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UNIFORM K-STABILITY OF POLARIZED SPHERICAL VARIETIES

THIBAUT DELCROIX, WITH AN APPENDIX BY YUJI ODAKA

Abstract. We express notions of K-stability of polarized spherical varieties in terms of com-
binatorial data, vastly generalizing the case of toric varieties. We then provide a combinatorial
sufficient condition of G-uniform K-stability by studying the corresponding convex geometric
problem. Thanks to recent work of Chi Li and a remark by Yuji Odaka, this provides an ex-
plicitly checkable sufficient condition of existence of constant scalar curvature Kähler metrics.
As a side effect, we show that, on several families of spherical varieties, G-uniform K-stability
is equivalent to K-polystability with respect to G-equivariant special test configurations for
polarizations close to the anticanonical bundle.

1. Introduction

In the seminal article [Don02], Donaldson initiated a study of the existence of constant scalar
curvature Kähler metrics on polarized toric manifolds. There, he notably introduced the general
condition of K-stability, thus formulating a precise version of the Yau-Tian-Donaldson conjec-
ture whose aim is to give an algebro-geometric characterization of the existence of constant
scalar curvature Kähler metrics on general polarized varieties. Focusing on toric varieties, he
further translated the condition of K-stability into a convex geometric problem, and with addi-
tional work concluded in [Don09], he was able to prove the Yau-Tian-Donaldson conjecture for
non-singular toric surfaces. Together with the case of Kähler-Einstein metrics, it is still today
one of the most convincing evidence for the conjecture.

The conjecture is still open in general, and examples (see [ACGTF08]) indicate that the
condition of K-stability should be modified slightly to a condition of uniform K-stability which
has been introduced and refined by several authors [Szé15, Der16, BHJ17, His20]. However,
the work of Donaldson combined with some more recent advances (notably [CC18]) shows that
the uniform Yau-Tian-Donaldson conjecture is true for toric manifolds. A different proof of
this fact has been provided very recently by Li [Li20]. Odaka noticed that the recent work of Li
essentially proves the uniform Yau-Tian-Donaldson conjecture for polarized spherical manifold
as well (this is explained in more details in his appendix to the present article).

Motivated by Odaka’s remark, we translate the uniform K-stability condition into a convex
geometric problem for polarized spherical varieties, in terms of the combinatorial data encoding
these. This task accomplished provides a much wider playground than the toric case where
one can try to show the (non-uniform) Yau-Tian-Donaldson conjecture for different classes of
varieties, or derive explicit combinatorial conditions of existence of constant scalar curvature
Kähler metrics. We will concentrate here on the second goal and provide a combinatorial
sufficient criterion of uniform K-stability which applies to a wide range of polarized spherical
varieties. We intend to present progress on the first goal in another article1. It should be noted,
for the reader more familiar with K-stability for Fano manifolds, that special test configurations
are not expected to be enough, and thus no valuative criterion is expected to hold in the
general polarized case. Furthermore, to the author’s knowledge, before the present paper,
the only manifolds proved to admit a cscK (non-Kähler-Einstein) metric by direct K-stability
arguments were toric surfaces.

Date: 2020.
1In the preprint [Del20b], the author has applied the present article to prove the Yau-Tian-Donaldson con-

jecture for cohomogeneity one manifolds, together with a simple combinatorial criterion.
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To provide the reader with a better flavor of the convex geometric problem associated to
K-stability of spherical varieties, let us first recall the case of toric varieties. A polarized toric
variety (X,L) is a couple formed by a complex normal n-dimensional projective variety X
equipped with an effective action of (C∗)n, and a (C∗)n-linearized ample line bundle. Such
a data is fully encoded by a convex polytope ∆ with integral vertices in Rn, and the corre-
spondence is very explicit: the integral points of ∆ coincide with the different (C∗)n-weights of
the action of (C∗)n on the space of global holomorphic sections H0(X,L). Let dµ denote the
standard Lebesgue measure on Rn, and let dσ denote the measure on ∂∆ which coincides on
each facet of ∆ with the Lebesgue measure on its affine span V , normalized to give unit mass
to a fundamental region of the lattice Zn∩V . Donaldson shows that the polarized toric variety
(X,L) is K-stable if and only if the following functional is positive for any rational piecewise
linear concave function g on ∆

L(g) = 2a

∫

∆
g dµ−

∫

∂∆
g dσ .

where a is the real number such that L vanishes on constants.
A polarized spherical variety (X,L) is a couple formed by a normal projective variety X

equipped with an action of a connected complex reductive group G and a G-linearized ample
line bundle L on X, such that a Borel subgroup of G acts with an open orbit on X. Such a
variety is encoded as well by combinatorial data, including the data of a convex polytope in
a real vector space Rr (of dimension smaller than X in general), but the definition of these is
more involved. Let us just mention the nature of the problem here and we refer to the body
of the paper (mainly section 3) for precise definitions. The functional L from the toric case is
modified as:

(1) L(g) =

∫

∆
2g(aP −Q) dµ−

∫

∂∆
gP dσ

where ∆ is some convex polytope with rational vertices in Rr, the measure dµ and dσ are
defined as in the toric case, P and Q are polynomials, and the scalar a is still such that L
vanishes on constants. Let us consider as well the functional

J (g) =

∫

∆
(max

∆
g − g)P dµ .

We add that the polynomial P is positive on the interior of ∆, so that the functional J plays
a role of (semi)-norm: it is non-negative and vanishes only on constant concave functions.
Our first main statement translates conditions of K-stability into conditions on the functionals
above (see section 2 for a recall on these notions). Before stating these, let us note that there is
an additional combinatorial data associated to a polarized spherical variety: its valuation cone,
which may for now simply be interpreted as the data of some full-dimensional convex cone V
in (Rn)∗ centered at 0. We denote by Lin(V) the linear part of V, that is, the largest linear
subspace contained in V.

Theorem 1.1. Let (X,L) be a polarized G-spherical variety. Then

(1) it is G-equivariantly K-polystable if and only if L(g) ≥ 0 for any rational piecewise linear
concave function g : ∆ → R with slopes in V, and equality holds only if g ∈ Lin(V),

(2) and it is G-uniformly K-stable if and only if there exists an ε > 0 such that

L(g) ≥ ε inf
l∈Lin(V)

J (g + l)

for all rational piecewise linear concave functions g : ∆ → R with slopes in V.

We will further give another formulation of the condition of uniform K-stability, and use this
new formulation to obtain a sufficient criterion. We now assume that ∆ contains the origin in
its interior. Let W be a linear complement to Lin(V). Let N∞

0 be the set of all continuous
concave functions f on ∆, smooth on the interior with differentials in V, such that max f = 0
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and d0f ∈ W. There exists a non-positive integrable function J on ∆ with negative integral,
and an integrable function K with integral zero on ∆ such that the functional Ls defined on
N∞

0 by

(2) Ls(f) =

∫

∆
(f(x)K(x) + dxf(x)J(x)) dµ(x)

coincides with L on N∞
0 . Here, dxf denotes the differential of a function f at x, so that dxf(x)

is equal to ∇f(x) · x if one chooses a Euclidean norm on Rn. We refer to section 6 for the
details on the definition of K and J .

Theorem 1.2. Assume that K + J ≤ 0. Let b be the element of ∆ defined by
∫

∆
(x− b)(K(x) + J(x)) dµ(x) = 0.

If b is in the relative interior of −V∨, then (X,L) is G-uniformly K-stable.

Despite its simplicity, the above theorem actually provides an explicit and tractable condition
to check for a huge family of polarized spherical varieties. The main evidence for this follows
from two facts. The first one is that, when specialized to the situation coming from an anti-
canonically polarized spherical variety, all assumptions but the condition on b are automatically
satisfied, and that condition translates to the criterion for K-polystability with respect to
G-equivariant special test configurations obtained in [Del20a]. In fact, as we will show in
Section 8, the condition on b translates to G-equivariant K-polystability with respect to special
test configurations in all cases.

The second evidence is that we can prove in many cases that if we fix the variety X but
vary the polarization near the anticanonical polarization, the condition on K + J is open. The
condition K + J ≤ 0 obviously does not look open, and an easier way to show openness is
to rely on a stronger condition K + J ≤ c < 0, but it is not always possible for spherical
varieties, instead we must understand well how K+J vanishes or converges to zero. These two
facts together show that one obtains an explicit condition to check existence of constant scalar
curvature Kähler metrics on smooth Fano varieties, for polarizations close to the anti-canonical
one (again, for an explicit range). We will prove this for toroidal horospherical varieties, as well
as for (non-Hermitian) symmetric varieties, but we expect this to hold much more generally
and our proof easily adapts to different situations.

Finally, we note that the condition on b consists of dim(Lin(V)) closed conditions and
dim(V) − dim(Lin(V)) open conditions. In particular, on a Kähler-Einstein Fano symmet-
ric (non-Hermitian) manifold such that Lin(V) = {0}, our theorem shows that there exists
cscK metrics on an explicit neighborhood of the anti-canonical line bundle.

