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ABSTRACT

The dominant approaches to text representation in natural language rely on learning embeddings on
massive corpora which have convenient properties such as compositionality and distance preservation.
In this paper, we develop a novel method to learn a heavy-tailed embedding with desirable regularity
properties regarding the distributional tails, which allows to analyze the points far away from the
distribution bulk using the framework of multivariate extreme value theory. In particular, a classifier
dedicated to the tails of the proposed embedding is obtained which exhibits a scale invariance property
exploited in a novel text generation method for label preserving dataset augmentation. Experiments
on synthetic and real text data show the relevance of the proposed framework and confirm that
this method generates meaningful sentences with controllable attribute, e.g. positive or negative
sentiments.

1 Introduction

Representing the meaning of natural language in a mathematically grounded way is a scientific challenge that has
received increasing attention with the explosion of digital content and text data in the last decade. Relying on the richness
of contents, several embeddings have been proposed [35, 36, 14] with demonstrated efficiency for the considered tasks
when learnt on massive datasets. However, none of these embeddings take into account the fact that word frequency
distributions are heavy tailed [2, 9, 32], so that extremes are naturally present in texts (see also Fig. 6a and 6b in the
supplementary material). Similarly, [3] shows that, contrary to image taxonomies, the underlying distributions for words
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Figure 1: Illustration of angular classifier g dedicated to extremes {x, ‖x‖∞ ≥ t} in R2
+. The red and green truncated

cones are respectively labeled as +1 and −1 by g.

and documents in large scale textual taxonomies are also heavy tailed. Exploiting this information, several studies, as
[11, 30], were able to improve text mining applications by accurately modeling the tails of textual elements.
In this work, we rely on the framework of multivariate extreme value analysis, based on extreme value theory (EVT)
which focuses on the distributional tails. EVT is valid under a regularity assumption which amounts to a homogeneity
property above large thresholds: the tail behavior of the considered variables must be well approximated by a power
law, see Section 2 for a rigorous statement. The tail region (where samples are considered as extreme) of the input
variable x ∈ Rd is of the kind {‖x‖ ≥ t}, for a large threshold t. The latter is typically chosen such that a small but
non negligible proportion of the data is considered as extreme, namely 25% in our experiments. A major advantage
of this framework in the case of labeled data [22] is that classification on the tail regions may be performed using
the angle Θ(x) = ‖x‖−1x only, see Figure 1. The main idea behind the present paper is to take advantage of the
scale invariance for two tasks regarding sentiment analysis of text data: (i) Improved classification of extreme inputs,
(ii) Label preserving data augmentation, as the most probable label of an input x is unchanged by multiplying x by
λ > 1.
EVT in a machine learning framework has received increasing attention in the past few years. Learning tasks
considered so far include anomaly detection [39, 40, 10, 17, 44], anomaly clustering [7], unsupervised learning [16],
online learning [5, 1], dimension reduction and support identification [18, 6, 8]. The present paper builds upon the
methodological framework proposed by Jalalzai et al. [22] for classification in extreme regions. The goal of Jalalzai
et al. [22] is to improve the performance of classifiers ĝ(x) issued from Empirical Risk Minimization (ERM) on the tail
regions {‖x‖ > t} Indeed, they argue that for very large t, there is no guarantee that ĝ would perform well conditionally
to {‖X‖ > t}, precisely because of the scarcity of such examples in the training set. They thus propose to train a
specific classifier dedicated to extremes leveraging the probabilistic structure of the tails. Jalalzai et al. [22] demonstrate
the usefulness of their framework with simulated and some real world datasets. However, there is no reason to assume
that the previously mentioned text embeddings satisfy the required regularity assumptions. The aim of the present
work is to extend [22]’s methodology to datasets which do not satisfy their assumptions, in particular to text datasets
embedded by state of the art techniques. This is achieved by the algorithm Learning a Heavy Tailed Representation (in
short LHTR) which learns a transformation mapping the input data X onto a random vector Z which does satisfy the
aforementioned assumptions. The transformation is learnt by an adversarial strategy [20].

In Appendix C we propose an interpretation of the extreme nature of an input in both LHTR and BERT representations.
In a word, these sequences are longer and are more difficult to handle (for next token prediction and classification tasks)
than non extreme ones.

Our second contribution is a novel data augmentation mechanism GENELIEX which takes advantage of the scale
invariance properties of Z to generate synthetic sequences that keep invariant the attribute of the original sequence Label
preserving data augmentation is an effective solution to the data scarcity problem and is an efficient pre-processing step
for moderate dimensional datasets [46, 47]. Adapting these methods to NLP problems remains a challenging issue. The
problem consists in constructing a transformation h such that for any sample x with label y(x), the generated sample
h(x) would remain label consistent: y

(
h(x)

)
= y(x) [37]. The dominant approaches for text data augmentation rely

on word level transformations such as synonym replacement, slot filling, swap deletion [47] using external resources
such as wordnet [34]. Linguistic based approaches can also be combined with vectorial representations provided by
language models [24]. However, to the best of our knowledge, building a vectorial transformation without using any
external linguistic resources remains an open problem. In this work, as the label y

(
h(x)

)
is unknown as soon as h(x)

does not belong to the training set, we address this issue by learning both an embedding ϕ and a classifier g satisfying a
relaxed version of the problem above mentioned, namely ∀λ ≥ 1

g
(
hλ(ϕ(x))

)
= g
(
ϕ(x)

)
. (1)

For mathematical reasons which will appear clearly in Section 2.2, hλ is chosen as the homothety with scale factor λ,
hλ(x) = λx. In this paper, we work with output vectors issued by BERT [14]. BERT and its variants are currently the
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most widely used language model but we emphasize that the proposed methodology could equally be applied using
any other representation as input. BERT embedding does not satisfy the regularity properties required by EVT (see
the results from statistical tests performed in Appendix B.5) Besides, there is no reason why a classifier g trained on
such embedding would be scale invariant, i.e. would satisfy for a given sequence u, embedded as x, g(hλ(x)) = g(x)
∀λ ≥ 1. On the classification task, we demonstrate on two datasets of sentiment analysis that the embedding learnt by
LHTR on top of BERT is indeed following a heavy-tailed distribution. Besides, a classifier trained on the embedding
learnt by LHTR outperforms the same classifier trained on BERT. On the dataset augmentation task, quantitative and
qualitative experiments demonstrate the ability of GENELIEX to generate new sequences while preserving labels.

The rest of this paper is organized as follows. Section 2 introduces the necessary background in multivariate extremes.
The methodology we propose is detailed at length in Section 3. Illustrative numerical experiments on both synthetic and
real data are gathered in sections 4 and 5. Further comments and experimental results are provided in the supplementary
material.

