Uniform K-stability of polarized spherical varieties - Archive ouverte HAL
Article Dans Une Revue Épijournal de Géométrie Algébrique Année : 2023

Uniform K-stability of polarized spherical varieties

Résumé

We express notions of K-stability of polarized spherical varieties in terms of combinatorial data, vastly generalizing the case of toric varieties. We then provide a combinatorial sufficient condition of G-uniform K-stability by studying the corresponding convex geometric problem. Thanks to recent work of Chi Li and a remark by Yuji Odaka, this provides an explicitly checkable sufficient condition of existence of constant scalar curvature Kahler metrics. As a side effect, we show that, on several families of spherical varieties, G-uniform K-stability is equivalent to K-polystability with respect to G-equivariant special test configurations for polarizations close to the anticanonical bundle.
Fichier principal
Vignette du fichier
KSSV2.pdf (374.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02938823 , version 1 (15-09-2020)
hal-02938823 , version 2 (22-08-2022)

Identifiants

Citer

Thibaut Delcroix. Uniform K-stability of polarized spherical varieties. Épijournal de Géométrie Algébrique, 2023, Volume 7, ⟨10.46298/epiga.2022.9959⟩. ⟨hal-02938823v2⟩
50 Consultations
100 Téléchargements

Altmetric

Partager

More