The paper is organized as follows. Section 2 is devoted to recollection of notions on K-
stability. Section 3 summarizes key combinatorial properties of spherical varieties. In Section 4,
we associate to a spherical test configuration a piecewise linear concave function, and translate
the effect of twisting a test configuration in terms of this function. We then express, in Section 5
the non-Archimedean functionals for spherical test configurations as functionals on the associ-
ated concave functions. We will show how Theorem 1.2 applies to K-stability in Section 6, then
we prove this theorem in Section 7. We provide a full statement of the sufficient condition of
G-uniform K-stability thus obtained in Section 8. The remaining three sections are devoted to
illustrating the applicability of the sufficient condition. In Section 9, we apply our criterion to
the blowup of the three dimensional quadric at a one dimensional subquadric, and obtain from
this the existence of cscK metrics in an explicit neighborhood of the anticanonical line bundle.
We show that the criterion always apply for the anticanonical line bundle on Fano manifolds
in Section 10. In the final Section 11, we provide examples of statements to the effect that
in a wide range of situations, our criterion shows that G-uniform K-stability is equivalent to
G-equivariant K-polystability with respect to special test configurations for polarizations close
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to the anticanonical line bundle. The appendix by Yuji Odaka shows that for non-singular
spherical varieties, G-uniform K-stability is equivalent to existence of cscK metrics.

Acknowledgements. This research received partial funding from ANR Project FIBALGA
ANR-18-CE40-0003 and ANR Project MARGE ANR-21-CE40-0011.

2. Background on K-stability

Our references for this section are [BHJ17, His20]. We recall the main notions for the reader’s
convenience.

Let G be a complex reductive group. Let (X,L) be a G-polarized variety. A (normal,
ample) G-equivariant test configuration for (X,L) consists of the data of a normal (G × C∗)-
variety X , a (G×C∗)-linearized ample line bundle L on X , and a C∗-equivariant flat morphism
π : (X ,L) → C whose fiber (X1,L1) over 1 is G-equivariantly isomorphic to (X,Lr) for some
r ∈ Z>0. If the (scheme-theoretic) central fiber is normal, then the test configuration is called
special. If the total space of the test configuration is (G-equivariantly) isomorphic to X × C,
then the test configuration is called a product test configuration.

The numerical invariants associated to a test configuration (X ,L) may be defined in terms of
the central fiber (X0,L0) as follows. First note that it is equipped with a C∗-action induced by
the action on the test configuration. For k ∈ N, let dk denote the dimension dimH0(X0,L

k
0),

let λ1,k, . . . , λdk ,k denote the weights of the C∗-action on H0(X0,L
k
0), let wk denote the sum

of the λi,k. The quotient wk

kdk
admits an expansion in powers of k at infinity, and we will be

interested in the first two terms:
wk

kdk
= F0 + F1k

−1 + o(k−1).

The non-Archimedean J-functional of a test configuration (X ,L) is

JNA(X ,L) = sup{λi,k/k | k ∈ Z>0, 1 ≤ i ≤ dk} − F0

and the Donaldson-Futaki invariant is

DF(X ,L) = −F1.

It is often more convenient to work with the non-Archimedean Mabuchi functional MNA instead
of the Donaldson-Futaki invariant. Indeed, the latter does not vary linearly with base changes
of the form z 7→ zm on the test configurations, while the former does. Their values coincide
when the central fiber is reduced, and the Donaldson-Futaki invariant is always greater than, or
equal to the non-Archimedean Mabuchi functional. Furthermore, given any test configuration,
there exists a base change such that the resulting test configuration has reduced central fiber,
and base change preserves G-equivariance.

The G-polarized variety (X,L) is called G-equivariantly K-semistable if MNA(X ,L) ≥ 0 for
all G equivariant test configurations, and G-equivariantly K-polystable if furthermore MNA(X ,L) =
0 if and only if the test configuration is a product test configuration. We also use the self-
explaining terminology G-equivariantly K-polystable with respect to special test configurations,
and abbreviate it to G-stc K-polystable.

The total space of a given G-equivariant test configuration (X ,L) may actually be the un-
derlying total space of several different G-equivariant test configurations. Let F be the group
of (G× C∗)-equivariant automorphisms of X . It contains the factor C∗. Let Y(F ) denote the
set of one-parameter subgroups of F . Let β denote the character of C∗ of weight 1, which is
identified with a character of F . Any one-parameter subgroup η ∈ Y(F ) such that β(η) = 1
defines a C∗-action on (X ,L), a projection to C, and hence a G-equivariant test configuration
(X ,L)η , in general different from the initial (X ,L). The test configuration (X ,L)η is called
the twist by η of the test configuration (X ,L). Since we can work up to base change, the same
notion makes sense for any element of η ∈ Y(F )⊗ Q with β(η) > 0. One can actually extend
the definition to irrational η ∈ Y(F )⊗ R though it is not needed for our paper.
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Without a group G involved, (J-)uniform K-stability is defined as the existence of a positive
constant ε > 0 such that for all test configurations,

MNA(X ,L) ≥ ε JNA(X ,L).

The polarized variety (X,L) is called G-uniformly K-stable if there exists a positive constant
ε > 0 such that for all G-equivariant test configurations,

MNA(X ,L) ≥ ε inf
η∈Y(F )⊗Q, β(η)=1

JNA(X ,L)η .

In other words and up to base changes, on the right hand side, instead of the JNA of the
test configuration, we consider the infimum of JNA over all test configurations with (G× C∗)-
isomorphic polarized total space but different projections to C.

3. Background on polarized spherical varieties

Our references for this section are [Kno91, Bri89]. We recall the main notions for the reader’s
convenience.

Let G be a complex connected reductive group. We fix a choice of a Borel subgroup B ⊂ G
and a choice of a maximal torus T ⊂ B. Let G/H be a spherical G-homogeneous space, that is,
such that B acts on G/H with an open orbit. The spherical lattice M of G/H is the subgroup of
the group of characters of B consisting of the weights of B-eigenfunctions in the field C(G/H).
We denote by N the dual lattice: N = Hom(M,Z). Since B has an open orbit, the value
of a B-invariant valuation on a B-eigenfunction depends only on the eigenvalue, which is an
element of M . We denote by ̺ the map from the set of B-invariant valuations of C(G/H) to
N ⊗R. The image of the subset of G-invariant valuations generates a cosimplicial convex cone
V called the valuation cone of G/H.

The G-equivariant embeddings of G/H are in one-to-one correspondence with colored fans
(see [Kno91] for a detailed exposition of this correspondence). Let X be a complete G-
equivariant embedding of G/H, with colored fan FX . Let PX be the set of B-stable prime
divisors in X. It is a finite set comprised of closures of codimension one B-orbits in G/H and
of closures of codimension one G-orbits, the latter corresponding to colorless rays in FX . We
identify such a divisor D with the induced valuation, and thus get an associated element ̺(D)
of N ⊗ R via the map ̺.

Let L be an ample G-linearized line bundle on X. Then G acts on the space of holomorphic
sections of L. Fix a B-eigenvalue s for this action and denote its B-weight by χ. The B-invariant
Cartier divisor on X defined by s is of the form

(3)
∑

D∈PX

nDD

and there exists an integral piecewise linear function f defined on N⊗R, such that (f ◦̺)(D) =
nD whenever D contains a G-orbit (in other words, when either D is G-invariant or D is a
color of X). Conversely, a divisor as in (3) with the same property defines a Cartier divisor.

The condition that L is ample is equivalent to the fact that the minimal function f which
satisfies the above condition further satisfies:

i) f is a convex function,
ii) (f ◦ ̺)(D) < nD for each D ∈ PX which does not contain G-orbits,
iii) the slopes of f on two distinct maximal cones of FX are distinct.

Brion defines a polytope ∆ = ∆(X,L) associated to s as the convex polytope in M ⊗ R

defined by the equations ̺(D)(m) + nD ≥ 0 for all D ∈ PX . Integral points of ∆ give the
decomposition of H0(X,L) as a G-representation. More precisely, if Vλ denotes an irreducible
representation of G with highest weight λ, then H0(X,L) is G-isomorphic to

⊕

m∈M∩∆
Vχ+m
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where we recall that χ is the B-weight of s.
The degree Ln is obtained from this polytope by Brion as follows. Let R+ denote the positive

root system of (G,B, T ) and let R+
X denote the set of positive roots that are not orthogonal to

χ+∆. Then

(4) Ln = n!

∫

∆
P dµ

where dµ is the Lebesgue measure on M ⊗ R normalized by M , and P is the Duistermaat-
Heckman polynomial defined by:

(5) P (x) =
∏

α∈R+

X

〈x+ χ,α〉

〈̟,α〉

where ̟ is the half sum of positive roots of G. The above result is proved by considering the
first order asymptotic of the dimensions of the spaces of pluri-sections H0(X,Lk) and Weyl’s
dimension formula

dim(Vλ) =
∏

α∈R+

〈α, λ+̟〉

〈α,̟〉
.

Indeed, up to the n! factor, the highest order (in k) coefficient of
∑

m∈M∩k∆ dim(Vkχ+m) gives
the integral in (4) and the polynomial appearing in this volume is the highest order summand
of the polynomial giving the dimension formula, restricted to the affine space χ+M ⊗ R.

We will actually need the following refinement, which is a consequence of a general result
of Pukhlikov and Khovanskii [PK92]. The dimension dimH0(X,Lk) admits an expansion in
powers of k of the form

(6) dimH0(X,Lk) = kn
∫

∆
P dµ+kn−1

(

1

2

∫

∂∆
P dσ+

∫

∆
Qdµ

)

+ o(kn−1)

where

(7) Q(x) =
∑

α∈R+

X

〈α,̟〉

〈α, x + χ〉
P (x),

and dσ denotes the measure on ∂∆ which coincides on each facet with the Lebesgue measure
normalized by the intersection of M with the affine space spanned by the face. We explain how
this result follows from [PK92] in the next subsection.