2 Background

2.1 Extreme values, heavy tails and regular variation

Extreme value analysis is a branch of statistics which main focus is on events characterized by an unusually high value
of a monitored quantity. A convenient working assumption in EVT is regular variation. A real-valued random variable
X is regularly varying with index α > 0, a property denoted as RV (α), if and only if there exists a function b(t) > 0,
with b(t) → ∞ as t → ∞, such that for any fixed x > 0: tP {X/b(t) > x} −−−→

t→∞
x−α . In the multivariate case

X = (X1, . . . , Xd) ∈ Rd, it is usually assumed that a preliminary component-wise transformation has been applied
so that each margin Xj is RV (1) with b(t) = t and takes only positive values. X is standard multivariate regularly
varying if there exists a positive Radon measure µ on [0, ∞]d\{0}

tP
{
t−1X ∈ A

}
−−−→
t→∞

µ(A), (2)

for any Borelian set A ⊂ [0,∞]d which is bounded away from 0 and such that the limit measure µ of the boundary ∂A
is zero. For a complete introduction to the theory of Regular Variation, the reader may refer to [38]. The measure µ may
be understood as the limit distribution of tail events. In (2), µ is homogeneous of order −1, that is µ(tA) = t−1µ(A),
t > 0, A ⊂ [0,∞]d \ {0}. This scale invariance is key for our purposes, as detailed in Section 2.2. The main idea
behind extreme value analysis is to learn relevant features of µ using the largest available data.

2.2 Classification in extreme regions

We now recall the classification setup for extremes as introduced in [22]. Let (X,Y ) ∈ Rd+×{−1, 1} be a random pair.
Authors of [22] assume standard regular variation for both classes, that is tP {X ∈ tA | Y = ±1} → µ±(A), where A
is as in (2). Let ‖ · ‖ be any norm on Rd and consider the risk of a classifier g : Rd+ → {±1} above a radial threshold t,

Lt(g) = P {Y 6= g(X) | ‖X‖ > t} . (3)

The goal is to minimize the asymptotic risk in the extremes L∞(g) = lim supt→∞ Lt(g). Using the scale invariance
property of µ, under additional mild regularity assumptions concerning the regression function, namely uniform
convergence to the limit at infinity, one can prove the following result (see [22], Theorem 1): there exists a classifier g?∞
depending on the pseudo-angle Θ(x) = ‖x‖−1x only, that is g?∞(x) = g?∞

(
Θ(x)

)
, which is asymptotically optimal

in terms of classification risk, i.e. L∞(g?∞) = infg measurable L∞(g). Notice that for x ∈ Rd+ \ {0}, the angle Θ(x)
belongs to the positive orthant of the unit sphere, denoted by S in the sequel. As a consequence, the optimal classifiers
on extreme regions are based on indicator functions of truncated cones on the kind {‖x‖ > t,Θ(x) ∈ B}, where
B ⊂ S, see Figure 1. We emphasize that the labels provided by such a classifier remain unchanged when rescaling
the samples by a factor λ ≥ 1 (i.e. g(x) = g(Θ(x)) = g(Θ(λx)),∀x ∈ {x, ‖x‖ ≥ t}). The angular structure of
the optimal classifier g?∞ is the basis for the following ERM strategy using the most extreme points of a dataset. Let
GS be a class of angular classifiers defined on the sphere S with finite VC dimension VGS < ∞. By extension, for
any x ∈ Rd+ and g ∈ GS , g(x) = g

(
Θ(x)

)
∈ {−1, 1}. Given n training data {(Xi, Yi)}ni=1 made of i.i.d copies of

(X,Y ), sorting the training observations by decreasing order of magnitude, let X(i) (with corresponding sorted label
Y(i)) denote the i-th order statistic, i.e. ‖X(1)‖ ≥ . . . ≥ ‖X(n)‖. The empirical risk for the k largest observations
L̂k(g) = 1

k

∑k
i=1 1{Y(i) 6= g(Θ(X(i)))} is an empirical version of the risk Lt(k)(g) as defined in (3) where t(k) is a

(1−k/n)-quantile of the norm, P {‖X‖ > t(k)} = k/n. Selection of k is a bias-variance compromise, see Appendix B
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for further discussion. The strategy promoted by [22] is to use ĝk = argming∈GS L̂k(g), for classification in the
extreme region {x ∈ Rd+ : ‖x‖ > t(k)}. The following result provides guarantees concerning the excess risk of ĝk
compared with the Bayes risk above level t = t(k), L?t = infg measurable Lt(g).

Theorem 1 ([22], Theorem 2) If each class satisfies the regular variation assumption (2), under an additional
regularity assumption concerning the regression function η(x) = P {Y = +1 | x} (see Equation (4) in Appendix B.3),
for δ ∈ (0, 1), ∀n ≥ 1, it holds with probability larger than 1− δ that

Lt(k)(ĝk)− L?t(k) ≤
1√
k

(√
2(1− k/n) log(2/δ) + C

√
VGS log(1/δ)

)
+

1

k

(
5 + 2 log(1/δ) +

√
log(1/δ)(C

√
VGS +

√
2)
)

+

{
inf
g∈GS

Lt(k)(g)− L?t(k)

}
,

where C is a universal constant.

In the present work we do not assume that the baseline representation X for text data satisfies the assumptions of
Theorem 1. Instead, our goal is is to render the latter theoretical framework applicable by learning a representation
which satisfies the regular variation condition given in (2), hereafter referred as Condition (2) which is the main
assumption for Theorem 1 to hold. Our experiments demonstrate empirically that enforcing Condition (2) is enough for
our purposes, namely improved classification and label preserving data augmentation, see Appendix B.3 for further
discussion.

3 Heavy-tailed Text Embeddings

3.1 Learning a heavy-tailed representation

We now introduce a novel algorithm Learning a heavy-tailed representation (LHTR) for text data from high dimensional
vectors as issued by pre-trained embeddings such as BERT. The idea behind is to modify the output X of BERT so
that classification in the tail regions enjoys the statistical guarantees presented in Section 2, while classification in the
bulk (where many training points are available) can still be performed using standard models. Stated otherwise, LHTR
increases the information carried by the resulting vector Z = ϕ(X) ∈ Rd′ regarding the label Y in the tail regions of
Z in order to improve the performance of a downstream classifier. In addition LHTR is a building block of the data
augmentation algorithm GENELIEX detailed in Section 3.2. LHTR proceeds by training an encoding function ϕ in such
a way that (i) the marginal distribution q(z) of the code Z be close to a user-specified heavy tailed target distribution p
satisfying the regularity condition (2); and (ii) the classification loss of a multilayer perceptron trained on the code Z be
small.

A major difference distinguishing LHTR from existing auto-encoding schemes is that the target distribution on the latent
space is not chosen as a Gaussian distribution but as a heavy-tailed, regularly varying one. A workable example of such
a target is provided in our experiments (Section 4). As the Bayes classifier (i.e. the optimal one among all possible
classifiers) in the extreme region has a potentially different structure from the Bayes classifier on the bulk (recall from
Section 2 that the optimal classifier at infinity depends on the angle Θ(x) only), LHTR trains two different classifiers, gext

on the extreme region of the latent space on the one hand, and gbulk on its complementary set on the other hand. Given a
high threshold t, the extreme region of the latent space is defined as the set {z : ‖z‖ > t}. In practice, the threshold t is
chosen as an empirical quantile of order (1−κ) (for some small, fixed κ) of the norm of encoded data ‖Zi‖ = ‖ϕ(Xi)‖.
The classifier trained by LHTR is thus of the kind g(z) = gext(z)1{‖z‖ > t}+ gbulk(z)1{‖z‖ ≤ t}. If the downstream
task is classification on the whole input space, in the end the bulk classifier gbulk may be replaced with any other
classifier g′ trained on the original input data X restricted to the non-extreme samples (i.e. {Xi, ‖ϕ(Xi)‖ ≤ t}). Indeed
training gbulk only serves as an intermediate step to learn an adequate representation ϕ.

