The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension - Archive ouverte HAL
Article Dans Une Revue Information and Inference Année : 2022

The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension

Yann Traonmilin
  • Fonction : Auteur
  • PersonId : 1077290
Jean-François Aujol
Arthur Leclaire

Résumé

Non-convex methods for linear inverse problems with low-dimensional models have emerged as an alternative to convex techniques. We propose a theoretical framework where both finite dimensional and infinite dimensional linear inverse problems can be studied. We show how the size of the the basins of attraction of the minimizers of such problems is linked with the number of available measurements. This framework recovers known results about low-rank matrix estimation and off-the-grid sparse spike estimation, and it provides new results for Gaussian mixture estimation from linear measurements. keywords: low-dimensional models, non-convex methods, low-rank matrix recovery, off-the-grid sparse recovery, Gaussian mixture model estimation from linear measurements.
Fichier principal
Vignette du fichier
non_convex_optim_hal2.pdf (517.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02941814 , version 1 (17-09-2020)
hal-02941814 , version 2 (18-02-2022)

Identifiants

Citer

Yann Traonmilin, Jean-François Aujol, Arthur Leclaire. The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension. Information and Inference, 2022. ⟨hal-02941814v2⟩

Collections

CNRS IMB INSMI ANR
228 Consultations
263 Téléchargements

Altmetric

Partager

More