Heavy-tailed Representations, Text Polarity Classification & Data Augmentation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Heavy-tailed Representations, Text Polarity Classification & Data Augmentation

Résumé

The dominant approaches to text representation in natural language rely on learning embeddings on massive corpora which have convenient properties such as compositionality and distance preservation. In this paper, we develop a novel method to learn a heavy-tailed embedding with desirable regularity properties regarding the distributional tails, which allows to analyze the points far away from the distribution bulk using the framework of multivariate extreme value theory. In particular, a classifier dedicated to the tails of the proposed embedding is obtained which exhibits a scale invariance property exploited in a novel text generation method for label preserving dataset augmentation. Experiments on synthetic and real text data show the relevance of the proposed framework and confirm that this method generates meaningful sentences with controllable attribute, e.g. positive or negative sentiments.
Fichier principal
Vignette du fichier
Extreme_Representation_for_Natural_Language__NIPS____ARXIV.pdf (3.6 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02936647 , version 1 (11-09-2020)

Identifiants

Citer

Hamid Jalalzai, Pierre Colombo, Chloé Clavel, Éric Gaussier, Giovanna Varni, et al.. Heavy-tailed Representations, Text Polarity Classification & Data Augmentation. 2020. ⟨hal-02936647⟩
161 Consultations
64 Téléchargements

Altmetric

Partager

More