Remark 1 Recall from Section 2.2 that the optimal classifier in the extreme region as t→∞ depends on the angular
component θ(x) only, or in other words, is scale invariant. One can thus reasonably expect the trained classifier gext(z)
to enjoy the same property. This scale invariance is indeed verified in our experiments (see Sections 4 and 5) and is the
starting point for our data augmentation algorithm in Section 3.2. An alternative strategy would be to train an angular
classifier, i.e. to impose scale invariance. However in preliminary experiments (not shown here), the resulting classifier
was less efficient and we decided against this option in view of the scale invariance and better performance of the
unconstrained classifier.

The goal of LHTR is to minimize the weighted risk

R(ϕ, gext, gbulk) = ρ1P
{
Y 6= gext(Z), ‖Z‖ ≥ t

}
+ ρ2P

{
Y 6= gbulk(Z), ‖Z‖ < t

}
+ ρ3D(q(z), p(z)),
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where Z = ϕ(X), D is the Jensen-Shannon distance between the heavy tailed target distribution p and the code
distribution q, and ρ1, ρ2, ρ3 are positive weights. Following common practice in the adversarial literature, the Jensen-
Shannon distance is approached (up to a constant term) by the empirical proxy L̂(q, p) = supD∈Γ L̂(q, p,D), with
L̂(q, p,D) = 1

m

∑m
i=1 logD(Zi) + log

(
1−D(Z̃i)

)
, where Γ is a wide class of discriminant functions valued in [0, 1],

and where independent samples Zi, Z̃i are respectively sampled from the target distribution and the code distribution
q. Further details on adversarial learning are provided in Appendix A.1. The classifiers gext, gbulk are of the form
gext(z) = 21{Cext(z) > 1/2)−1, gbulk(z) = 21{Cbulk(z) > 1/2)−1 whereCext, Cbulk are also discriminant functions
valued in [0, 1]. Following common practice, we shall refer to Cext, Cbulk as classifiers as well. In the end, LHTR solves
the following min-max problem infCext,Cbulk,ϕ supD R̂(ϕ,Cext, Cbulk, D) with

R̂(ϕ,Cext, Cbulk, D) =
ρ1

k

k∑
i=1

`(Y(i), C
ext(Z(i))) +

ρ2

n− k

n−k∑
i=k+1

`(Y(i), C
bulk(Z(i))) + ρ3 L̂(q, p,D),

where {Z(i) = ϕ(X(i)), i = 1, . . . , n} are the encoded observations with associated labels Y(i) sorted by decreasing
magnitude of ‖Z‖ (i.e. ‖Z(1)‖ ≥ · · · ≥ ‖Z(n)‖), k = bκnc is the number of extreme samples among the n encoded
observations and `(y, C(x)) = −(y logC(x) + (1 − y) log(1 − C(x)), y ∈ {0, 1} is the negative log-likelihood
of the discriminant function C(x) ∈ (0, 1). A summary of LHTR and an illustration of its workflow are provided
in Appendices A.2 and A.3.

3.2 A heavy-tailed representation for dataset augmentation

We now introduce GENELIEX (Generating Label Invariant sequences from Extremes), a data augmentation algorithm,
which relies on the label invariance property under rescaling of the classifier for the extremes learnt by LHTR. GENELIEX
considers input sentences as sequences and follows the seq2seq approach [43]. It trains a Transformer Decoder [45]
Gext on the extreme regions.

For an input sequence U = (u1, . . . , uT ) of length T , represented as XU by BERT with latent code Z = ϕ(XU ) lying
in the extreme regions, GENELIEX produces, through its decoder Gext M sequences U ′j where j ∈ {1, . . . ,M}. The
M decoded sequences correspond to the codes {λjZ, j ∈ {1, . . . ,M}} where λj > 1. To generate sequences, the
decoder iteratively takes as input the previously generated word (the first word being a start symbol), updates its internal
state, and returns the next word with the highest probability. This process is repeated until either the decoder generates
a stop symbol or the length of the generated sequence reaches the maximum length (Tmax). To train the decoder
Gext : Rd′ →

[
1, . . . , |V|

]Tmax where V is the vocabulary on the extreme regions, GENELIEX requires an additional
dataset Dgn = (U1, . . . , Un) (not necessarily labeled) with associated representation via BERT (XU,1, . . . , XU,n).
Learning is carried out by optimising the classical negative log-likelihood of individual tokens `gen. The latter is defined
as `gen

(
U,Gext(ϕ(X))

) def
=
∑Tmax

t=1

∑
v∈V 1{ut = v} log

(
pv,t
)
, where pv,t is the probability predicted by Gext that the

tth word is equal to v. A detailed description of the training step of GENELIEX is provided in Algorithm 2 in Appendix
A.3, see also Appendix A.2 for an illustrative diagram.

Remark 2 Note that the proposed method only augments data on the extreme regions. A general data augmentation
algorithm can be obtained by combining this approach with any other algorithm on the original input data X whose
latent code Z = ϕ(XU ) does not lie in the extreme regions.

4 Experiments : Classification

In our experiments we work with the infinity norm. The proportion of extreme samples in the training step of LHTR is
chosen as κ = 1/4. The threshold t defining the extreme region {‖x‖ > t} in the test set is t = ‖Z̃(bκnc)‖ as returned
by LHTR. We denote by Ttest and Ttrain respectively the extreme test and train sets thus defined. Classifiers Cbulk, Cext

involved in LHTR are Multi Layer Perceptrons (MLP), see Appendix B.6 for a full description of the architectures.
Heavy-tailed distribution. The regularly varying target distribution is chosen as a multivariate logistic distribution
with parameter δ = 0.9, refer to Appendix B.4 for details and an illustration with various values of δ. This distribution
is widely used in the context of extreme values analysis [8, 44, 17] and differ from the classical logistic distribution.

4.1 Toy example: about LHTR

We start with a simple bivariate illustration of the heavy tailed representation learnt by LHTR. Our goal is to provide
insight on how the learnt mapping ϕ acts on the input space and how the transformation affects the definition of extremes
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(recall that extreme samples are defined as those samples which norm exceeds an empirical quantile). Labeled samples
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Figure 2: Figure 2a: Bivariate samples Xi in the input space. Figure 2b: Xi’s in the input space with extremes from
each class selected in the input space. Figure 2c: Latent space representation Zi = ϕ(Xi). Extremes of each class are
selected in the latent space. Figure 2d: Xi’s in the input space with extremes from each class selected in the latent
space.

are simulated from a Gaussian mixture distribution with two components of identical weight. The label indicates the
component from which the point is generated. LHTR is trained on 2250 examples and a testing set of size 750 is shown
in Figure 2. The testing samples in the input space (Figure 2a) are mapped onto the latent space via ϕ (Figure 2c) In
Figure 2b, the extreme raw observations are selected according to their norm after a component-wise standardisation of
Xi, refer to Appendix B for details. The extreme threshold t is chosen as the 75% empirical quantile of the norm on the
training set in the input space. Notice in the latter figure the class imbalance among extremes. In Figure 2c, extremes
are selected as the 25% samples with the largest norm in the latent space. Figure 2d is similar to Figure 2b except for
the selection of extremes which is performed in the latent space as in Figure 2c. On this toy example, the adversarial
strategy appears to succeed in learning a code which distribution is close to the logistic target, as illustrated by the
similarity between Figure 2c and Figure 5a in the supplementary. In addition, the heavy tailed representation allows a
more balanced selection of extremes than the input representation.

