration the

challenges of high dimensionality, redundancy and noise.

In this context, a Multivariate Alteration Detection (MAD)

technique based on canonical correlation analysis is proposed

for HS-CD in [2]. This technique allows to derive a number

of components which are then separated to no-change com-

ponents and change components based on a defined change

probability measure. In [3], an iteratively reweighted MAD

method was proposed as an improved version of MAD with

more reliable components related to the uncertainty of obser-

vations. A no change measure was computed based on MAD

variates and a reweighting function at each iteration. Despite

the effectiveness of supervised HS-CD methods, they require

∗

prior knowledge to extract most informative components re-

lated to change which can be time consuming. Besides, they

all assume that pure pixels (pixels that contain only one ma-

terial) are present in HS data. This pure pixel assumption is

not always true given the spatial resolution of HSIs (mostly

around 30m). Thus, it is more common to find more than one

distinct material in the area covered by a pixel (called a mixed

pixel). As a solution for this phenomenon, spectral unmixing

was proposed for HS-CD. Its aim is to recover the spectral

signatures of the pure materials in the scene (called endmem-

bers) and to estimate their proportions in each pixel (called

fractional abundances). Despite the fact that single image

unmixing has been extensively studied in the literature [1],

multitemporal spectral unmixing was slightly investigated.

These methods are able to analyze the spectral variation

of HSIs for CD. The authors of [4] have proposed a Linear

Mixture Model for endmember and abundance estimation of

each image separately. Then, the binary CM is obtained by

comparing the estimated abundance vectors and performing

a similarity thresholding using the Otsu’s method [5]. In [6],

the authors analyzed the Difference Image (DI) between the

obtained abundances of the bi-temporal images. The thresh-

old selection was obtained through a statistical analysis of 25

unchanged land-cover sample plots. The posterior probability

of classification was also analyzed as an attempt to reduce the

error rate [7]. However, the selection of the training samples

for post-classification comparison requires an expert interven-

tion. These methods are mostly developed in a supervised

framework and rely on the availability of training samples for

classification or thresholding.

To this date, the number of proposed HS-CD by unmix-

ing is still narrow. However, there are several approaches to

tackle the problem of HS unmixing which can be divided into

geometrical, sparse unmixing and statistical approaches [1].

As aforementioned, geometrical methods are based on pure

pixel assumption [8]. Sparse unmixing allows to find the op-

timal subset of spectral signatures from a spectral library that

can model each mixed pixel of the studied area [9]. How-

ever, the sparse-based technique assumes the availability of

standard and publicly available spectral libraries. Statistical

methods have proved their efficiency in HS unmixing [10].
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Indeed, the inverse problem of spectral unmixing is formu-

lated as a statistical inference problem. Despite the perfor-

mance of statistical methods under a Bayesian framework for

HS unmixing [10], their adoption for CD is less investigated.

To this end, we propose a fully unsupervised automatic so-

lution for HS-CD by spectral unmixing based on a Hierar-

chical Bayesian Model. By adopting a Bayesian perspective,

the inference engine is the posterior density of the unknown

endmemebers and abundances to be estimated. The proposed

method analyzes the spectral variations of HSIs to perform

CD without the need of reference samples. Besides, most

HS-CD methods have performed endmember extraction and

abundance estimation separately. Conversely, the proposed

method allows to jointly estimate these parameters by adopt-

ing the equivalent priors that enforce the constraints of the

abundance fractions when extracting the endmembers. This

paper is organized as follows. In the Section 2, we present

the proposed method for HS-CD by unmixing including the

adopted Hierarchical Bayesian Model. The experimental re-

sults are given in Section 3 demonstrating its validity and per-

formance. Conclusions are drawn in Section 4.

2. JOINT BAYESIAN UNMIXING FOR HS-CD

2.1. Problem formulation

Let X1 and X2 denote two HSIs in R
P×B , acquired over the

same geographical area at different dates t1 and t2, respec-

tively where B is the number of the spectral channels and P

is the number of pixels. Let x1
p and x2

p denote the vectorized

version of the pth pixel for all spectral channels of X1 and X2,

respectively. The DI vector yp reads:

yp = x2
p − x1

p. (1)

We propose to perform CD by spectral unmixing within each

observed pixel yp. The observation model writes:

yp =

R∑

r=1

ap,rmr + np, (2)

where R is the number of endmembers , mr = [mr,1, . . . ,mr,B ]
T

indicates the rth material spectrum, ap,r is its fraction in

the pth pixel and the abundance vector of a pixel p is

ap = [ap,1, ..., ap,R]. The np = [np,1, . . . , np,B ]
T is an

additive i.i.d. Gaussian noise vector with a diagonal co-

variance matrix Sn = σ2IB . Considering all pixels, standard

matrix notation yields

Y = MA+N , (3)

where Y = [y1, ...,yP ], M = [m1, ...,mR], A = [a1, ...,aP ]

and N = [n1, ...,nP ]. Based on the spectral signature mixture

of the DI vector Y , we perform a fully automatic and unsu-

pervised CD. To this end, we propose a hierarchical Bayesian

model to perform CD by unmixing and joint estimation of the

endmembers and the abundance maps.