3.1. Second coefficient in the expansion. The proof of expansion (6) arises from a gen-
eralization of Ehrhart’s multiplicity theorem, as follows from work of McMullen [McM77] and
Khovanskii-Pukhlikov [PK92].

Let V be a real vector space, and Λ a lattice in V .
Khovanskii and Pukhlikov’s general results (in particular, [PK92, Corollary 2.5]) show that,

on the group of virtual polytopes, which consists essentially of formal finite real linear combi-
nations of polytopes equipped with Minkowki addition, the evaluation of a given fixed homo-
geneous polynomial at integral points of a polytope with vertices in Λ extends to a polynomial
function (valuation in the terminology of [PK92]) from the group of virtual polytopes to R.
In particular, its restriction to the subgroup generated by a single polytope is a polynomial
function.

Assume that f : V → R is a homogeneous polynomial of degree d and ∆̂ is an r-dimensional
polytope in V with vertices in Λ, then it follows from the results quickly summarized above
that the function

k ∈ Z>0 7→
∑

x∈Λ∩k∆̂

f(x)
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is the restriction of a polynomial function F from R to R. We note that

F(k) = kd
∑

x∈ 1

k
Λ∩∆̂

f(x) = kd+r
∑

x∈ 1

k
Λ∩∆̂

f(x)

kr

and the latter sum converges to
∫

∆̂ f dµ for the Lebesgue measure dµ on the affine span of ∆̂,
normalized by the lattice, hence the polynomial F is a degree d + r polynomial whose degree
d+ r coefficient is

∫

∆̂ f dµ.
The formula for the second coefficient of the polynomial F follows from Minkowski’s inversion

in the group of virtual polytopes [PK92, Theorem 2.2]: the inverse of the polytope ∆̂ in this

group is (−1)r Int(−∆̂) (which can be interpreted as the formal sum
∑

F (−1)dim(F )(−F ) where

F runs over all faces of ∆̂ and −F denotes the polytope symmetric to F with respect to the
origin in V ). It thus follows from the polynomiality theorem that the polynomial function F
admits the following expression at negative integers:

F(−k) = (−1)r
∑

x∈Λ∩Int(−k∆̂)

f(x) = (−k)r+d
∑

x∈ 1

k
Λ∩Int(∆̂)

f(x)

kr
.

Write F(k) =
∑r+d

j=0 ajk
j. We already know that ar+d =

∫

∆̂ f dµ and we want to find the
second coefficient. Consider the sum

F(k) − (−1)r+dF(−k) =
r+d
∑

j=0

(aj − (−1)r+d+jaj)k
j

then of course its highest possibly non-zero coefficient is the coefficient of kr+d−1. On the other
hand, in view of previous formulas, the left hand side may be interpreted as

F(k) − (−1)r+dF(−k) = kr+d−1
∑

x∈ 1

k
Λ∩∂∆̂

f(x)

kr−1

We deduce from the two equalities that

2ar+d−1 = lim
k→∞

F(k) − (−1)r+dF(−k)

kr+d−1
=

∫

∂∆̂
f dσ

where dσ is the measure on the boundary which, restricted to a facet, coincides with the
translate of the Lebesgue measure on the linear space spanned by the facet, normalized by the
induced lattice.

To get the expansion (6), we apply this to the two highest degree homogeneous components
in Weyl dimension formula. One should however be careful in choosing the right space to
apply this. Consider the vector space V := (M ⊗ R) ⊕ R, equipped with the lattice Λ :=
{(m,k) | m− kχ ∈ M}, where χ is the B-weight of a fixed B-eigensection s of L. Consider the
r-dimensional polytope

∆̂ = {(x, 1) | x ∈ ∆}

where ∆ is the polytope associated to (X,L) as in the previous subsection. Consider the degree
d polynomial f extending Weyl dimension formula applied to the weights x+ tχ for x ∈ M and
t ∈ Z≥0:

f : V → R, (x, t) 7→
∏

α∈R

〈α, x + tχ+̟〉

〈α,̟〉

and let fd and fd−1 denote its highest degree homogeneous components. Note that P (x) =
fd(x, 1) and Q(x) = fd−1(x, 1). Applying the results of [PK92] and the argument to compute
the second coefficient described above yields the expansion (6).
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4. Test configurations for polarized spherical varieties

4.1. Statement. In this section we encode equivariant test configurations for polarized spher-
ical varieties by certain concave piecewise linear functions. In addition to Donaldson’s work
on toric varieties [Don02], this task has already been accomplished in different special cases
[AB04, Nyb, Del20a]. We freely use notations from section 3.

Theorem 4.1. For a polarized spherical variety (X,L), G-equivariant test configurations are in
one-to-one correspondence with positive rational piecewise linear concave functions on ∆(X,L),
with slopes in the valuation cone of X.

The test configuration is furthermore special if the associated function is integral linear, and
it is product if it is integral linear, with slope in Lin(V).

Furthermore, rational twists of a given test configuration (X ,L) are in one-to-one correspon-
dence with elements of Lin(V) ∩N ⊗ Q and if g is the function associated to (X ,L), then the
set of functions corresponding to the twists is {g + l | l ∈ Lin(V) ∩N ⊗Q}.

The correspondence is explicitly described in the proof below. The key picture to keep in
mind is that the polytope associated (as in [Bri89]) to a trivially compactified test configuration
can be described as the set of point below the graph of a concave integral piecewise linear
function on some multiple of the polytope associated to the initial polarized variety.

4.2. From a test configuration to a concave function... Let (X,L) be a polarized spher-
ical variety. Let (X ,L) be a G-equivariant test configuration for (X,L). We still denote by
(X ,L) the trivially compactified G-equivariant test configuration for (X,L). That is, we glue
the trivial family over C to (X ,L) along C∗ to obtain a family over P1. We denote the point
added to C by ∞ and keep the notation (X ,L) for the family over P1.

Note that (X ,L) is a polarized spherical variety under the action of G×C∗ (this remark will
also be used in Odaka’s appendix). Its open orbit is G/H × C∗, and the combinatorial data
are easily derived from that of X.

Let ŝ be the C∗-invariant meromorphic section of L whose restriction to (X,Lr) = (X1,L1)
coincides with s⊗r. The divisor associated to ŝ is (B × C∗)-stable, hence an integral linear
combination of the form

(8)
∑

D̂∈PX

nD̂D̂

where PX is the set of prime (B × C∗)-stable divisors on X .
There are three types of such divisors.

• Each divisor D̂ ∈ PX with ˆ̺(D̂) ∈ (N ⊗R× {0}) must be of the form D̂ = D × C∗ for
some D ∈ PX . Then by our choice of section, nD̂ = rnD. Note that since the Borel
subgroup of C∗ is C∗ itself, all other elements of PX must be (G× C∗)-stable.

• There is only one divisor D̂ ∈ PX such that ˆ̺(D̂) ∈ (V × R>0), this is the fiber X∞,
because (X ,L) is trivial at ∞. The choice of section, on the other hand, implies that
for this divisor, nD̂ = 0.

• Let A denote the set ˆ̺(PX )∩ (V ×R<0), and write each element in A as a couple (u, s)
with u ∈ V and s ∈ R<0. Let us write also nu,s for the corresponding coefficient in (8).

Let ∆̂ denote the polytope in M̂ ⊗ R associated to the divisor (8). In view of the previous
description of the divisor, the polytope can be described as

∆̂ = {(rx, t) | x ∈ ∆, 0 ≤ t ≤ g(x)}

where g is a (positive) rational concave piecewise linear function on ∆, expressed as

g(x) = inf
(u,s)∈A

(

ru(x) + nu,s

−s

)

.
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Note that since each s is negative, the slopes (−s)−1ru are rational point of the valuation cone
V.

Remark 4.2. It may not seem natural that the positive direction corresponds to ∞ for the
reader accustomed to a certain point of view on toric varieties. It stems from the fact that,
under the action w ·f(z) = f(w−1z), the function f : z 7→ zk is a C∗-eigenvector with eigenvalue
the one parameter subgroup χ : w 7→ w−k rather than f itself.

4.3. ...and back. We now explain how to reconstruct a test configuration from a concave
function. Let g be a positive rational piecewise linear concave function on ∆(X,L), with slopes
in the valuation cone of X. We can find a positive integer r, a subset A of V×Z<0, and integers
nu,s for all (u, s) ∈ A such that

g(x) = inf
(u,s)∈A

(

ru(x) + nu,s

−s

)

,

and u is a primitive element of N for all (u, s) ∈ A.
Consider the polytope

∆̂ = {(rx, t) | x ∈ ∆, 0 ≤ t ≤ g(p)}.

We build a colored fan FX for the (G×C∗)-homogeneous space G/H ×C∗ from ∆̂ as follows.
Recall that we are given (X,L) and the corresponding divisor (3), and that colors of G/H×C∗

may be identified with colors of G/H. We first include in FX the colored cones (σ × {0}, S)
and (σ × R>0, S), where (σ, S) is a colored cone of FX . These account for the trivial family
over C∗ ∪{∞}. To complete the fan, we add, for each cone σ in the opposite of the normal fan

to ∆̂ which has not been considered yet and whose intersection with the interior of V × R is
non-empty, a colored cone (σ, S) ∈ FX , where S is defined as follows. It suffices to define it for

maximal colored cones. For such a cone σ, let mσ denote the corresponding vertex of ∆̂. Then
S is the set of all colors D of G/H × C∗ in σ such that −̺(D)(mσ) + nD > 0.