4.2 Application to positive vs. negative classification of sequences

In this section, we dissect LHTR to better understand the relative importance of: (i) working with a heavy-tailed
representation, (ii) training two independent classifiers: one dedicated to the bulk and the second one dedicated to the
extremes. In addition, we verify experimentally that the latter classifier is scale invariant, which is neither the case for
the former, nor for a classifier trained on BERT input.
Experimental settings. We compare the performance of three models. The baseline NN model is a MLP trained
on BERT. The second model LHTR1 is a variant of LHTR where a single MLP (C) is trained on the output of the
encoder ϕ, using all the available data, both extreme and non extreme ones. The third model (LHTR) trains two separate
MLP classifiers Cext and Cbulk respectively dedicated to the extreme and bulk regions of the learnt representation
ϕ. All models take the same training inputs, use BERT embedding and their classifiers have identical structure, see
Appendix A.2 and B.6 for a summary of model workflows and additional details concerning the network architectures.
Comparing LHTR1 with NN model assesses the relevance of working with heavy-tailed embeddings. Since LHTR1 is
obtained by using LHTR with Cext = Cbulk, comparing LHTR1 with LHTR validates the use of two separate classifiers so
that extremes are handled in a specific manner. As we make no claim concerning the usefulness of LHTR in the bulk, at
the prediction step we suggest working with a combination of two models: LHTR with Cext for extreme samples and
any other off-the-shelf ML tool for the remaining samples (e.g. NN model).
Datasets. In our experiments we rely on two large datasets from Amazon (231k reviews) [33] and from Yelp (1,450k
reviews) [48, 28]. Reviews, (made of multiple sentences) with a rating greater than or equal to 4/ 5 are labeled as +1,
while those with a rating smaller or equal to 2/ 5 are labeled as −1. The gap in reviews’ ratings is designed to avoid any
overlap between labels of different contents.
Results. Figure 3 gathers the results obtained by the three considered classifiers on the tail regions of the two datasets
mentioned above. To illustrate the generalization ability of the proposed classifier in the extreme regions we consider
nested subsets of the extreme test set Ttest, T λ = {z ∈ Ttest, ‖z‖ ≥ λt}, λ ≥ 1. For all factor λ ≥ 1, T λ ⊆ Ttest.
The greater λ, the fewer the samples retained for evaluation and the greater their norms. On both datasets, LHTR1

outperforms the baseline NN model. This shows the improvement offered by the heavy-tailed embedding on the
extreme region. In addition, LHTR1 is in turn largely outperformed by the classifier LHTR, which proves the importance
of working with two separate classifiers. The performance of the proposed model respectively on the bulk region, tail
region and overall, is reported in Table 1, which shows that using a specific classifier dedicated to extremes improves
the overall performance.
Scale invariance. On all datasets, the extreme classifier gext verifies Equation (1) for each sample of the test set,
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Figure 3: Classification loss of LHTR, LHTR1 and NN model on the extreme test set {x ∈ T , ||x|| ≥ λt} for increasing
values of λ (X-axis), on Yelp and Amazon.

Model Amazon Yelp
Bulk Extreme Overall Bulk Extreme Overall

NN model 0.085 0.135 0.098 0.098 0.148 0.111
LHTR1 0.104 0.091 0.101 0.160 0.139 0.155
LHTR 0.105 0.08 0.0988 0.162 0.1205 0.152
Proposed Model 0.085 0.08 0,084 0.097 0.1205 0.103

Table 1: Classification losses on Amazon and Yelp. ‘Proposed Model’ results from using NN model model for the bulk
and LHTR for the extreme test sets. The extreme region contains 6.9k samples for Amazon and 6.1k samples for Yelp,
both corresponding roughly to 25% of the whole test set size.

gext(λZ) = gext(Z) with λ ranging from 1 to 20, demonstrating scale invariance of gext on the extreme region. The same
experiments conducted both with NN model and a MLP classifier trained on BERT and LHTR1 show label changes for
varying values of λ: none of them are scale invariant. Appendix B.5 gathers additional experimental details. The scale
invariance property will be exploited in the next section to perform label invariant generation.

5 Experiments : Label Invariant Generation

5.1 Experimental Setting

Comparison with existing work. We compare GENELIEX with two state of the art methods for dataset augmentation,
Wei and Zou [47] and Kobayashi [24]. Contrarily to these works which use heuristics and a synonym dictionary,
GENELIEX does not require any linguistic resource. To ensure that the improvement brought by GENELIEX is not only
due to BERT, we have updated the method in [24] with a BERT language model (see Appendix B.7 for details and
Table 7 for hyperparameters).
Evaluation Metrics. Automatic evaluation of generative models for text is still an open research problem. We rely
both on perceptive evaluation and automatic measures to evaluate our model through four criteria (C1, C2, C3,C4). C1
measures Cohesion [13] (Are the generated sequences grammatically and semantically consistent?). C2 (named Sent.
in Table 3) evaluates label conservation (Does the expressed sentiment in the generated sequence match the sentiment of
the input sequence?). C3 measures the diversity [27] (corresponding to dist1 or dist2 in Table 32) of the sequences
(Does the augmented dataset contain diverse sequences?). Augmenting the training set with very diverse sequences can
lead to better classification performance. C4 measures the improvement in terms of F1 score when training a classifier
(fastText [23]) on the augmented training set (Does the augmented dataset improve classification performance?).
Datasets. GENELIEX is evaluated on two datasets, a medium and a large one (see [41]) which respectively contains
1k and 10k labeled samples. In both cases, we have access to Dgn a dataset of 80k unlabeled samples. Datasets are
randomly sampled from Amazon and Yelp.
Experiment description. We augment extreme regions of each dataset according to three algorithms: GENELIEX (with
scaling factor λ ranging from 1 to 1.5), Kobayashi [24], and Wei and Zou [47]. For each train set’s sequence considered
as extreme, 10 new sequences are generated using each algorithm. Appendix B.7 gathers further details. For experiment
C4 the test set contains 104 sequences.

2distn is obtained by calculating the number of distinct n-grams divided by the total number of generated tokens to avoid favoring
long sequences.
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Model
Amazon Yelp

Medium Large Medium Large
F1 dist1/dist2 F1 dist1/dist2 F1 dist1/dist2 F1 dist1/dist2

Raw Data 84.0 X 93.3 X 86.7 X 94.1 X
Kobayashi [24] 85.0 0.10/0.47 92.9 0.14/0.53 87.0 0.15/0.53 94.0 0.14/0.58
Wei and Zou [47] 85.2 0.11/0.50 93.2 0.14/0.54 87.0 0.15/0.52 94.2 0.16/0.59
GENELIEX 86.3 0.14/0.52 94.0 0.18/0.58 88.4 0.18/0.62 94.2 0.16/0.60

Table 2: Quantitative Evaluation. Algorithms are compared according to C3 and C4. dist1 and dist2 respectively stand
for distinct 1 and 2, it measures the diversity of new sequences in terms of unigrams and bigrams. F1 is the F1-score for
FastText classifier trained on an augmented labelled training set.