2.2. Hierarchical Bayesian model

Adopting a Bayesian approach, one needs to define the used

likelihood and priors.

2.2.1. Likelihood

According to the linear mixture model defined in Eq. (2) and

the assumption of an additive Gaussian noise of variance σ2,

the likelihood writes as

fp(yp|M ,ap, σ
2) =

(
1

2πσ2

)B
2

exp −‖yp −Map‖2
2σ2

)
,

(4)

where ‖ · ‖ denotes the Euclidean norm. Since the noise vec-

tors np(p = 1, .., P ) are assumed to be independent, the like-

lihood of all the observations Y is defined as follows

f(Y |M ,A, σ2) =
P∏

i=1

fp(yp|M ,ap, σ
2). (5)

2.2.2. Prior for endmembers

The Principal Component Analysis (PCA) technique is per-

formed to reduce the dimension and it is applied on Y to ob-

tain a subspace VK spanned by K orthogonal axes (v1, ...,vK).

We define D = diag(λ1, . . . , λK) and V = [v1, ...,vK ]T respec-

tively as the diagonal matrix of the K highest eigenvalues and

the corresponding eigenvector matrix of the (B ×B) empiri-

cal covariance matrix of the observation given by

Υ = 1
P

P∑
p=1

(yp − ȳ)(yp − ȳ)T.

Let tr denote the projected endmembers spectra mr onto VK.

The PCA projection tr ∈ R
K of the endmember mr ∈ R

B

is defined as follows:

tr = P (mr − ȳ), (6)

with P = D− 1

2V and ȳ is the empirical mean of of Y. The

prior of the projected spectra tr is a conjugate multivariate

Gaussian Distribution (MGD) on the set Tr ⊂ VK. It is defined

according the nonnegativity constraint of the corresponding

reconstructed (B × 1) spectrum mr. Under the assumption

of the independence between all the tr vectors, the prior dis-

tribution for all the projected endmembers matrix T is

f(T |E, s2) =

R∏

r=1

NTr
(tr|er, s2rIK). (7)

2.2.3. Prior for abundances

Due to physical considerations [11], the fraction vectors

have to satisfy both the nonnegativity and full-additivity

constraints. In our case, the abundance vector ap is de-

fined ap = [cp, ap,r]
T where cp = [ap,1, . . . , ap,R−1]

T and

ap,R−1 = −
R−1∑
r=1

ap,r. The prior chosen for cp is a uniform

Bernoulli distribution which reinforces the ability to separate

changed pixels from unchanged ones that are captured by the

Bernoulli part of the prior

f(cp|ω) = (1− ω)δ(cp) + ω × U[−′,′](cp), (8)



where ω is a weight belonging to [0, 1] that reflects the rate

of non-zero coefficients. Under the assumption of statistical

independence between the vectors, the full prior distribution

for partial abundance matrix C = [c1, ..., cP ]
T can be written:

f(C) ∼
P∏

p=1

fp(cp|ω). (9)

2.2.4. Prior for noise variance σ2

Since σ2 is a real positive scalar, we use an inverse gamma

(IG) prior given by

f(σ2|α, β) = IG(σ2|α, β) = βα

Γ(α)
σ−2(α+1)
n exp

(
− β

σ2

)
,

(10)

where Γ(.) is the standard gamma function and the positive

reals α and β refer to the shape and scale hyperparameters.

This is a convenient choice for σ2 since the inverse gamma

distribution is the conjugate distribution of the normal distri-

bution [12]. A non-informative prior distribution is chosen to

reflect uncertainty of σ2 in HSIs.

2.2.5. Hyperprior for ω

A non informative prior is used for ω which is the uniform

distribution on [0, 1].

2.3. Bayesian inference scheme

We propose to estimate the unknown parameter vector θ ={
C,T , σ2

}
as well as the hyperparameter ω. The joint poste-

rior distribution of the vector {θ, ω} can be expressed as

f(θ, ω|Y , α, β) ∝ f(Y |θ)f(θ|ω)f(ω). (11)

This hierarchical structure of the proposed model allows

one to integrate out the hyperparameter ω from the joint

distribution. Deriving a simple closed-form expression of

the Bayesian estimators such as minimum mean square

error or the maximum a posteriori from the posterior dis-

tribution is difficult. Therefore, we resort to the markov

chain monte carlo methods to generate samples asymptot-

ically distributed according to the posterior distribution.