We have thus defined a colored fan, hence an embedding X of G/H × C∗. As follows from
the description of equivariant morphisms between spherical varieties [Kno91, Theorem 4.1], X
admits a C∗-equivariant surjective morphism to P1, which induces a trivial family with fiber X
over the affine chart C∗ ∪ {∞}. We identify this subvariety with X × (C∗ ∪ {∞}).

The polytope ∆̂ is the polytope associated to the (B × C∗)-stable Cartier divisor

d =
∑

D̂∈PX

nD̂D̂

where

• nD̂ = rnD for each divisor D̂ ∈ PX with ˆ̺(D̂) ∈ (N⊗R×{0}) (equivalently D̂ = D ×C∗

for some D ∈ PX).

• nD̂ = 0 for the only divisor D̂ ∈ PX such that ˆ̺(D̂) ∈ (V × R>0), which is the fiber
X∞.

• nD̂ = nu,s for (u, s) ∈ A and D̂ the G-stable divisor which is the closure of the codi-
mension one G-orbit associated to the colorless ray generated by (u, s).

In particular, the restriction of this divisor to X × (C∗ ∪ {∞}) is the product of the divisor (3)
with C∗ ∪ {∞}. Furthermore, this divisor satisfies the ampleness assumption. This is not
obvious since the colors of X are different from the colors of X in general, but our choices of
colors for each colored cone was tailored to ensure ampleness. The associated line bundle O(d)
is (G × C∗)-linearizable (maybe up to passing to a suitable finite tensor power, which does
not seriously affect our statement). Choosing the linearization such that the natural section
s of O(d) is C∗-invariant and has B-weight χ yields the final identification of O(d) with the
pull-back of L by the first projection on X × (C∗ ∪ {∞}). This concludes the construction of
the test configuration (X ,L).
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4.4. Effect of twisting. We now elucidate the different possible twists of a given test config-
uration, as involved in the definition of G-uniform K-stability. For a spherical homogeneous
space G/H × C∗, one can easily identify AutG×C∗(G/H × C∗): it is the group NG×C∗(H ×
{1})/(H × {1}), acting on the right on G/H × C∗. Furthermore, this group is diagonalizable
and the action of its neutral component F extends to any embedding. Finally, Y(F )×R may
be identified with the linear part Lin(V) of the valuation cone of G/H ×C∗.

The above is not actually necessary since we can identify the possible twists directly by the
theory of spherical embeddings. Indeed, the colored fan of the twist of a test configuration and
of the initial test configurations are the same, as well as the combinatorial data identifying the
line bundle. Note that what we just wrote is true for the total space of the test configuration
itself, but not the compactification, which depends on the twist. The only difference is thus
that the privileged direction coming from the factor C∗ can be chosen differently, and that will
affect the final expression of g.

More precisely, the direction can be chosen arbitrarily among those directions in (Lin(V) ∩
N)×{1}, or (Lin(V)∩(N⊗Q))×{1} to allow for rational twists. The effect on g is by adding the
function l for some element l of Lin(V)∩N ⊗Q. This concludes the proof of Theorem 4.1. �

5. Non-Archimedean functionals for spherical test configurations

5.1. Statement. In this section, we compute the non-Archimedean Mabuchi functional and
the non-Archimedean J functional of the test configuration (X ,L) associated to the concave
function g. The computation follows the method of [Don02], and was previously used to obtain
sub-cases of our result in [Nyb, AK05].

We use the notations of section 3 and we set the notations

V :=

∫

∆
P dµ

and

a :=
1

2V

(
∫

∂∆
P dσ+2

∫

∆
Qdµ

)

.

Theorem 5.1. We have

MNA(X ,L) =
1

V

(

a

∫

∆
gP dµ−

1

2

∫

∂∆
gP dσ−

∫

∆
gQdµ

)

and

JNA(X ,L) =
1

V

∫

∆
(max

∆
g − g)P dµ .

With the notations of the introduction, we thus have 2V MNA(X ,L) = L(g) and V JNA(X ,L) =
J (g). We provide an expression for MNA rather than for the Donaldson-Futaki invariant. This
is because it is linear with respect to base change, so it is enough to compute it up to base
change. We can thus in particular assume that the test configuration is reduced and use the
definition of the Donaldson-Futaki invariant recalled in section 2. This reduction will appear
during the proof.

5.2. Proof. Let Xx denote the fiber of the test configuration, for x ∈ P1 = C ∪ {∞}. Donald-
son uses the following exact (for large enough k) sequences of C∗-representations obtained by
restriction of sections:

0 → H0(X ,Lk ⊗O(−X0)) → H0(X ,Lk) → H0(X0,L
k|X0

) → 0

0 → H0(X ,Lk ⊗O(−X∞)) → H0(X ,Lk) → H0(X∞,Lk|X∞
) → 0

Donaldson further notes that the C∗-action on H0(X∞,Lk|X∞
) is trivial, and that the family

of weights of the C∗-representation H0(X ,Lk ⊗O(−X∞)) is (λi +1)i∈I , if (λi)i∈I is the family
of weights of the C∗-representation H0(X ,Lk ⊗O(−X0)).
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This allows us to express the quantities involved in the definitions of the Donaldson-Futaki in-
variant and the non-Archimedean J-functional as follows. The sum wk of weights of H0(X0,L

k|X0
)

is given by
wk = dimH0(X ,Lk)− dimH0(X0,L

k|X0
).

Furthermore, if λk denotes the maximum of all weights of H0(X0,L
k|X0

), then

sup
k

λk

k
= max

∆
g

.
In order to use the expansion (6) applied to ∆̂, we may remark that for any (say continuous)

function f on ∆,
∫

∆̂
f(x) dµ(x, t) =

∫

∆
f(x)g(x) dµ(p)

and
∫

∂∆̂
f(x) dσ(x, t) = 2

∫

∆
f(x) dµ(x) +

∫

∂∆
g(x)f(x) dσ(x).

The latter equality follows from the decomposition of the boundary as the slice ∆̂∩(M⊗R×{0}),
the graph {(x, g(x)) | p ∈ ∆} of g (giving each one half of the first summand), and the vertical
part {(x, t) | x ∈ ∂∆, 0 ≤ t ≤ g(x)} giving the second summand. For the graph of g to give the
right contribution, given the definition of dσ, it is actually necessary to assume that g is defined
by integral linear forms. We can restrict to this case by base change since we are interested in
the non-Archimedean Mabuchi functional rather than the Donaldson-Futaki invariant.

By the expansion (6) applied to both ∆ and ∆̂, we obtain the following expansions.

kdk = kn+1

∫

∆
P dµ+kn

(

1

2

∫

∂∆
P dσ+

∫

∆
Qdµ

)

+ o(kn)

wk = kn+1

∫

∆
gP dµ+kn

(

1

2

∫

∂∆
gP dσ+

∫

∆
gQdµ

)

+ o(kn)

Writing wk = Akn+1 +Bkn + o(kn) and kdk = Ckn+1 +Dkn + o(kn), we have

wk

kdk
=

A

C
+

1

C

(

B −
AD

C

)

1

k
+ o

(

1

k

)

.

Replacing with the expressions above proves Theorem 5.1. �

Putting together the results of section 4 and section 5 proves Theorem 1.1. �

6. Restating the problem

In this section we will show how Theorem 1.2 applies to the uniform K-stability problem.
For this we will obtain a new expression of L when applied to smooth functions, and show how
to derive uniform K-stability in these terms. To simplify notations, we assume (by choosing
the global section appropriately) that the origin 0 ∈ M ⊗ R is in the interior of the polytope
∆.

6.1. A new expression of L on smooth functions. Let E1, . . . , Ek denote the facets of ∆,
and let Ti denote the pyramid with vertex the origin and base Ei. This provides in particular
a decomposition ∆ =

⋃

i Ti. The author learned the idea of using such a decomposition in
[ZZ08, LZZ18].

We will need notations for the set of equations defining ∆ as follows: for each facet, let ui
denote the outward-pointing primitive normal in N , and let ni be the positive number such
that

∆ = {x ∈ M ⊗ R | ∀i, ui(x) ≤ ni}.

Let J and K be the functions on ∆ defined (almost-everywhere) by

(9) J(x) =
−P (x)

ni
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and

(10) K(x) = 2aP (x) − 2Q(x) −
1

ni
dxP (x)−

1

ni
rP (x)

for x ∈ Int(Ti), where r denotes the dimension of M ⊗ R, also called the rank of X.
Note that these functions are not continuous in general, but piecewise polynomial with

respect to the decomposition of the polytope, hence integrable. Furthermore, J is negative on
the interior of ∆.

Proposition 6.1. For any continuous function f on ∆, smooth on the interior, we have

L(f) =

∫

∆
(f(x)K(x) + dxf(x)J(x)) dµ(x).

Proof. We identify M ⊗R with the Euclidean space Rr by choosing a basis of M . Let ν denote
the unit outward pointing normal vector to ∂∆ and let dσe denote the area measure on ∂∆.
Let also (x · ν) denote the scalar product of x ∈ M ⊗ R with ν induced by the identification
with Rr.

For f smooth, the divergence theorem yields for all i,
∫

Ei

f(x)P (x)(x · ν) dσe(x) =

∫

Ti

(f(x)dxP (x) + dxf(x)P (x) + rf(x)P (x)) dµ(x).

Note that the vector field considered is radial, hence there are no contributions from the other
facets of Ti.