Model Amazon Yelp
Sent. Cohesion Sent. Cohesion

Raw Data 83.6 78.3 80.6 0.71
Kobayashi [24] 80.0 84.2 82.9 0.72
Wei and Zou [47] 69.0 67.4 80.0 0.60
GENELIEX 78.4 73.2 85.7 0.77

Table 3: Qualitative evaluation with three turkers. Sent. stands for sentiment label preservation. The Krippendorff
Alpha for Amazon is α = 0.28 on the sentiment classification and α = 0.20 for cohesion. The Krippendorff Alpha for
Yelp is α = 0.57 on the sentiment classification and α = 0.48 for cohesion.

5.2 Results

Automatic measures. The results of C3 and C4 evaluation are reported in Table 2. Augmented data with GENELIEX
are more diverse than the one augmented with Kobayashi [24] and Wei and Zou [47]. The F1-score with dataset
augmentation performed by GENELIEX outperforms the aforementioned methods on Amazon in medium and large
dataset and on Yelp for the medium dataset. It equals state of the art performances on Yelp for the large dataset.
As expected, for all three algorithms, the benefits of data augmentation decrease as the original training dataset size
increases. Interestingly, we observe a strong correlation between more diverse sequences in the extreme regions and
higher F1 score: the more diverse the augmented dataset, the higher the F1 score. More diverse sequences are thus
more likely to lead to better improvement on downstream tasks (e.g. classification).
Perceptive Measures. To evaluate C1, C2, three turkers were asked to annotate the cohesion and the sentiment of
100 generated sequences for each algorithm and for the raw data. F1 scores of this evaluation are reported in Table 3.
Grammar evaluation confirms the findings of [47] showing that random swaps and deletions do not always maintain the
cohesion of the sequence. In contrast, GENELIEX and Kobayashi [24], using vectorial representations, produce more
coherent sequences. Concerning sentiment label preservation, on Yelp, GENELIEX achieves the highest score which
confirms the observed improvement reported in Table 2. On Amazon, turker annotations with data from GENELIEX
obtain a lower F1-score than from Kobayashi [24]. This does not correlate with results in Table 2 and may be explained
by a lower Krippendorff Alpha3 on Amazon (α = 0.20) than on Yelp (α = 0.57).

3measure of inter-rater reliability in [0, 1]: 0 is perfect disagreement and 1 is perfect agreement.
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[1] Mastane Achab, Stephan Clémençon, Aurélien Garivier, Anne Sabourin, and Claire Vernade. Max k-armed bandit:

On the extremehunter algorithm and beyond. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 389–404. Springer, 2017.

[2] R Harald Baayen. Word frequency distributions, volume 18. Springer Science & Business Media, 2002.

[3] Rohit Babbar, Cornelia Metzig, Ioannis Partalas, Eric Gaussier, and Massih-Reza Amini. On power law distribu-
tions in large-scale taxonomies. ACM SIGKDD Explorations Newsletter, 16(1):47–56, 2014.
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APPENDIX : HEAVY-TAILED REPRESENTATIONS, TEXT POLARITY CLASSIFICATION &
DATA AUGMENTATION

A Models

A.1 Background on Adversarial Learning

Adversarial networks, introduced in [19], form a system where two neural networks are competing. A first model
G, called the generator, generates samples as close as possible to the input dataset. A second model D, called the
discriminator, aims at distinguishing samples produced by the generator from the input dataset. The goal of the generator
is to maximize the probability of the discriminator making a mistake. Hence, if Pinput is the distribution of the input
dataset then the adversarial network intends to minimize the distance (as measured by the Jensen-Shannon divergence)
between the distribution of the generated data PG and Pinput. In short, the problem is a minmax game with value
function V (D,G)

min
G

max
D

V (D,G) =Ex∼Pinput [logD(x)] + Ez∼PG [log
(
1−D(G(z))

)
].

Auto-encoders and derivatives [20, 26, 15] form a subclass of neural networks whose purpose is to build a suitable
representation by learning encoding and decoding functions which capture the core properties of the input data. An
adversarial auto-encoder (see [31]) is a specific kind of auto-encoders where the encoder plays the role of the generator
of an adversarial network. Thus the latent code is forced to follow a given distribution while containing information
relevant to reconstructing the input. In the remaining of this paper, a similar adversarial encoder constrains the encoded
representation to be heavy-tailed.

A.2 Models Overview

Figure 4 provides an overview of the different algorithms proposed in the paper. Figure 4a describes the pipeline for
LHTR detailed in Algorithm 1. Figure 4b describes the pipeline for the comparative baseline LHTR1 where Cext = Cbulk.
Figure 4c illustrates the pipeline for the baseline classifier trained on BERT. Figure 4d describes GENELIEX described
in Algorithm 2, note that the hatched components are inherited from LHTR and are not used in the workflow.

+

-

(a)

+

-

(b)

(c) (d)

Figure 4: Illustrative pipelines.

A.3 LHTR and GENELIEX algorithm

This subsection provides detailed algorithm for both models LHTR and GENELIEX.
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Algorithm 1 LHTR

INPUT: Weighting coef. ρ1, ρ2, ρ3 > 0, Training dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, batch size m, proportion
of extremes κ, heavy tailed prior PZ .

Initialization: parameters (τ, θ, θ′, γ) of the encoder ϕτ , classifiers Cextθ , Cbulkθ′ and discriminator Dγ

Optimization:
while (τ, θ, θ′, γ) not converged do
Sample {(X1, Y1) . . . , (Xm, Ym)} from Dn and define Z̃i = ϕ(Xi), i ≤ m.
Sample {Z1, . . . , Zm} from the prior PZ .
Update γ by ascending:

ρ3

m

m∑
i=1

logDγ(Zi) + log(1−Dγ(Z̃i)).

Sort {Z̃i}i∈{1,...,m} by decreasing order of magnitude ||Z̃(1)|| ≥ . . . ≥ ||Z̃(m)||.
Update θ by descending:

Lext(θ, τ)
def
=

ρ1

bκmc

bκmc∑
i=1

`
(
Y(i), C

ext
θ (Z̃(i))

)
.

Update θ′ by descending:

Lbulk(θ′, τ)
def
=

ρ2

m− bκmc

m∑
i=bκmc+1

`
(
Y(i), C

bulk
θ′ (Z̃(i))

)
.

Update τ by descending:

1

m

m∑
i=1

−ρ3 logDγ(Z̃i) + Lext(θ, τ) + Lbulk(θ′, τ).

end while
Compute {Z̃i}i∈{1,...,n} = ϕ(Xi)i∈{1,...,n}
Sort {Z̃i}i∈{1,...,n} by decreasing order of magnitude ||Z̃(1)|| ≥ . . . ||Z̃(bκnc)|| ≥ . . . ≥ ||Z̃(n)||.

OUTPUT: encoder ϕ, classifiers Cext for {x : ||ϕ(x)|| ≥ t := ||Z̃(bκnc)||} and Cbulk on the complementary set.