The Bayesian estimators can be approximated using these

samples. Gibbs sampling is an iterative procedure that

generates samples according to the conditional posteriors

f(C|Y ,T , σ2), f(σ2|Y ,C,T ), f(T |Y ,C, σ2) and f(ω|Y ,C).

The maximum a posteriori was used to select the most prob-

able value sampled for cp: ĉpMAP
= argmax

cp
p(cp|Y ). The

estimated value of cp,r is computed as follows

If γi=0 then

cp,r=0

Else

cp,r ∼ NS(µp, Sp)

The estimators σ̂2, T̂ and ω̂ are obtained by minimizing the

average squared error by employing the related laws condi-

tioned by Y .

2.3.1. Sampling according to f(σ2|Y ,C,T )

The conditional distribution of σ2|Y ,C,T is the following

σ2|Y ,C,T ∼ IG α+
P ×B

2
, β +

P∑

p=1

‖yp −Map‖2
2

)
.

(12)
2.3.2. Sampling according tof(ω|Y ,C)

Straightforward calculations indicate that the posterior of ω is

a uniform distribution according to which it is easy to sample.

ω|Y ,C ∼ U(0, 1). (13)

2.3.3. Sampling according to f(C|Y ,T , σ2)

It can be easily shown that

f(cp|Y , ω,T , σ2) = ω1,pδ(cp) + ω2,pNS(µp, Sp), (14)

where NS(µp, Sp) = exp
(
− (cp−vp)

TS−1

p (cp−vp)

2

)
1S(cp)

and







µp = HT
pS−1

n (yp −mR)

Sp = HT
pS−1

n Hp

with







S−1

n = 1

σ
IB

Hp = M−R −mR1
T
R−1

M−R denotes the matrix M whose Rth column has been re-

moved. As a consequence, if the cp coefficients are different

to zero, they are distributed according to an MGD. The

weights (ωl,p)1≤l≤2 in Eq. (14) are computed using:

ωl,p =
µl,p

2∑

l=1

µl,p

, where

{
µ1,p = 1− ω

µ2,p = ω
2 exp

(
µ2

p

2σ2

)√
2πσ2

2.3.4. Sampling according to f(T |Y ,C, σ2)

The conditional posterior distribution of tr(r = 1, ..., R)
writes

f(tr|T−r, cp, σ
2,Y ) ∝ exp [−1

2
(tr − τ r)

T
Λ

−1
r (tr − τ r)]1Tr

(tr),

(15)

where























Λr =

[

P
∑

p=1

ap,r
2UTS−1

n U + 1

s
2
r
Ik

]−1

τ r = Λr

[

P
∑

p=1

ap,rU
TS−1

n ǫp,r +
1

s
2
r
er

]

and ǫ = yp − ap,rȳ + Sj (=r, mj = Utj + ȳ. Therefore, the

posterior distribution of tr is the a truncated MGD that writes

f(tr|T−r, cp, σ
2,Y ) ∼ NTr

(τ r,Λr). (16)

The conditional distributions used in the GS (namely Algo-

rithm 1) are detailed in the following.

3. EXPERIMENTS

The first dataset covers a farmland near the city of Yancheng,

Jiangsu province, China, with a size of 450× 140 pixels. The

second dataset is an irrigated agricultural field of Hermiston

city in Umatilla County, Oregon, USA of a size 307 × 241.



Algorithm 1: Gibbs Sampler (GS).

- Initialize σ2,T ,C.

for s = 1 . . . S do

Sample σ2 according to Eq.(12);

Sample ω according to Eq.(13);

for for p = 1, . . . , R do
Sample cp according to Eq. ((14));

end

end

for r = 1, . . . , R do
Sample tr according to Eq.(15);

end

(a) (b) (c) (d)

Fig. 1. China dataset on: (a) May 3, 2006, (b) April 23, 2007, USA

imagery on (c) May 1, 2004, (d) May 3, 2007

The bi-temporal HSIs are displayed in Fig. 1. Both datasets

have 154 bands after noise elimination. For each dataset, two

HSIs are used to compute the DI at a pixel level. However,

the spectral unmixing exploits the spectral information of the

HSIs and attempts to identify different spectra (called end-

members) within the spectrum of each pixel. It is worthnot-

ing that even if different spectra are modeled, CD is only per-

formed at a pixel level. The GS has been run with 200 iter-

ations, including 100 iterations as a burn-in period to reach

convergence. The estimated binary CM is obtained by taking

(a) (b) (c) (d)