Let ci denote the constant such that ui(x) = ci(x · ν|Ei
) for x ∈ M ⊗ R. Then dσe = ci dσ

on Ei and (x · ν) = ni

ci
for x ∈ Ei, hence in the left-hand side above, we may replace (x · ν) dσe

with ni dσ.
Then using the decomposition ∆ =

⋃

i Ti to rewrite the boundary term in L, we have

L(f) =
∑

i

∫

Ti

(K(x)f(x) + J(x)dxf(x)) dµ(x)

by definition of K and J . �

Remark 6.2. In the case when the restriction of P to the facet Ei vanishes, we can replace
the value of ni in the expressions of J |Ti

and K|Ti
by any number or even by +∞, in the sense

that one can take J = 0 and K = 2aP − 2Q on Ti.

6.2. Working on smooth functions. As in the introduction, we choose a complement W
of Lin(V) in N ⊗ R, and we denote by N∞

0 the space of continuous concave functions on ∆,
smooth in the interior with differentials in V, such that max f = 0 and d0f ∈ W.

To replace the boundary integral used in the toric case by Donaldson, we introduce:

L+(f) :=

∫

∆
(K+(x)f(x) + J(x)dxf(x)) dµ(x)

where, for x ∈ Int(Ti),

K+(x) = sup(2aP (x) − 2Q(x), 0) −
1

ni
dxP (x)−

1

ni
rP (x).

Lemma 6.3. There exists a constant η > 0 such that for all f ∈ N∞
0 ,

L+(f) ≥ η

∫

∆
(−f)P dµ

Proof. First note that, by the same proof as in Proposition 6.1,

L+(f) =

∫

∆
2f sup(2aP (x) − 2Q(x), 0) dµ−

∫

∂∆
fPdσ.
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We first claim that, if x ∈ ∆ and P (x) = 0, then there exists a neighborhood V of x such
that (2aP − 2Q)(y) < 0 for y ∈ V ∩ ∆. Indeed, let S be the subset of all α ∈ R+

X such that
〈α, x+ χ〉 = 0. Then the dominant term in aP −Q, for y near x, is

−
∑

α∈S

〈α,̟〉

〈α, y + χ〉
P (y)

which is negative for y ∈ ∆ near x.
Let us work in polar coordinates. For a given direction θ ∈ Sr−1, consider the ray tθ, and let

s denote the maximal positive real number so that sθ ∈ ∆. If P (sθ) = 0, then the concavity
and normalization, plus the previous observation shows that for a neighborhood V ′ of θ in Sr−1,
and ∆′ = {tθ ∈ ∆ | θ ∈ V ′}, there exists a η′ > 0 such that for all f ∈ N∞

0 ,
∫

∆′

2f sup(2aP (x)− 2Q(x), 0) dµ ≥ η′
∫

∆′

(−f)P dµ

If P (sθ) > 0 then there is a compact neighborhood F of sθ in ∂∆ such that P > 0 on F . Then
setting ∆′ = {ty | t ∈ [0, 1], y ∈ F}, by convexity and normalization, there exists a η′ > 0 such
that for all f ∈ N∞

0 ,
∫

F
−fPdσ dµ ≥ η′

∫

∆′

(−f)P dµ

By compactness of ∂∆, we obtain the result. �

Proposition 6.4. The polarized G-spherical variety (X,L) is G-uniformly K-stable if L van-
ishes on elements of Lin(V) and there exists an ε > 0 such that, for all f ∈ N∞

0 ,

(11) L(f) ≥ εL+(f).

It is K-semistable if L is invariant under addition of an element of Lin(V) and L ≥ 0 on N∞
0 .

Proof. Assume that L is invariant under addition of an element of Lin(V) and there exists an
ε > 0 such that (11) holds for all f ∈ N∞

0 .
Let (X ,L) be a G-equivariant test configuration for (X,L), and let g denote the associated

positive concave rational piecewise linear function, with slopes in V. The first step is to note
that g can be uniformly approximated on ∆ by a sequence (fm) of smooth concave functions
with slopes in V.

For each m, set

f̂m := fm − pLin(V)(d0fm)−max
∆

(fm − pLin(V)(d0fm))

where pLin(V) is the linear projection on Lin(V) relative to W. Then f̂m ∈ N∞
0 , and since the

fm are uniformly Lipschitz, it subconverges uniformly to a function g − l − max∆(g − l) for
some l ∈ Lin(V).

By assumption (11), Lemma 6.3 and uniform convergence, we have

L(g − l −max
∆

(g − l)) ≥ ε

∫

∆
(max

∆
(g − l)− g + l)P dµ .

By invariance of L under addition of a constant, or an element of Lin(V), we can replace the
left-hand side by L(g). We finally have

L(g) ≥ ε

∫

∆
(max

∆
(g − l)− g + l)P dµ ≥ ε inf

l′∈Lin(V)
J (g + l′).

We have proved uniform K-stability by Theorem 1.1.
For K-semistability, it suffices to follow the same arguments with ε = 0. �
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7. A combinatorial sufficient condition

In this section we will prove Theorem 1.2. The proof is rather elementary and follows from
a well-chosen decomposition of L as a sum of terms, which are each non-negative under the
assumptions. We will begin by a simpler analogue of Theorem 1.2 that uses this decomposition,
then proceed to the proof.

7.1. A condition for semi-stability. Let for now b be any point in ∆. Write the integrand
of the functional Ls as

f(x)K(x) + dxf(x)J(x) = (dxf(x− b)− f(x) + f(b)) J(x)(12)

+ (f(x)− f(b)− dbf(x− b)) (K + J)(x)(13)

+ dxf(b)J(x)(14)

+ f(b)K(x)(15)

+ dbf(x− b)(K + J)(x)(16)

We thus have a decomposition of Ls as a sum of each corresponding integral.

Proposition 7.1. Assume that K + J ≤ 0. Let b be the element of ∆ defined by
∫

∆
(x− b)(K(x) + J(x)) dµ(x) = 0.

If b is in −V∨, then
Ls(f) ≥ 0

for any continuous concave function f on ∆, smooth in the interior, with differentials in V.

Proof. Using b as defined in the statement, we consider the decomposition of Ls as above. Then

• the contribution from summands (12) and (13) are non-negative by concavity and non-
positivity of J and K + J ,

• the contribution (14) is non-negative by the assumption on the barycenter b and the
fact that the differentials of f are in V,

• the contribution of the summand (15) is zero since the integral of K is zero,
• and the contribution (16) is zero by definition of b.

�

7.2. A preparatory pre-compactness result. For the full proof of Theorem 1.2 and for
future reference, we will use the following pre-compactness result, which is a generalization of
one used by Donaldson [Don02, Corollary 5.2.5].

Proposition 7.2. Let C be a positive real number. Any sequence of non-positive concave
functions (fm) on ∆ with

∫

∆(−f)P dµ ≤ C has a sub-sequence which converges to a concave
function f∞ on the interior of ∆, and the convergence is uniform over strict compact subsets
of ∆.

For the proof, we use the standard Euclidean structure on Rn. For any x ∈ ∆, let dx denote
the distance from x to the boundary ∂∆. For any positive number d, set

∆d := {x ∈ ∆ | dx ≥ d}.

Note that by continuity of P , for any positive d there exists a positive constant δd such that
P ≥ δd on ∆d. Recall that if f is a concave function on ∆, a linear function l is a superdifferential
of f at x if for all y, f(y) ≤ f(x) + l(y − x).

Lemma 7.3. For any (small enough) positive d, there exists a positive constant κ = κ(d) such
that for any point x ∈ ∆d, for any non-positive concave function f on ∆ with finite

∫

∆ fP dµ,
and for any superdifferential l of f at x,

‖l‖ ≤ κ

∫

∆
(−f)P dµ
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Proof. Consider the ball B of center x and radius d/2, which is contained in ∆d/2 and the

half-ball B− ⊂ B where the affine function y 7→ l(y − x) is negative. Then
∫

B−

l(y − x)P (y) dµ(y) ≤ −‖l‖δd/2

(

d

2

)r+1

C

where C is a positive constant independent of x, d, f . We have furthermore
∫

B−

l(y − x)P (y) dµ(y) ≥

∫

B−

(l(y − x) + f(x))P (y) dµ(y) since f is non positive

≥

∫

B−

f(y)P (y) dµ(y) by definition of a superdifferential

≥

∫

∆
f(y)P (y) dµ(y) by non-positivity again.

This concludes the proof. �

Proof of Proposition 7.2. By concavity, we have

0 ≥ max
∆d

f ≥
1

∫

∆d

P dµ

∫

∆d

fP dµ ≥
1

∫

∆d

P dµ

∫

∆
fP dµ,

and we deduce from the lemma that

min
∆d

f ≥ max
∆d

f + diam(∆)κ(d)

∫

∆
fP dµ .

As a consequence, a bound on
∫

∆ fP dµ provides a uniform bound and a Lipschitz bound
on any strict compact subset of ∆. The proposition then follows by applying Arzelà-Ascoli
theorem. �

7.3. End of proof of Theorem 1.2. By Proposition 6.1, Ls = L for continuous functions
that are smooth on the interior of ∆. In particular, this is true for any linear function l ∈ N⊗R.
Furthermore, for l ∈ N ⊗ R, we have

L(l) = Ls(l) =

∫

∆
l(K + J) dµ = −C3b

for some positive constant C3.
As a consequence, the condition that b is in the relative interior of −V∨ is equivalent to

L(l) ≥ 0 for all l ∈ V, with equality if and only if l ∈ Lin(V). In particular, it implies that L
vanishes on Lin(V).