Algorithm 2 GENELIEX: training step

INPUT: input of LHTR, Dgn = {U1, . . . , Un}
Initialization: parameters of ϕτ , Cext

θ , Cbulk
θ′ , Dγ and decoder Gext

ψ

Optimization:
ϕ, Cext, Cbulk = LHTR(ρ1, ρ2, ρ3, Dn, κ,m)
while ψ not converged do
Sample {U1 . . . , Um} from the training set Dgn and define Z̃i = ϕ(XU,i) for i ∈ {1, . . . ,m}.
Sort {Z̃i}i∈{1,...,m} by decreasing order of magnitude ‖Z̃(1)‖ ≥ . . . ≥ ‖Z̃(m)‖.
Update ψ by descending:

Lext
g (ψ)

def
=

ρ1

bκmc

bκmc∑
i=1

`gen.
(
U(i), G

ext
ψ (Z̃(i))

)
.

end while
Compute {Z̃i}i∈{1,...,n} = ϕ(Xi)i∈{1,...,n}
Sort {Z̃i}i∈{1,...,n} by decreasing order of magnitude ‖Z̃(1)‖ ≥ . . . ‖Z̃(k)‖ ≥ . . . ≥ ‖Z̃(n)‖.

OUTPUT: encoder ϕ, decoder Gext applicable on the region {x : ‖ϕ(x)‖ ≥ ‖Z̃(bκnc)‖}
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B Extreme Value Analysis: additional material

B.1 Choice of k

To the best of our knowledge, selection of k in extreme value analysis (in particular in Algorithm 1 and Algorithm 2)
is still a vivid problem in EVT for which no absolute answer exists. As k gets large the number of extreme points
increases including samples which are not large enough and deviates from the asymptotic distribution of extremes.
Smaller values of k increase the variance of the classifier/generator. This bias-variance trade-off is beyond the scope of
this paper.

B.2 Preliminary standardization for selecting extreme samples

In Figure 2b selecting the extreme samples on the input space is not a straightforward step as the two components of the
vector are not on the same scale, componentwise standardisation is a natural and necessary preliminary step. Following
common practice in multivariate extreme value analysis it was decided to standardise the input data (Xi)i∈{1,...,n} by
applying the rank-transformation:

T̂ (x) =

(
1/
(

1− F̂j(x)
))

j=1,...,d

for all x = (x1, . . . , xd) ∈ Rd where F̂j(x)
def
= 1

n+1

∑n
i=1 1{X

j
i ≤ x} is the jth empirical marginal distribution.

Denoting by Vi the standardized variables, ∀i ∈ {1, . . . , n}, Vi = T̂ (Xi). The marginal distributions of Vi are well
approximated by standard Pareto distribution, the approximation error comes from the fact that the empirical c.d.f ’s are
used in T̂ instead of the genuine marginal c.d.f.’s Fj . After this standardization step, the selected extreme samples are
{Vi, ‖Vi‖ ≥ V(bκnc)}.

B.3 Enforcing regularity assumptions in Theorem 1

The methodology in the present paper consists in learning a representation Z for text data via LHTR satisfying the
regular variation condition (2). This condition is weaker than the assumptions from Theorem 1 for two reasons: first,
it does not imply that each class (conditionally to the label Y ) is regularly varying, only that the distribution of Z
(unconditionally to the label) is. Second, in Jalalzai et al. [22], it is additionally required that the regression function
η(z) = P {Y = +1 | Z = z} converges uniformly as ‖z‖ → ∞. Getting into details, one needs to introduce a limit
random pair (Z∞, Y∞) which distribution is the limit of P

{
Y = · , t−1Z ∈ ·

∣∣ ‖Z‖ > t
}

as t→∞. Denote by η∞
the limiting regression function, η∞(z) = P {Y∞ = +1 | Z∞ = z}. The required assumption is that

sup
{z∈Rd+:‖z‖>t}

∣∣η(z)− η∞(z)
∣∣ −−−→
t→∞

0. (4)

Uniform convergence (4) is not enforced in LHTR and the question of how to enforce it together with regular variation
of each class separately remains open. However, our experiments in sections 4 and 5 demonstrate that enforcing
Condition (2) is enough for our purposes, namely improved classification and label preserving data augmentation.

B.4 Logistic distribution

The logistic distribution with dependence parameter δ ∈ (0, 1] is defined in Rd by its c.d.f. F (x) = exp
{
−

(
∑d
j=1 x

(j)
1
δ )δ
}

. Samples from the logistic distribution can be simulated according to the algorithm proposed in
Stephenson [42]. Figure 5 illustrates this distribution with various values of δ. Values of δ close to 1 yield non
concomitant extremes, i.e. the probability of a simultaneous excess of a high threshold by more than one vector
component is negligible. Conversely, for small values of δ, extreme values tend to occur simultaneously. These two
distinct tail dependence structures are respectively called ‘asymptotic independence’ and ‘asymptotic dependence’ in
the EVT terminology.

B.5 Scale invariance comparison of BERT and LHTR

In this section, we compare LHTR and BERT and show that the latter is not scale invariant. For this preliminary
experiment we rely on labeled fractions of both Amazon and Yelp datasets respectively denoted as Amazon small dataset
and Yelp small dataset detailed in [25], each of them containing 1000 sequences from the large dataset. Both datasets
are divided at random in a train set Ttrain and Ttest. The train set represents 3/4 of the whole dataset while the remaining
samples represent the test set. We use the hyperparameters reported in Table 4.
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Figure 5: Illustration of the distribution of the angle Θ(X) obtained with bivariate samples X generated from a logistic
model with different coefficients of dependence ranging from near asymptotic independence Figure 5a (δ = 0.9) to
high asymptotic dependence Figure 5c (δ = 0.1) including moderate dependence Figure 5b (δ = 0.5). Non extreme
samples are plotted in gray, extreme samples are plotted in black and the angles Θ(X) (extreme samples projected on
the sup norm sphere) are plotted in red. Note that not all extremes are shown since the plot was truncated for a better
visualization. However all projections on the sphere are shown.

NN model LHTR1 LHTR
Sizes of the layers ϕ [768,384,200,50,8,1] [768,384,200,100] [768,384,200,150]

Sizes of the layers Cbulkθ′ X [100,50,8,1] [150,75,8,1]
Sizes of the layers Cextθ X X [150,75,8,1]

ρ3 X X 0.001
Table 4: Network architectures for Amazon small dataset and Yelp small dataset . The weight decay is set to 105, the
learning rate is set to 5 ∗ 10−4, the number of epochs is set to 500 and the batch size is set to 64.

BERT is not regularly varying. In order to show that X is not regularly varying, independence between ‖X‖ and a
margin of Θ(X) can be tested [12], which is easily done via correlation tests. Pearson correlation tests were run on the
extreme samples of BERT and LHTR embeddings of Amazon small dataset and Yelp small dataset. The statistical tests
were performed between all margins of

(
Θ(Xi)

)
1≥i≥n and

(
‖Xi‖

)
1≥i≥n.
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(b) Amazon small dataset - BERT
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(c) Yelp small dataset - LHTR
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Figure 6: Histograms of the p-values for the non-correlation test between
(
Θ(Xi)

)
1≥i≥n and

(
‖Xi‖

)
1≥i≥n on

embeddings provided by BERT (Figure 6a and Figure 6b) or LHTR (Figure 6c and Figure 6d).