Fig. 2. China dataset: (a) The binary CM, (b) ground truth map,

USA dataset: (c) binary CM and (d) USA groundtruth map

into consideration all the spectral bands and it is illustrated

in Fig. 2. This binary CM indicates for each pixel if it is

changed or not. Our method provides a good estimation of

change that minimizes the presence of noise or disconnected

pixels. It is clear that all the changed pixels are correctly clas-

sified and the errors are mostly related to misclassified edge

pixels. The accuracy of the binary CM is evaluated in terms

of overall accuracy, precision and Kappa. The overall accu-

racy that represents the total percentage of correctly classi-

fied pixels, Kappa coefficient which refers to the percentage

of agreement amended by the agreement expected by chance

and precision which reflects the number of correctly detected

pixels as changed. Table 1 presents the quantitative results

that are consistent with the visual results.

Table 1. CD accuracy measures for China and USA datasets

Accuracy measures China USA

Overall Accuracy (%) 95.81 94.89

Precision (%) 98.90 92.65

Kappa (%) 95.03 94.48

4. CONCLUSION

A joint Bayesian unmixing model for HSIs was adopted to

perform CD. The proposed method was validated using two

different HS datasets and obtained successful rates of accu-

racy for both experiments. As future work, we aim at extend-

ing our model to consider super-resolution for CD that im-

prove the spatial resolution of HSIs. Other spatial resolution

of HSIs will be considered for additional experiments.

5. ACKNOWLEDGEMENTS

The authors would expend their sincere appreciation to

Dr. Abdelrahim Halimi for providing them Matlab code that

was updated for the problem of HS-CD.

6. REFERENCES

[1] S. Liu, D. Marinelli, L. Bruzzone, and F. Bovolo, “A review of change detec-

tion in multitemporal hyperspectral images: Current techniques, applications, and

challenges,” IEEE Geosci. Remote Sens. Mag., vol. 7, no. 2, pp. 140–158, 2019.

[2] M. Frank and M. Canty, “Unsupervised change detection for hyperspectral im-

ages,” in Process. 12th JPL Airborne Earth Sci. Workshop, 2003, pp. 63–72.

[3] A. Nielsen, “The regularized iteratively reweighted mad method for change de-

tection in multi-and hyperspectral data,” IEEE Trans. on Image Process.., vol. 16,

no. 2, pp. 463–478, 2007.

[4] Q. Du, L. Wasson, and R. King, “Unsupervised linear unmixing for change de-

tection in multitemporal airborne hyperspectral imagery,” in Int. Workshop Anal.

Multi-Temp RS Images. IEEE, 2005, pp. 136–140.

[5] N. Otsu, “A threshold selection method from gray-level histograms,” Trans. on

Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[6] D. Lu, M. Batistella, and E. Moran, “Multitemporal spectral mixture analysis for

amazonian land-cover change detection,” Canadian Journal of Remote Sensing,

vol. 30, no. 1, pp. 87–100, 2004.

[7] J. Chen, X. Chen, X. Cui, and J. Chen, “Change vector analysis in posterior

probability space: A new method for land cover change detection,” IEEE Geosci.

Remote Sens. Lett., vol. 8, no. 2, pp. 317–321, 2010.

[8] A. Ertürk and A. Plaza, “Informative change detection by unmixing for hyper-

spectral images,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1252–1256,

2015.

[9] A. Ertürk, M. D. Iordache, and A. Plaza, “Sparse unmixing-based change detec-

tion for multitemporal hyperspectral images,” J. Sel. Topics Appl. Earth Observat.

Remote Sens., vol. 9, no. 2, pp. 708–719, 2015.

[10] N. Dobigeon, S. Moussaoui, M. Coulon, J. Y. Tourneret, and A. O. Hero, “Joint

bayesian endmember extraction and linear unmixing for hyperspectral imagery,”

IEEE Trans. on Signal Process., vol. 57, no. 11, pp. 4355–4368, 2009.

[11] N. Dobigeon, J. Y. Tourneret, and C. I. Chang, “Semi-supervised linear spectral

unmixing using a hierarchical bayesian model for hyperspectral imagery,” IEEE

Trans. on Signal Process., vol. 56, no. 7, pp. 2684–2695, 2008.

[12] G. C. Tiao and W. Y. Tan, “Bayesian analysis of random-effect models in the anal-

ysis of variance. I. posterior distribution of variance-components,” Biometrika,

vol. 52, no. 1/2, pp. 37–53, 1965.