We prove the result by contradiction using Proposition 6.4. Let (fm) be a sequence of
functions in N∞

0 . Assume by contradiction that L(fm) → 0 while L+(fm) = 1 for all m. The
second condition implies, by Lemma 6.3 and by Proposition 7.2, the existence of a limit f∞
defined on the interior of the polytope, such that (fm) converges to f∞ uniformly on every
compact subset of the interior of ∆.

Furthermore, by using the expression of L(fm) as a sum of non-negative terms as in sec-
tion 7.1, we obtain that each individual term converges to zero. In particular, that

lim
m→∞

fm(x)− fm(b)− dbfm(x− b) = 0

almost-everywhere implies that f∞ is affine. The slope of f∞ is necessarily in W∩V by the nor-
malization. Finally, the assumption on the barycenter b and the term (14) in section 7.1 imply
that the slope must be zero. Hence f∞ = 0. Back to our assumptions, we have limm→∞ L(fm)−
L+(fm) = −1, but on the other hand, L(fm)−L+(fm) =

∫

∆ inf(2aP (x)−Q(x), 0)fm(x) dµ(x)
converges to zero by local uniform convergence of fm to the zero function. We reach a contra-
diction. �
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8. Full statement

Let us wrap up in this section the statement of the sufficient condition for uniform K-stability
of polarized spherical varieties we proved.

Let us note that ∆ is not the most direct choice of polytope associated to the polarized
spherical variety (X,L). The moment polytope ∆+ is in some sense more natural to consider as
it depends on less choices. Recall that the moment polytope of (X,L) is the convex polytope
obtained by taking the closure of the set of all (normalized) B-weights of plurisections of L.
It does not lie in the same space as ∆ in general. More precisely, the relation between the
two is a simple translation: ∆+ = χ + ∆, and ∆+ lies in the affine space χ + M ⊗ R. One
easily sees from the previous sections that it is not important in our results for χ to be in M .
Hence, the data of ∆+ alone allows to recover both ∆ and one (several) choice of χ to apply
our sufficient criterion. On the other hand, the data of M is not readily read off from ∆+ alone.
The importance of M in the statement is seen through the integers ni.

The full statement for our sufficient condition of G-uniform K-stability is as follows.

Theorem 8.1. Let (X,L) be a polarized G-spherical variety with spherical lattice M of rank r,
valuation cone V and moment polytope ∆+. Let R+

X denote the positive roots of G not orthogonal
to ∆+. Choose an element χ in the interior of ∆+, number the facets of the translated polytope
∆ := −χ+∆+ by Ei for 1 ≤ i ≤ s and let ni be the positive numbers such that

∆ = {x ∈ M ⊗ R | ui(x) ≤ ni}

where ui ∈ N = Hom(M,Z) denotes the outward pointing primitive normal to Ei. For m = r
or r+1, let Lm be the almost-everywhere defined function on ∆ such that for x in the interior
of the convex hull of Ei ∪ {0},

Lm(x) =
∑

α∈R+

X

〈α,
(

mn−1
i − 2a

)

(x+ χ) + Card(R+
X)

(

n−1
i x+ 2̟

)

〉
∏

β∈R+

X
\{α}

〈β, x+ χ〉

where the constant a is defined by
∫

∆ Lr dµ = 0 for some Lebesgue measure dµ on M ⊗ R.
Assume that Lr+1 is non-negative on ∆ and let b denote the barycenter of ∆ with respect to

the measure Lr+1 dµ. Assume furthermore that −b is in the relative interior of the valuation
cone V. Then (X,L) is G-uniformly K-stable.

If Lr+1 is non-negative on ∆ and b ∈ −V∨, then (X,L) is G-equivariantly K-semistable.

Proof. We work under the assumptions of the theorem, that is, Lr+1 is non-negative on ∆ and
the barycenter b of ∆ with respect to the measure Lr+1 dµ is in the relative interior of −V. Note
that K = −C1Lr and K + J = −C2Lr+1 for some positive constants C1 and C2. In particular,
the barycenters b involved in Theorem 1.2 and the theorem we are trying to prove are indeed
the same. Theorem 1.2 thus provides the uniform K-stability result, while the K-semi-stability
result follows from Proposition 7.1. �

Remark 8.2. It follows from the relation between Lm and J and K in the proof and Remark 6.2
that the statement of the theorem applies as well if we replace (ni)

−1 by any non-negative
number for the facets Ei where P vanishes.

Applying Corollary A.2 from Odaka’s appendix to this paper, we have the following sufficient
condition for existence of cscK metrics.

Corollary 8.3. Assume that Lr+1 is non-negative, that b is in the relative interior of −V∨ and
that X is smooth. Then there exists a cscK metric in c1(L).

On the other hand, from the point of view of K-stability alone, our theorem can be interpreted
in the following way.

Corollary 8.4. Under the assumption that Lr+1 is non-negative on ∆, G-uniform K-stability
is equivalent to G-stc K-polystability for (X,L).
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In particular, this point of view shows that our barycenter condition is in fact necessary.

Proof. As noted in the previous proof, the condition that b is in the relative interior of −V∨ is
equivalent to L(l) ≥ 0 for all l ∈ V, with equality if and only if l ∈ Lin(V). By Theorem 4.1,
this is equivalent to G-stc K-polystability. �

Remark 8.5. (On the toric case) In the toric case, the statement simplifies a lot, let us
state it anew. Let (X,L) be a polarized toric variety with integral moment polytope ∆ ⊂ Rr,
such that 0 is in the interior of ∆. Number the facets of the polytope ∆ by Ei for 1 ≤ i ≤ s
and let ni be the positive numbers such that

∆ = {x ∈ Rr | ui · x ≤ ni}

where ui ∈ Zr denotes the outward pointing primitive normal to Ei. In this case, we have
Lm ≡ mn−1

i −2a in the interior of the convex hull of Ei∪{0}, where a is such that
∫

∆ Lr dµ = 0.

The condition thus becomes: assume that (r+1)n−1
i − 2a ≤ 0 for all i and that the barycenter

of ∆ with respect to the measure Lr+1 dµ is zero. If these conditions are satisfied, then (X,L)
is G-uniformly K-stable.

This statement may be new in the singular and uniform K-stability setting, but actually
the whole proof in this toric situation is essentially contained in Zhou and Zhu’s arguments to
prove a sufficient condition for coercivity of the Mabuchi functional in [ZZ08].

9. Example: blowup of Q3 along Q1

In this section we study the blowup X of the three dimensional quadric along a 1-dimensional
subquadric. This example was previously considered in [DH21] and [Del19], where it was
presented in more details. The Picard rank of this variety is two.

The connected reductive group G making X a rank 2 spherical variety is SL2×C∗. We fix a
choice of maximal torus and Borel subgroup. Let α denote the unique positive root, and let f
denote the character of weight 1 of C∗. The spherical lattice M is the lattice generated by α

and α+f
2 . The dual lattice N is the lattice generated by α∨ and α∨+f∨

2 , where α∨ is the coroot
of α, and f∨ is defined similarly by f∨(f) = 2 and f∨(α) = 0. The valuation cone V is the
dual cone to R−α. Finally, we have R+

X = {α} and ̟ = α.
The moment polytope for an ample line bundle on X is, up to scaling, of the following form

for some s > 3/2.

∆(s) := {xα+ yf ∈ M ⊗ R | 0 ≤ x ≤ 3/2, x− s ≤ y ≤ s− x}

Its four facets E0, . . . , E3 have respective outward pointing primitive normals u0 = −α∨, u1 =
α∨+f∨

2 , u2 = α∨ and u3 =
α∨−f∨

2 .
Before trying to apply our theorem, let us compute the important quantity a, and for this it

is more convenient to deal with the boundary integral:

2a =

∫

∆ 2Qdµ+
∫

∂∆ P dσ
∫

∆ P dµ
.
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Figure 1. The polytope ∆(s) for s = 2

•
0

•
3
2α

•
sf

We have P (xα+ yf) = 2x, Q ≡ 1, dµ = 2 dx dy in the coordinates xα+ yf , dσ |E1
= dσ |E3

=
2 dx if we parametrize by x and dσ |E0

= dσ |E2
= dy. We thus have

∫

∆
2Qdµ =

∫ 3

2

x=0

∫ s−x

y=x−s
4 dy dx = 12s − 9

∫

∆
P dµ =

∫ 3

2

x=0

∫ s−x

y=x−s
4x dy dx = 9(s− 1)

∫

E0

P dσ = 0

∫

E1

P dσ =

∫

E3

P dσ =

∫ 3

2

0
4x dx =

9

2
∫

E2

P dσ =

∫ s− 3

2

3

2
−s

3 dy = 6s− 9

and

2a =
2s− 1

s− 1
.

By similar computations, we can check whether the barycenter condition involved in our
theorem, or equivalently, the G-stc K-polystability, holds. This amounts to the two conditions
L(f∨) = 0 and L(−α∨) > 0. The first of these conditions is automatic by symmetry of the
moment polytopes and Duistermaat-Heckman polynomial. We compute the second, using the
expression with a boundary integral as for 2a, we obtain

L(−α∨) =
9(8s2 − 18s + 11)

4(s − 1)

and it is positive for any s > 3/2.
We now choose an element of the interior of the polytope (and this is the tricky part to get

the theorem to apply). For reasons related by the general Fano case to be treated next, we
choose χ = s

2α, which can be considered of course only if s < 3. Then the translated polytope
∆ = −χ+∆+ is defined by the four equations ui(xα+ yf) ≤ ni with

n0 = s

n1 = n3 =
s

2
n2 = 3− s
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Figure 2. The decomposition of ∆(s)

•

E0
E1

E2
E3

In order to show that for these polarizations, G-uniform K-stability is equivalent to the
barycenter condition, we have to check that for all i, for all xα+ yf ∈ Ti, we have

〈α, (3n−1
i − 2a)((x +

s

2
)α+ yf) + (n−1

i x+ 1)α+ n−1
i yf〉 ≥ 0.