Each histogram in Figure 6 displays the distribution of the p-values of the correlation tests between the margins
Xj and the angle Θ(X) for j ∈ {1, . . . d}, in a given representation (BERT or LHTR) for a given dataset. For both
Amazon small dataset and Yelp small dataset the distribution of the p-values is shifted towards larger values in the
representation of LHTR than in BERT, which means that the correlations are weaker in the former representation than in
the latter. This phenomenon is more pronounced with Yelp small dataset than with Amazon small dataset. Thus, in
BERT representation, even the largest data points exhibit a non negligible correlation between the radius and the angle
and the regular variation condition does not seem to be satisfied. As a consequence, in a classification setup such as
binary sentiment analysis detailed in Section 4.2), classifiers trained on BERT embedding are not guaranteed to be scale
invariant. In other words for a representation X of a sequence U with a given label Y , the predicted label g(λX) is
not necessarily constant for varying values of λ ≥ 1. Figure 7 illustrates this fact on a particular example taken from
Yelp small dataset. The color (white or black respectively) indicates the predicted class (respectively −1 and +1). For
values of λ close to 1, the predicted class is −1 but the prediction shifts to class +1 for larger values of λ.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21g(
X)

0.00

0.25

0.50

0.75

1.00

Figure 7: Lack of scale invariance of the classifier trained on BERT: evolution of the predicted label g(λX) from −1 to
+1 for increasing values of λ, for one particular example X .

Scale invariance of LHTR. We provide here experimental evidence that LHTR’s classifier gext is scale invariant (as
defined in Equation (1)). Figure 8 displays the predictions gext(λZi) for increasing values of the scale factor λ ≥ 1 and
Zi belonging to Ttest, the set of samples considered as extreme in the learnt representation. For any such sample Z, the
predicted label remains constant as λ varies, i.e. it is scale invariant, gext(λZ) = gext(Z), for all λ ≥ 1.
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(b) Yelp small dataset

Figure 8: Scale invariance of gext trained on LHTR: evolution of the predicted label gext(λZi) (white or black for
−1/+1) for increasing values of λ, for samples Zi from the extreme test set Ttest from Amazon small dataset (Figure 8a)
and Yelp small dataset (Figure 8b).

B.6 Experimental settings (Classification): additional details

Toy example. For the toy example, we generate 3000 points distributed as a mixture of two normal distributions in
dimension two. For training LHTR, the number of epochs is set to 100 with a dropout rate equal to 0.4, a batch size of
64 and a learning rate of 5 ∗ 10−4. The weight parameter ρ3 in the loss function (Jensen-Shannon divergence from the
target) is set to 10−3. Each component ϕ, Cbulk and Cext is made of 3 fully connected layers, the sizes of which are
reported in Table 5.
Datasets. For Amazon, we work with the video games subdataset from http://jmcauley.ucsd.edu/data/
amazon/. For Yelp [48, 28], we work with 1,450,000 reviews after that can be found at https://www.yelp.com/
dataset.

Layers’ sizes
ϕ [2,4,2]

Cbulkθ′ [2,8,1]
Cextθ [2,8,1]

Table 5: Sizes of the successive layers in each component of LHTR used in the toy example.

BERT representation for text data. We use BERT pretrained models and code from the library Transformers 4. All
models were implemented using Pytorch and trained on a single Nvidia P100. The output of BERT is a R768 vector.
All parameters of the models have been selected using the same grid search.

Network architectures. Tables 6 report the architectures (layers sizes) chosen for each component of the three
algorithms considered for performance comparison (Section 4), respectively for the moderate and large datasets used in
our experiments. We set ρ1 = (1− P̂(||Z|| ≥ ||Z(bκnc)||))−1 and ρ2 = P̂(||Z|| ≥ ||Z(bκnc)||)−1.

NN model LHTR1 LHTR
Sizes of the layers ϕ [768,384,200,50,8,1] [768,384,200,100] [768,384,200,150]

Sizes of the layers of Cbulkθ′ [150,75,8,1] [100,50,8,1] [150,75,8,1]
Sizes of the layers of Cextθ X X [150,75,8,1]

ρ3 X X 0.01
Table 6: Network architectures for Amazon dataset and Yelp dataset. The weight decay is set to 105, the learning rate is
set to 1 ∗ 10−4, the number of epochs is set to 500 and the batch size is set to 256.

B.7 Experiments for data generation

B.7.1 Experimental setting

As mentioned in Section 5.1, hyperparameters for dataset augmentation are detailed in Table 7. For the Transformer
Decoder we use 2 layers with 8 heads, the dimension of the key and value is set to 64 [45] and the inner dimension is
set to 512. The architectures for the models proposed by Wei and Zou [47] and Kobayashi [24] are chosen according to
the original papers. For a fair comparison with Kobayashi [24], we update the language model with a BERT model, the
labels are embedded in R10 and fed to a single MLP layer. The new model is trained using AdamW [29].

4https://github.com/huggingface/transformers
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LHTR
Sizes of the layers ϕ [768,384,200,150]

Sizes of the layers of Cbulkθ′ [150,75,8,1]
Sizes of the layers of Cextθ [150,75,8,1]

ρ3 0.01
Table 7: For Amazon and Yelp, the weight decay is set to 105, the learning rate is set to 1 ∗ 10−4, the number of epochs
is set to 100 and the batch size is set to 256.

B.7.2 Influence of the scaling factor on the linguistic content

Table 8 gathers some extreme sequences generated by GENELIEX for λ ranging from 1 to 1.5. No major linguistic
change appears when λ varies. The generated sequences are grammatically correct and share the same polarity (positive
or negative sentiment) as the input sequence. Note that for greater values of λ, a repetition phenomenon appears. The
resulting sequences keep the label and polarity of the input sequence but repeat some words [21].

C Extremes in Text

Aim of the experiments The aim of this section is double: first, to provide some intuition on what characterizes
sequences falling in the extreme region of LHTR. Second, to investigate the hypothesis that extremes from LHTR are
input sequences which tend to be harder to model than non extreme ones

Regarding the first aim ( (i) Are there interpretable text features correlated with the extreme nature of a text sample?,
since we characterize extremes by their norm in LHTR representation, in practice the question boils down to finding text
features which are positively correlated with the norm of the text samples in LHTR, which we denote by ‖ϕ(X)‖ and
referred to as the ‘LHTR norm’ in the sequel. Preliminary investigations did not reveal semantic features (related to the
meaning or the sentiment expressed in the sequence ) displaying such correlation. However we have identified two
features which are positively correlated both together and with the norm in LHTR, namely the sequence length |U | as
measured by the number of tokens of the input (recall that in our case an input sequence U is a review composed of
multiple sequences ), and the norm of the input in BERT representation (‘BERT norm’, denoted by ‖X‖).
As for the second question ( (ii) Are LHTR’s extremes harder to model? ) we consider the next token prediction loss [4]
(‘LM loss’ in the sequel) obtained by training a language model on top of BERT. The next token prediction loss can be
seen as a measure of hardness to model the input sequence. The question is thus to determine whether this prediction
loss is correlated with the norm in LHTR (or in BERT, or with the sequence length).

Results Figure 9 displays pairwise scatterplots for the four considered variables on Yelp dataset (left) and Amazon
dataset (right). These scatterplot suggest strong dependence for all pairs of variables. For a more quantitative assessment,
Figure 10 displays the correlation matrices between the four quantities ‖ϕ(X)‖, ‖X‖, |U | and ‘LM Loss’ described
above on Amazon and Yelp datasets. Pearson and Spearman two-sided correlation tests are performed on all pairs of
variables, both tests having as null hypothesis that the correlation between two variables is zero. For all tests, p-values
are smaller than 10−16, therefore null hypotheses are rejected for all pairs.

These results prove that the four considered variables are indeed significantly positively correlated, which answers
questions (i) and (ii) above.

Figure 11 provides additional insight about the magnitude of the shift in sequence length between extremes in the LHTR
representation and non extreme samples. Even though the histograms overlap (so that two different sequences of same
length may be regarded as extreme or not depending on other factors that are not understood yet), there is a visible
shift in distribution for both Yelp and Amazon datasets, both for the positive and negative class in the classification
framework for sentiment analysis. Kolmogorov-Smirnoff tests between the length distributions of the two considered
classes for each label were performed, which allows us to reject the null hypothesis of equality between distributions, as
the maximum p-values is less than 0.05.
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Figure 9: Scatterplots of the four variables ‘BERT norm’, ‘LHTR norm’, ‘LM loss’ and ‘sequence length’ on Yelp dataset
(top) and Amazon dataset (bottom).
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Input very sloppy and slow service. when we arrived they told us to sit anywhere but all the tables were still dirty and
haven’t been cleaned. they didn’t bother to ask if we wanted refills on our drinks. we needed an extra plate and
didn’t get one so my nephew decides to go up to the counter and ask for one because he’s hungry. they gave our
check when we were still eating. the list can go on and on. i wouldn’t recommend this place. go somewhere else for
faster and better service. very disappointed

λ = 1.1 very sloppy and sluggish service. when we got there, they told us to sit anywhere but all the tables were empyt full
of dishes and were not cleaned at all. they didn’t bother to ask if our drinks would be added. we needed an extra
dish and didn’t get one, so my cousin decided to go to the counter and ask one because he’s hungry. they were going
to watch while we were still eating. the list could go on and on. i would not recommend this place. go elsewhere for
faster and better service. very very disappointed

λ = 1.2 services and survivors. when he got there, he told us we were sitting everywhere but all the tables were full of dishes
and we didn’t wash everything. he never bothered to ask if our drinks would be added. we needed extra food and
didn’t get one, so my brother decided to go to the locker and ask because he was thirsty. they want to watch it while
we eat. the list can be continuous and active. i would not recommend this place. go elsewhere for faster and better
service. very disappointed

λ = 1.3 services and survivors. when he got there, he told us that we were sitting everywhere, but all the tables were full of
dishes and we didn’t wash everything. he never bothered to ask if our drinks would be added. We needed more food
and we didn’t get it, so my brother decided to go to the locker and ask because he was thirsty. they want to watch it
when we eat. the list can be continuous and active. i would not recommend this place. go faster and faster for better
service. very disappointed

Input visited today with my husband. we were in the firearms section. there were 3 employees in attendance with one
customer. my husband ask a question and was ignored. he waited around for another 10 minutes or so. if it had been
busy i could understand not receiving help. we left and went elsewhere for our purchases.

λ = 1.1 visited today with my husband. we were in the firearms section. together with one customer there were 3 employees.
my husband asked and was ignored. waited about another 10 minutes. if it was busy, i would understand that i
wouldn’t get help. we left and went somewhere else because of our purchases.

λ = 1.2 today she visited with her husband. we were in the gun department. there were 3 employees together with one
customer. my husband asked and was ignored. waited another 10 minutes. if he was busy, i would understand that i
would not receive help. we went and went somewhere else because of our shopping.

λ = 1.3 today, she went with her husband. we are in the gun department. there are 3 employees and one customer. my
husband rejected me and ignored him. wait another minute. if he has a job at hand, i will understand that i will not
get help. we went somewhere else because of our business.

Input walked in on a friday and got right in. it was exactly what i expected for a thai massage. the man did a terrific
job. he was very skilled, working on the parts of my body with the most tension and adjusting pressure as i needed
throughout the massage. i walked out feeling fantastic and google eyed.

λ = 1.1 walked in on a friday and got right in. it was exactly what i expected for a thai massage. the man did a terrific
job. he was very skilled, working on the parts of my body with the most tension and adjusting pressure as needed
throughout the massage. i walked out feeling fantastic and google eyed.

λ = 1.2 climb up the stairs and get in. the event that i was expecting a thai massage. the man did a wonderful job. he was
very skilled, dealing with a lot of stress and stress on my body parts. i walked out feeling lightly happy and tired.

λ = 1.3 go up and up. this was the event i was expecting a thai massage. the man did a wonderful job. what this was was an
expert, with a lot of stress and stress on my body parts. i walked out feeling lightly happy and tired.

Input i came here four times during a 3 - day stay in madison. the first two was while i was working - from - home. this
place is awesome to plug in, work away at a table, and enjoy a great variety of coffee. the other two times, i brought
people who wanted good coffee, and this place delivered. awesome atmosphere. awesome awesome awesome.

λ = 1.1 i came here four times during a 3-day stay in henderson. the first two were while i was working - from home. this
place is great for hanging out, working at tables and enjoying the best variety of coffee. the other two times, i
brought in people who wanted a good coffee, and it delivered a place. better environment. really awesome awesome.

λ = 1.2 i came here four times during my 3 days in the city of henderson. the first two were while i was working - at home.
this place is great for trying, working tables and enjoying the best variety of coffee. the other two times, i brought
people who wanted good coffee, and it brought me somewhere. good environment. really amazing.

λ = 1.3 i came here four times during my 3 days in the city of henderson. the first two are when i’m working - at home.
this place is great for trying, working tables and enjoying a variety of the best coffees. the other two times, i bring
people who want good coffee, and that brings me somewhere. good environment. very amazing.

Table 8: Sequences generated by GENELIEX for extreme embeddings implying label (sentiment polarity) invariance for
generated Sequence. λ is the scale factor. Two first reviews are negatives, two last reviews are positive.
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Figure 10: Non diagonal entries of the correlation matrices of the four variables ‘BERT norm’, ‘LHTR norm’, ‘LM loss’
and ‘sequence length’ for Yelp dataset (left) and Amazon dataset (right).
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Figure 11: Histograms of the samples’ sequence length for Yelp dataset (Figure 11a and Figure 11b) and Amazon
(Figure 11c and Figure 11d). The number of sequences in the bulk is approximately 3 times the number of extreme
sequences for each dataset 10000 sequences are considered and extreme region contains approximately 3000 sequences.

Experimental conclusions We summarize the empirical findings of this section:

1. An ‘extreme’ text sequence in LHTR representation is more likely to have a greater length (number of tokens)
than a non extreme one.

2. Positive correlation between the BERT norm and the LHTR norm indicates that a large sample in the BERT
representation is likely to have a large norm in the LHTR representation as well: the learnt representation LHTR
taking BERT as input keeps invariant (in probability) the ordering implied by the norm.

3. A consequence of the two above points is that long sequences tend to have a large norm in BERT.
4. Extreme text samples (regarding the BERT norm or the LHTR norm) tend to be harder to model than non-

extreme ones.
5. Since extreme texts are harder to model and also somewhat harder to classify in view of the BERT classification

scores reported in Table 1, there is room for improvement in their analysis and it is no wonder that a method
dedicated to extremes i.e. relying on EVT such as LHTR outperforms the baseline.
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