Recall that 〈α, f〉 = 0, hence it suffices to check

(4n−1
0 − 2a)x+ (3n−1

0 − 2a)
s

2
+ 1 ≥ 0 for −

s

2
≤ x ≤ 0

(4n−1
1 − 2a)x+ (3n−1

1 − 2a)
s

2
+ 1 ≥ 0 for −

s

2
≤ x ≤

3− s

2

(4n−1
2 − 2a)x+ (3n−1

2 − 2a)
s

2
+ 1 ≥ 0 for 0 ≤ x ≤

3− s

2

(4n−1
3 − 2a)x+ (3n−1

3 − 2a)
s

2
+ 1 ≥ 0 for −

s

2
≤ x ≤

3− s

2
.

Since n1 = n3, the second and fourth conditions are equivalent. Since P vanishes on E0, we
can choose any n0 we want, for example n0 = n1, so that the first condition is implied by the
second. We end up with only two conditions to check.

Replacing n1 and 2a by their expression in s, one of the conditions is

2s(−2s2 + 9s− 8)(2x + s)

s− 1
≥ 0 for −

s

2
≤ x ≤

3− s

2
.

The degree two polynomial −2s2+9s−8 is non-negative for 9−
√
17

4 ≤ s ≤ 9+
√
17

4 , which contains

the range 3
2 < s < 3, and the other factors are easily checked to be non-negative for the values

of x and s considered, so the condition is satisfied.
The other condition, replacing n2 and 2a by their expression in s, is

2s2 − 3s− 1

(s− 1)(3 − s)
x+

s3 − 3s2 + 4s− 3

(3− s)(s− 1)
≥ 0 for 0 ≤ x ≤

3− s

2
.

Since s > 3
2 > 1, one easily checks that the coefficient of x is positive. Hence the condition is

satisfied if

0 ≥ −
s3 − 3s2 + 4s− 3

2s2 − 3s − 1
.

Again, for s > 1 as here, this is equivalent to

s3 − 3s2 + 4s− 3 ≥ 0

and one can check that the unique real root s0 of this cubic polynomial is approximately
s0 ≈ 1.6823, in the range of s considered.

To sum up, we have shown that G-uniform K-stability of the polarized variety is equivalent
to the barycenter condition if s is such that s0 ≈ 1.6823 ≤ s < 3. We have thus proved that
X admits a cscK when s0 ≤ s < 3. It is very likely that our choice of χ was not the optimal
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one, and that one can push further the use of our main theorem to get a slightly larger range
of classes with cscK metrics. The natural question regarding this example is whether it is a
Calabi dream space in the sense of Chen and Cheng, that is, if all classes admit cscK metrics.
It is unlikely that our main theorem is enough for this, but we intend to answer this question
in a later work by studying optimal degenerations for rank two spherical threefolds.

10. Fano case

In this section, we apply our main theorem to the case of a Fano spherical manifold equipped
with its anticanonical polarization.

Theorem 10.1. Assume that X is Q-Fano and that L is (a multiple of) the anticanonical
Q-line bundle of X. Then Lr+1 is positive on ∆.

This shows, with a very straighforward proof, that for spherical Fano varieties, G-uniform K-
stability is equivalent to G-stc K-polystability, and allows to recover the explicit combinatorial
condition for this obtained in [Del20a].

Proof. Assume for simplicity that X is Gorenstein and L = K−1
X . Apart from notational issues,

the general case is the same. Assume furthermore that K−1
X is equipped with its canonical G

linearization.
The proposition will follow from the judicious choice χ = 2̟X =

∑

α∈R+

X

α and two steps:

(1) using Remark 8.2, we can assume that ni = 1 for all i in the expression of Lm,
(2) we can replace 2̟ with 2̟X in the expression of Lm.

Let us begin with the simple case of toric varieties. We obviously have ̟ = ̟X = 0 in the
toric case. The torus-invariant section of K−1

X has weight 0 which corresponds to the unique
interior integral point of the moment polytope ∆+. Finally, the polytope ∆+ is defined by
equations ui(x) ≤ 1 for a set of primitive elements ui in N , hence by choosing χ = 0 we have
ni = 1 for all i. Actually, an integral polytope is reflexive if and only if it is defined by equations
ui(x) ≤ 1 for a set of primitive elements ui in N , and it is well-known that Gorenstein Fano
toric varieties correspond to reflexive polytopes.

For the general case, we will use the description of the anticanonical divisor of spherical
varieties by Brion in [Bri97] as formulated in [GH15a]. Namely, there exists a section of the
anticanonical line bundle, with B-weight 2̟X , whose divisor

∑

D∈PX
nDD is such that nD = 1

if D is G-stable, and the description of the coefficients of colors (closures of B-stable divisors in
G/H) is explicit, depending on the type of each color. Since we need the details, let us quickly
recall the possible types of colors.

Let S denote the set of simple roots of G. For α ∈ S, let Pα denote the largest parabolic in
G containing B such that −α is not a root of Pα. Let D(α) denote the set of B-stable prime
divisors of X that are not Pα-stable. It turns out that these divisors exhaust the set of divisors
in PX that are not G-stable, and that D(α) is non-empty precisely if α ∈ R+

X . An element
D ∈ D(α) is

• of type a if α is a primitive element of M ,
• of type 2a if 2α is a primitive element of M ,
• and of type b otherwise.

The coefficient nD is then obtained, depending on the type of D ∈ D(α), as follows:

• nD = 1
2α

∨(2̟X) = 1 for type a or 2a,
• nD = α∨(2̟X ) for type b,

where α∨ denotes the coroot of α.
Consider now the polytope ∆ associated to the section constructed by Brion. We want to

check that we can take ni = 1 for each facet. Recall that the equations defining ∆ from the
coefficients of the divisor are the ̺(D)(x) + nD ≥ 0 for D ∈ PX . In particular, the equations
defining the facets are of the form ̺(D)(x)+nD = 0. To put these in the form ui(x) = ni where
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ui is a primitive outer normal, one has to find the positive number ai such that −̺(D)/ai is
primitive, in which case one can take ni = nD/ai.

Assume now that D ∈ PX defines a facet of ∆.
Whenever D is G-stable, ̺(D) is primitive and nD = 1, so we have ni = 1.
Assume now that D is a color of type a and let α ∈ S be such that D ∈ D(α). Then

α(̺(D)) = 1 (see [GH15b] for a convenient summary of the properties of colors by type), which
implies that ̺(D) is primitive. Since nD = 1 as well in this case, we indeed have ni = 1.

Assume now that D is a color of type 2a and let α ∈ S be such that D ∈ D(α). Then ̺(D) =
1
2α

∨|M . If x is in the facet defined by ̺(D)(x)+nD = 0, then we have 1
2α

∨(x)+ 1
2α

∨(2̟X) = 0,
which implies 〈α, x + 2̟X〉 = 0. Since χ = 2̟X , this in turn implies that P vanishes on the
facet. By remark 8.2, we can then choose ni = 1 in the expressions of Lr and Lr+1.

Similarly, if D is a color of type b and α ∈ S is such that D ∈ D(α) we have ̺(D) = α∨|M
and nD = α∨(2̟X ), hence P must vanish on the facet. Again by remark 8.2, we can choose
ni = 1 in the expressions of Lr and Lr+1.

We now turn to the problem of replacing ̟ by ̟X in the expression of Lm. The important
property of R+

X is that it consists of all roots of the unipotent radical of some parabolic subgroup
PX of G, namely the stabilizer of the open B-orbit in X. As a consequence, we may write
̟X = ̟ − ̟0 where ̟0 is the sum of positive roots of the Levi subgroup of PX . Let W0

denote the Weyl group of this Levi subgroup, which is a subgroup of the Weyl group of G. The
action of W0 on roots of G induces a permutation of R+

X . Consider the linear function

h : y 7→
∑

α∈R+

X

〈α,w · y〉
∏

β∈R+

X
\{α}

〈β, x + χ〉.

The discussion above shows that h is invariant under the action of W0. In particular, h(̟0) = 0
since there exists w0 ∈ W0 such that w0(̟0) = −̟0. We thus have

Lm(x) = h((mn−1
i − 2a)(x+ χ) + Card(R+

X)(n−1
i x+ 2̟))

= h((mn−1
i − 2a)(x+ χ) + Card(R+

X)(n−1
i x+ 2̟X)).

Putting together all ingredients in the case L = K−1
X (χ = 2̟X , all ni = 1 and we can

replace 2̟ with 2̟X), we have

Lm(x) = h((m− 2a+Card(R+
X))(x+ χ))

= (m− 2a+Card(R+
X))

∏

α∈R+

X

〈α, x + χ〉

Since
∏

α∈R+

X

〈α, x + χ〉 is positive on the interior of ∆, and
∫

∆ Lr dµ = 0, we deduce that

2a = r + Card(R+
X). This number actually coincides with the dimension of the variety, and

could be recovered by interpreting directly 2a as the average scalar curvature of the Fano variety
X.

Finally,

Lr+1(x) =
∏

α∈R+

X

〈α, x + χ〉

is strictly positive on the interior of ∆, and non-negative on the whole polytope. �

11. Polarizations close to the anticanonical line bundle

In this final section, we illustrate how our main theorem applies to different situations to
give equivalence of G-uniform K-stability and G-stc K-polystability for polarizations close to
the anticanonical line bundle. We however believe that the criterion better shows its strength
when applied to a concrete situation as in Section 9.
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Proposition 11.1. Let (X,L) be a G-spherical variety and assume that there exists a choice
of χ ∈ ∆+ and a positive number δ such that Lr+1 > δ on ∆. Then for polarizations close
to L, G-uniform K-stability is equivalent to G-stc K-polystability, which is equivalent to the
barycenter condition.

Proof. It follows from the simple remark that all the combinatorial data associated to the
polarization vary continuously. From this, one can choose a continuous family of elements
of the varying moment polytopes such that it coincides with χ on the given L. Then the
corresponding function Lr+1 varies continuously as well, and the condition minLr+1 > δ is an
open condition. �

Corollary 11.2. Let (X,L) be a Gorenstein Fano toroidal horospherical variety. Then there
exists a neighborhood of the anticanonical line bundle where G-uniform K-stability is equivalent
to vanishing of the Futaki invariant.

Proof. For any polarized toroidal horospherical variety, the moment polytope does not touch
the walls of the positive Weyl chamber of G defined by roots not in R+

X . Hence the Duistermaat-
Heckman polynomial is positive on each moment polytope. As a consequence from the proof of
Theorem 10.1, with the choice χ = 2̟X , Lr+1 is positive on ∆ for the anticanonical line bundle.
As a consequence, we can apply the previous proposition to obtain that, in a neighborhood of the
anticanonical line bundle, G-uniform K-stability is equivalent to G-stc K-polystability. Finally,
all special test configurations for horospherical manifolds are product since the valuation cone
is N ⊗ R in this case. Hence G-uniform K-stability with respect to special test configurations
is equivalent to vanishing of the Futaki invariant. �

Proposition 11.3. Let X be a Gorenstein Fano G-spherical polarized variety, such that the
open orbit G/H is a non-Hermitian symmetric variety. Then on a neighborhood of the anti-
canonical line bundle, G-uniform K-stability is equivalent to G-stc K-polystability.

Proof. For a non-Hermitian symmetric space G/H, the valuation cone is the negative Weyl
chamber defined by a root system in (a subspace of) M ⊗R (the restricted root system of the
symmetric space), and the images of colors in N ⊗ R are exactly one positive multiple of each
simple coroot of this root system (restricted coroots). As a consequence, the outward pointing
normals of facets of moment polytopes (which are always in M ⊗ R if the symmetric space is
not Hermitian) are either negative restricted coroots or elements of the positive restricted Weyl
chamber. Furthermore, the name restricted is appropriate in the sense that restricted roots
are exactly (doubles of) restrictions of roots in R+

X to N ⊗ R. Finally, the restriction of the
Duistermaat-Heckman polynomial to a facet vanishes exactly when the facet is defined by a
restricted coroot.

Consider the anticanonical line bundle on X, and instead of χ = 2̟X as in Section 10,
consider the element χ = 2t̟X . It is still in ∆ for t close to 1 since in our symmetric situation,
2̟X is the half sum of positive restricted roots, and is an element of M ⊗ R.

We then write, still for the anticanonical line bundle,

Lr+1(x) =
(

(r + 1)n−1
i − 2a+Card(R+

X)n−1
i

)

∏

α∈R+

X

〈α, x + χ〉

+
∑

α∈R+

X

〈α,Card(R+
X)

(

2̟X − n−1
i χ

)

〉
∏

β∈R+

X
\{α}

〈β, x+ χ〉.

We know from Section 10 that for every i,
(

(r + 1)n−1
i − 2a+Card(R+

X)n−1
i

)

is strictly positive if t is close to 1, since these number vary continuously with t and are equal
to 1 for t = 1. For the other term, we have

2̟X − n−1
i χ = (1− tn−1

i )2̟X .
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The values of ni depend on t, but:

• if the Duistermaat-Heckman polynomial vanishes on the facet Ei (i.e. it is defined by a
restricted coroot) then we can choose the value of ni to ensure that 1− tn−1

i is positive
for any t

• else, the outward pointing normal ui to the facet Ei is in the positive restricted Weyl
chamber, and ni = 1− ui((t− 1)2̟X ) so that

1− tn−1
i =

(1− t)(1 + ui(2̟X ))

1− (t− 1)ui(2̟X )

is positive when t < 1.

We can then fix a choice of t and χ = 2t̟X so that the corresponding Lr+1 is positive on
∆. Applying the same arguments as for Proposition 11.1 yields the conclusion. �

Remark 11.4. Let us stress again that it is very likely that the statements proved above hold
more generally for spherical varieties. It would for example be rather straightforward to push
further the last proposition so that it applies to all Q-Gorenstein weak Fano spherical varieties
whose open orbit is affine. We leave to further research the exploration of different special cases
or the question of finding an argument applying to general spherical varieties.

Appendix A. Uniform Yau-Tian-Donaldson conjecture for polarized spherical

manifolds, by Yuji Odaka

The purpose of this short notes is to clarify the following statements.

Theorem A.1. For any C∗-equivariant isotrivial projective family π : X → P1 whose general
fiber is a G-spherical projective variety for a reductive algebraic group G, take an arbitrary line
bundle L which is ample over the general fiber. Note that we do not assume it is also ample on
the central fiber. ([Li20] called (X ,L) a model.)

Then, ⊕m≥0π∗L⊗m is a finitely generated OP1-algebra.

Corollary A.2. For a polarized smooth projective G-spherical varieties (X,L), the G-uniform
K-(poly)stability in the sense of [His20, His19, Li20] implies the existence of a unique cscK
metric.

proof of Theorem A.1. By applying the Eakin-Nagata theorem to the normalization of X , we
can and do assume X is normal. Because of the G-action and the given compatible C∗-action
in the horizontal direction on X , it follows that X has the natural structure as a (G × C∗)-
spherical variety. Indeed, the Borel subgroup of G×C∗ is simply B(G)×C∗ from the definition,
where B(G) denotes the original Borel subgroup of G, and it admits an open dense orbit inside
X × C∗(⊂ X ) by the G-sphericality of X.

By taking a C∗-equivariant resolution of indeterminacy of X 99K X×P1 as in [RT07, Oda13],
we can and do assume X is the blow up of a flag ideal, i.e., of dominating type in the terminology
of [Li20]. Since replacing L by L ⊗ p∗2OP1(−c) for c ∈ Z does not affect the assertion, we can
and do such twist as follows. Here, pi denotes i-th projection from X × P1.

From the finiteness of the irreducible components of X0, it easily follows that there exists a
large enough c′ ∈ Z>0 such that

p∗1L⊗ p∗2OP1(−c′) ⊂ L ⊂ p∗1L⊗ p∗2OP1(c′).

Twisting the above by OP1(c′) and letting c := 2c′, we can and do assume:

p∗1L ⊂ L ⊂ p∗1L⊗ p∗2OP1(c).(17)

In any case, it immediately follows from the above that the filtration associated to L is linearly
bounded in the sense of [Szé15].

Since we confirmed that X is a spherical variety, it is also a Mori Dream space in the sense
of [HK00] due to [BK94] (cf., [HK00, p340]). Therefore, it follows that ⊕m≥0H

0(X ,L⊗m) is
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a finitely generated graded C-algebra. Then, by the natural C∗-action on it which is induced
by the Gm-action on (X ,L), the complete reductivity of Gm implies that we can take a set

of finite generators as eigenvectors of the form S = {(p∗1s
(m,l)
i )tl}l≤0,m,i. Here, t denotes the

homogeneous coordinate of P1 which vanishes at the origin with order 1, which we also identify
with p∗2t on X , and the indices are of the form −cm ≤ l ≤ 0 and 1 ≤ i ≤ am,l for a double
sequence of positive integers am,l such that

0 = am,−cm−1 ≤ am,−cm ≤ · · · ≤ am,0 = am,1 = · · · = h0(X,L⊗m),

because of (17). (In the case of test configurations i.e., when L is relatively ample, these {am,l}
are determined by {λa,k} in the terminology of section 2 of this paper.) The proof follows from
standard arguments so we omit but see and compare with [Oda13] for instance. Similarly, the
following set, in which we allow the integer index l to be not necessarily negative:

(S ⊂)S̃ = {(p∗1s
(m,min{l,0})
i )tl}m,l∈Z,i

generate ⊕m≥0π∗L⊗m as a OP1-algebra. Note that

S̃ = S ⊔ {{(p∗1s
(m,0)
i )tl}l>0,m,i}

= S ⊔ (tC[t]{{(p∗1s
(m,0)
i )}m,i}).

Thus, we can particularly take its finite subset

S := S ⊔ {{(p∗1s
(m,0)
i )}m,i(⊂ S̃),

which still generates ⊕m≥0π∗L⊗m as a graded OP1-algebra. This completes the proof of Theo-
rem A.1. �

proof of Corollary A.2. The result of [Li20, 1.10] combined with above Theorem A.1 readily
imply the existence part of Corollary A.2. The uniqueness part is due to [BB17] for general
cscK metrics. �

Note that in the toric case i.e., when G is an algebraic torus, Corollary A.2 was known before
as a result of [His20] combined with [CC21, CC18]. Our approach above extends [Li20, 1.12]
by some part of the theory of Mori dream space [BK94, HK00].
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